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§0. Introduction and statement of results.

Homology operations on iterated loop spaces were defined by Araki-Kudo
and Dyer-Lashof [5]. These operations are essential for studying the
homology of the spaces such as QX, F, BF, BPL, etc.

On the other hand when we consider the spaces such as @S° they are
not only infinite loop spaces but they have reduced join products which are
infinitely homotopy commutative.

The purpose of this paper is to study the relations between these two
products and relations between two Dyer-Lashof operations Q° and Q7 defined
by loop products and reduced join products respectively.

In §1, we formulate the ring spectrum of H* type. It is roughly speak-
ing a ring spectrum (X, ) with unit, whose product is parametrized by W2,
so that there exist X, equivariant maps :

(0-1) O,: W2 XX?P— X.
In §2, in the first part, we reconstruct the parametrization of the loop

product on iterated loop spaces by W2, due to Araki-Kudo, and Dyer-Lashof
in the following way. Define

(0-2) c: QSUPX(QX)" — QX

by composition, and then we approximate QS°(g) by W2, equivariantly by
taking a 2, equivariant map ¢,: W2,—QS°g), then we get

(0-3) 0,: W2, x(QX)! — QX.
If X is a ring spectrum of H*® type using we get
(0-4) 0,: WY X(QX)! — QX.

The main point of this section is the following.
PROPOSITION 2-8. The general distributive law. The following diagram is

* The author was partly supported by the Sakkokai Foundation and Nationalk
Science Foundation grant GP-7952X3.
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fg Ty
equivariantly homotopy commutative over Z’JZQ —> Y X¥p—> .

1d X (0,)?
W, X (WX X (QX)?)?P W2, x(QX)”
WZ, X (W2 )P X (QX)M? o
dypiX1dX O QTX

(W2 )P (W2 )P X T1(QX)Y

JES 0.0

0®XH(51))J

WX, x (WX )P ES(WZPX(QX)Z’)J WZ’qprIEIS(QX)J .

In § 3, using and we define Dyer-Lashof operations Q° and Q’.
The first proposition is the following Mixed Cartan formula.
PROPOSITION 3-7.

Qi(x * n= 2 AZG(J)AO(XO Qo) * +oe * Q{;P(xp Q)

jot-Fip=i

where 4,,,(xQ¥) =2(2, Q)X -+ Q(x,RY,). And we have
Qix®y») =Q(e(x) - y), Qh(xRy) =0 (x-&(»)).

. 1 /p
For 0<1<p put mi__p_<i) then

Q1 (x®y) =[m;]o(ZQ?(x,0 -+ 0x;09,0 ++- 0Yp_3)

where 4;x=23xQ - Qx;, and 4,y =23y, R+ QVp-i-
Then we study relations between Q° and §7, for example, we get
PROPOSITION 3-14. When p =2, in H«(QX: Z,)

Q= 3 (LTRTlTIme)

J,e1,¢2, dx=3x' @z k —‘]_ ¢ + Cy
Q-ieresu(x) « QUQH")

In §4, the preceding results are used to determine the Dyer-Lashof
operations on Hy(SF), H«(BSF), H«(SPL) and Hx(BSPL) when p is an odd
prime number.

PROPOSITION 4-3. The Pontrjagin ring Hy(SF) is the free commutative
algebra generated by

) BQT11*x[1—p].
i) QUII*[1—p%, |I|=2, e()+e, >0, I: admissible.
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i) QUQMII*[1—p2D), =2, 1JIZ1, e(], +e >0,
(], I): admissible, [={(e,, j1, =+, &y, Jr)-
THEOREM 4-4. The Pontrjagin ring H«(BSF) is the free commutative
ring generated by
i) 2, o(@[1«[1—p]), i,7=1,2, -
ii) o(Q11*[1—p%)), |I|=2, e(I)+e&, =1, I: admissible.
i) Q7(e(Q[1I*[1—p2D), 11=2, |JIZ 1, e(], [)+e, > 1,
([, I): admissible, J= /ey, J1, =+, &ry Jr)-
THEOREM 4-22, The Pontrjagin ring Hx(BSPL) is the free commutative
ring genervated by
) b;7=1,2, .
2) a(x;); I=(,r,¢59), e)+0=1, I: admissible.
3) Qo) 1=, 7,6 5), J=(e, J1, =+, & Jr)y 721,
e(], D+e, >1, (J,I): admissible.
And the map jx: Hy(BSPL)— H«(BSF) is as follows.

0 if j=0 P71
1) jub)=

2
5 . k—1
¢;Z2+dec. zf]~——2Ak, c;#0.

o(B°Q7 Q1T+ [1—4D), if (3, &) # (0, 0)
2) Jjxo(E) = _
" { 0@ QT+ [1—p*D+( 1) )o@ 11+ [1—-pD)

if (0, €)=(0, 0).

§ 1. Multiplicative ring spectra of H> type.

1-1. At first we shall review the Boardman’s CW spectra after Vogt [16].

We denote by &, the category of pointed finite CW complexes and base
point preserving continuous maps and by IF, the subcategory of & with
same objects of &, and whose morphisms are inclusions as subcomplexes.

Let R~ be the prehilbert space with orthonormal basis ¢, =(0, ---, 0,1, 0, -+-),
- 1=1,2,---. Let V be a prehilbert space isomorphic to R*. For each finite
dimensional subspace A of V, take a copy F(A) of &, and for each inclusion
map a: AC B, define a function S,: F(A)— F(B) by S (X)=(a(A)BU o)A KX,
S.f =(a(A)yE\J o)A f, where (wA)® is the orthonormal complement of a(A)
in B and DU co is the one point compactification, and A is the smash pro-
duct. If we take I¥(A) instead of F(A), the inclusion a: AC B induces a
functor S,: IF(A)— IF(B).

DEFINITION 1-1. The category of finite CW spectra associated to V,
denoted by F(V), is the limit category of the 2-diagrams {F(A)} associated to
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V. So that the objects of (V) are all pairs (X, A) where Xe &, and ACV
finite dimensional subspaces. And the set of morphisms are defined by
F(V (X, A), (Y, B))=lim F(S,A, SgB), where a: ACC and B: BCC.

C

The subcategory IF(V) of F(V) is defined to be the limit of the same
2-diagrams with F replaced by IF.

For each AC V, there is a canonical inclusion functor J(A): F(A)— F(V)
and IF(A)—IF(V) defined by JA(X)=(X, A), ](A)(f):licm S«f, where
a: ACC. '

DEFINITION 1-2. The category S(V) of the CW spectra associated to V
is the category whose set of objects are all the sets of the directed non-
empty diagrams in /F(V), and whose sets of morphisms are defined by
SX, V)= 1(}31_13{91 F(V)(Xa Yp), where X={X,, ac I}, Y={Y B ]}.

The subcategory IS(V) of S(V) is the subcategory of S(V) with same
objects, and whose sets of morphisms are defined by IS(X, Y) = 1*1_1_111111_{% IF(V)
(Xa» Y.

REMARK 1-3. The category F(V) and IF(V) are considered as full sub-
categories of S(V) and IS(V) respectively.

For X, Y ob &, the set of morphisms F(X, Y) is topologized by compact
open topology. And for X, Ye F(V), the set of morphisms F(V)X, Y)
:I_1>né (SeX, SgY') is topologized by taking divect limit of topological spaces. And

then for X, Y= S8(V), the set S(X, Y)=Iim linﬁ] F(V)(Xa Yp) is topologized
<—q—>

by taking at first lim topology and then taking lim topology in the category of
— P

compactly generated spaces.

Let V and W be prehilbert spaces isomorphic to R*. Give V and W the
fine topology, i.e., a subset U of V is open if and only if U\ A open in A4
for all finite dimensional subspaces. Let LIE(V, W) be the space of all
linear isometric maps from V to W with function space topology in the cate-
gory of compactly generated spaces.

LEMMA 1-4. LIE(V, W) is contractible.

If fis an element of LIE(V, W) then f induces functors fx: F(V)— F(W)
and S(V)— S(W), and for any two f, g, the functors fx and gx are coherently
naturally equivalent.

For prehilbert spaces ¥ and W, isomorphic to R*, we define an external
smash product

(1-1) N F(VIXEFW) — F(VHW),

AN S(VIXSW) —S(VH W)

as follows. For finite dimensional subspaces ACV, BC W, K 4,8 denote the
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following composite functor. K, 5: F(A)X EE(B)Q EF(AEBB)](A B>) FVEW),
then this commutes with suspension functor S, X Sg: F(A) X F(B)—F(A" )X F(B'),
where a: AC A’, : B— B/, so that we can take the limit and get the functor
N F(VIXFW)—F(VPHW). Considering a directed non-empty diagram in
IF(V) and IF(W), we get the functor A: S(V)XS(W)—S(VHW).

1.2. For any positive integer ¢, denote by Y, the symmetric group of
g-elements, and by .x: WX ,—BY, the classifying bundle of principal 2,
bundle. So that W2, is a contractible space on which ¥, acts freely (to the
right). And we can assume W2, has a structure of CW complex on which
2, acts cell wisely.

Let Vi=V&---PV be the direct sum of g copies of V, where V is a
prehilbert space isomorphic to R*. And 2, acts on V? by permutation of
factors, i.e., a(xy, -, X9) = (X,o109 s Xporp)y FE 2g, %€ V. Then ¥, acts on
LIE(VY, W) by o(f)=foo, fe LIE(V, W), 6 2,

LEMMA 1-5. There exists a continuous 2, equivariant map ¢,: W2 ,—
LIE(VY, W), i.e, p(we)=0p,w), o€ X, we WX, and any two such maps
are X, equivariantly homotopic.

PROOF. By Bredon, the obstruction for the existence for ¢, are in
Hy (WX, n( LIE(V Y, W))), where H%(:) is the X, equivariant cohomology in
the sense of Steenrod [13]. But by Lemma 1-4, =, (LIE(V? W))=0. And
the obstruction to make a homotopy lies in H (W2, mi(LIE(V?, W))=0.
Now we fix a 2, equivariant map ¢,: W2 ,—LIE(V? W).

DEFINITION 1-6. A (2, equivariant) carrier X dominating ¢, associates
with each finite dimensional subspace AC V4, a finite dimensional subspace
YAC W and positive integer m(A) with the following properties.

1) AC B implies XAC XB and m(A)<m(B), (and dim (A)—co implies
dim XA— o0 and m(A)— co).

2) 2, equivariant, i.e., for any o€ ¥, X(cdA)=0XA.

3) For all we WXr4 o (w, A) S XA, where W2 {™4” means the m(A)
skeleton of WJX,.

REMARK 1-7. A carrier X dominating ¢, always exists.

For each carrier X we associate a functor

(1-2) EP,: S(V)— S(W)

by the following way. For each finite dimensional subspace AC YV, let EA
= {(w, v) e WXPrD < YAY, v e (p,(w, A9))*4?}, with the subspace topology.
Then the projection onto the first coordinate &,: EA— W2X{™4? defines a
vector bundle. On EA, the symmetric group 2, acts by the formula o((w, v))
=(wo™!, v), and this is well defined by (1-3), 2). This makes &, a 2, equi-
variant vector bundle. Define a functor EP,(A): F(A4A)— F(XA) by the formula
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EP(X)=TEHXXN -+ AX=T( )X XP, where T(£4) is the Thom complex
of £, and XX VY =XXY/XX% and XP2=XA --- AX is the ¢-th smash pro-
duct of X. Then X, acts on EPy(X) by a(e, x5, =+, %) =(0€, Xy1013 *** » Xgo10)s
e=T(&,) and x; € X, and o< X, then the functor EP,(A) is compatible with
the suspension functor up to natural equivalence with coherence condition.
So we get a functor EP,: F(V)—S(W), and taking a directed non-empty
diagram we get the functor EP,: S(V)— S(W).

REMARK 1-8. For each X € S(V), the symmetric group 2, acts on EP,(X),
and for each map f: X—Y, EP/(f): EP,(X)— EP/(Y) is 2, equivariant map.

REMARK 1-9. If we take another 2, equivariant map ¢, and carrier X’
dominating ¢, then these define the functor EP;: S(V)—S(W). Then we
can construct a X, equivariant map &,: WS'q:WZqXIeLIE(V‘Z, W), and
carrier ¥ dominating ¢, with the following properties,

(1) @ WX X0=0¢,, ,|WZ,X1=0¢]. (2) xCi|WX, X0,
X' C#|WX,x1. Then the inclusion map WX, =W, x0C W3,=WX,xI, and
the 2, equivariant deformation retract =: WS’Q:WquIa WY x1=W2,
define X, equivariant natural transformation @ : EP,— EP,, and @’ : EP,—EP,,
And composing these we get a natural transformation ¥ =@’0®: EP,— EPy,
which is 2, equivariant and homotopy equivalent, i.e., for any X & S(V),
V(X): EP(X)—EP}(X) is Y, equivariant and homotopy equivalent.

1-3. For any positive integers p and ¢, we consider Y ,X 2%, as a sub-
group of X ,., by considering that X', acts on first p elements and 2, acts

on last ¢ elements. Let ZPJZ’Q be the wreath product of 3, by ¥,. So that

prZq is considered as a subgroup of X ,, as follows, at first the set of pg
elements {1, 2, ---, pg} is divided in p blocks of ¢ elements by {1, -, q}, -,
{(p—Dg+1, -, pg}. And (0,74, -+, Tp) E ZJZ’Q, cel, t,€2, operates on

{1, ---, pg} by the formula, at first z; operates on the i-th block by permuta-
tion for i=1, ---, p, and then o operates on blocks by permutation.

If G is any subgroup of 2, by the same method of 1-2, we can take a
G equivariant map ¢g: WG— LIE(V? W) and carrier Xz =2X dominating ¢g.
And we can define a functor EP;: S(V)—S(W). And if we change ¢z by
¢g and Xz by Xz then we get a functor EPg: S(V)—S(W). And by the
same method of Remark 1-9 we get a natural transformation ¥;: EP;— EPg,
which is G equivariant and homotopy equivalent. '

Now we fix positive integers p and ¢. And fix an element f& LIE((R*)% R™).
Then define functor EP, A EP,: S(R*)— S(R*) by the formula,

EP,XEP, A S
(1-3)  EP,AEP,: S(R®) ——— S(R=)X S(R™) —> S(R*@ R*) —> S(R*).
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And denote by EP,(EP,) the composite functor,

EP, EP,
(1-4) EP,EP,: S(R=) —> S(R*) —> S(R=).

Then for any X, ¥,x %, acts on (EP,AEP)(X), (F,[2, acts on
EP,EP(X),) and for any f: X—Y, (EP,AEP) (f): (EP,AEP)(X)—(EP, A
EPXY) is X¥,x 3, equivariant, (EP,EP,(f): EP,EP(X)— EP,EP,(Y) is
EJZ’Q equivariant).

We define functors,

(1-5) I,,,=1: EP, N\ EP,—> EP,.,,
Jpe=J: EP,EP, —> EP,,
by the following way. At first we take G=23,x23,C 2% ,,,, and define ¢g by

. Pp X Pq
the composite ¢q: W(2,x Y )=WI,xW2X,

» LIE(R®)?, R=)x LIE((R>)%,

R*) ——x—> LIE((R=)?*4, (R*)?) —f—*> LIE((R=)?*?, R=), and carrier Xz by definition,
for AC (R”)?, BC (R*)%, Xe(AX B) = fo(X,(A)XX(B)), and m(A X B) =min (m(A),
m(B)), and extending these data. Then the functor EP; .5, associating these
data ¢z and X; is naturally equivalent to the functor EP, A EP,. On the

1
second, we define another ¢} and X% by the formula, p5: W(X, XY ,) —> W24,

2
5 LIE(R™P, R=), and Xo(A) = Lz, (A), me(A) =ms,,(A). By these ¢ and

Ae we get the functor EP{: S(R*)— S(R”). And by definition we get the
natural transformation @: EP;— EP,,,. On the other hand by preceding
remark we get natural transformation @;: EP; = EP,AEP,— EP;. Compos-
ing @ and @; we get the natural transformation I, .

By the same method we get the natural transformation J, .

REMARK 1-10. I, , (respectively J, ) is 2,2, (respectively ZpyZ'q) equi-
variant natural transformation.

1-4. Consider the sphere spectrum S°e F(R*). This is considered as
follows. At first consider S° < F(R®), the two points with distinguished point,
then the sphere spectrum S° is by definition J(R°)(S°), where J(R°: F(R"
— F(R~) is the canonical inclusion. Then EP,(S’) is considered as the dia-
gram

{T(EDX(AJ )N -+ A(AV0)), AC R} .
Define 2, equivariant map
(1-6) f,: EP((S%) —> S°,

in the following way. At first we consider the following &, equivariant
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homeomorphism
(-7 T(EDX((AV o)A - NAV o)) =T(E,X(AD - D A)
= T(WXmAD X AY)
= W mAD i (A 00) ,
where X, operates on T(WZX{4Dx(XA%)) by o(w, e)=(wo Y, e), o, we

WIEmAD o= %(A7). Then define 6,(A) by composite: T(&,)X(AU o) —

WX mAa i (X A1\ 00) —ﬂi> (XA?\U o). Going to the limit we get 4,.
PROPOSITION 1-11. The maps 0,(S°) =0, g=1,2, -+, satisfy the following
properties:
0) 8,: WP(S°) = S°—S° is homotopic to identity.
1) The following diagram is ¥, X 2%, equivariantly homotopy commutative.

I
EP,(S®) A EP,(S®) = (EP, A EP)(S®) > EP,, (S
(1-8) | 6,14, l fpea

SOAS? F » SO
*

where f< LIE(R*)?, R).
2) The following diagram is iji'q equivariantly homotopy commutative.

EP,8,)
EP,EP,(S®) —— " EP,(S")
(1-9) \L fp,q 05 l, 51’
EP, (S —— s SO,

1-5. At first we fix an element f< LIE((R*)?, R*). Consider a spectrune
X< S(R*), we assume X is —1 connected, i.e., 7, (X)=0, i<0. We write
XA X for f4«(XAX) if there is no confusion.

DEFINITION 1-12. A —1 connected spectrum with a map 7: S°— X and
p: AINX=f+«(XAX)— X, is said to be a ring spectrum if:

(1) p is homotopy associative.

(2) 1 gives homotopy unit, i.e., the following diagram is homotopy com-
mutative :
iAid

SOAX - XAX —AL yago

2

I
R

X
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DEFINITION 1-13. A ring spectrum (X, i, ) is said to be H* type if, for
each positive integer ¢, given a 2, equivariant map 4,: EPy(X)— X with the

following properties.
0) 6,: EP,X= X— X is homotopic to identity.

1) The following diagram is 2,%X 23, homotopy commutative.

Ig
EP,(X) A EP{(X) = (EP, NEP)(X) —> EPp.(X)

(1-10) N2 | #ase
INX=f+{(XAX) » X.
R #
2) The following diagram is 2 pr ¢ homotopy commutative.
EP,6,)
EP,EP(X) ——— EP,X
(1-11) | 7oe A
Opq
EP,(X) —— X.
3) The following diagram is 2, homotopy commutative.
EP,1)
EP(S°) ———— EPy(X)
(1-12) 2 i N2
s — X.

DEFINITION 1-14. Let X, Y be two ring spectra of type H®, a map f:

X—Y is said to be a map of type H™ if:
(1) The following diagram is homotopy commutative.

st x
\lf
1

Y

(2) For each positive integer g, the following diagram is 2, equivariantly

homotopy commutative:

EP(f)
EP(X) — » EP(Y)
o, L
X —— Y.

§2. The associated infinite loop space Q(X) of X.

2-1. At first we fix an identification (S, ¥) = (I/31, 3I/3I) —> (R*\U oo, co)
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which preserve orientation. So that we get (S* *)={"/0I", 31"/8[")—;
(R™\U o0, o0).

For pointed topological space X, we denote the n-th iterated loop space
over X by 2"X, so that "X =F((I", oI"), (X, %)= F({(S™", %), (X, *)=F(R"
U oo, ), (X, %)), where F((X, A), (Y, B)) denotes the space of all continuous
maps f: X—Y with f(4)C B.

Let Q_ denote the category of compactly generated topological space.
We define a functor

@D Q: S(R") —>CO

in the following way. For any X< F(A), where A is a finite dimensional
subspace of R>, we define Q(X) as
Q(X)=lim F(R"U o0, S, X)
g
=lim (5™, S,X)=1lim 2"S. X,
Y Y
where a: AC R", and R" denotes the subspace of R* spanned by e, ¢,, ---, ¢,.
Then this is compatible with the suspension functor S,: F(A4)— F(B), where
a: AC B. So that taking the limit of the 2-diagram we get the functor
Q: F(R~)—CO. And taking the directed non-empty diagram we get the
desired functor Q: S(R*)— _C_Q
Now consider the functor S®™ A F— & defined by (S"A}X)=S"AX. This
defines the functor S"A: F(A)— F(A), for ACR”. And taking the limit
process we get the functor

(2-2) S®A 1 S(R”) —> S(R™).

On the other hand, for any pointed topological space X, we can define
a canonical map g,: S"ALQ"X— Q"S" X, defined by (g,(x, [))(3) =xAl(y), where
xeS® e 2*X, ye X. This defines the natural transformation G,: (S*A)o Q'
—Qo(S™A) between the two functors from S(R*) to Co.

And taking the adjoint map, we get the natural transformation

(2-3) F,: Q—> Q"0 Qo (S"A).

PROPOSITION 2-1. For any X & S(R®), the map F (X): QX)— 2"Q(S"ANX)
1s homotopy equivalence.

2-2. TFor each positive integer, # and ¢, we denote by S*(¢)=S"V---Vv S7,
the one point union of ¢ spheres of dimension n. The symmetric group 2,
operates on S™(¢) by permutations of factors, i.e., o((x, 7)) =(x, 071(z)) where
o, xS i=1,---,q. Let (S"? denote the product of ¢ spheres of
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dimension n. The group 2, operates on (S™)? by the permutations of factors.
Let j,: S™(¢)—(S™)? denote the canonical inclusion.

LEMMA 2-2. Let G be a subgroup of X, and K be a CW complex on which
G acts freely and cell wisely, and assume dim K<n—2. Then the map (j,)x:
[K, 2"S™q)]s— LK, 2*(S™%]s is one to one onto, where [ ,]; denotes the set
of G equivariant homotopy classes of continuous G maps.

PROOF. Since jx: m(2"S™(9)— m,(£"(S™?) are isomorphic for i<n—2,
this follows from Bredon’s obstruction theory [4].

Now define the inclusion map ¢: 2"S"— 2"*'S™* by i(l)=I[Aid,, where
le Q"S™, id,: S*— S', identity map. Define 1, =1: 2*(S™)?— 2"*}(S™"*1)? by the

formula i,=1X -+ X1: 2"(SM= 2"S" X -+ X 2"S" Z—x——Xl» QrASHHN e X
Qrrgnit = Qr+(SnHne. And also define i, =1: 2"S"(q)— 2"*'S™**(g) by i(l)=
IAid, where € 2"S", and we identify S™(¢)AS'= S""(g). Then it is easy
to show that the following diagram is 2, equivariantly commutative.

QrS™(g) —> 2(S™)"

ot L

‘Qn+lsn+1(q> NG Qn+1(Sn+1)q .
Denote by QS°(g), the limit space lin 2"S™(q) and by Q(S°)¢, the limit space

lim Q™#1(S™+1)e, "
—_—

PROPOSITION 2-3. For any subgroup G of X, there exists a G equivariant
map Og: WG— QS°q) which has the following properties.

1) (WG )< 2"S™(g).

2) Jnolglwen—2: WG ®—Q"S™? is G equivariantly homotopic to the G
map whose adjoint map WG X S*—(S™? is 4,0, where r,: WG 2x S"—-S",
4,:S"—(S™

And G equwariant map WG— QS°(q) which has the properties 1) and 2),
(replaced (n—2) by any number k(n)<n—2, which has the property k(n)— co
when n—co) is unique up to G equivariant homotopy.

PROOF. This is the direct consequence of Lemma 2-2.

2-3. For each spectrum X< S(K*) we define a map

Oy: W, X Q(X)! — Q(X)
s, X1d Cq
by the composition W2, X Q(X)? » QS() X Q(X)!— Q(X) where the map
¢, is defined by the following way. Letw e QS%gq), and [y, -+, [, € Q(X), then
there is a large integer N, such that we Q¥S¥(g), l; = F(S¥, S,X(A)) for
some a:ACRYCR”. Then c,(w,l,-,l)s F(S¥ S,X(A)) represents the
following map.
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w LV Vi,
cqwily, ey 1) S¥ —>SVV e VSY ——— S, X(4).

This definition is compatible to the suspension map, and ¢, is well defined.

PROPOSITION 2-4. The map 6, has the following properties.

1) %, equivariant, i.e., 0,(w, Iy, -+, 1)) = 0,(wa, L1y -+ 5 ly-1(py) Where o€ X,
weWl, e QX).

2) Functorial for map f: X— Y in S(R*), i.e., the following diagram is
commutative.

1dx Q(f)* '
WE, X Q) —— WE, X QY
2-5 7
@) R Q) /O
QX) > Q(Y).

3) For any we W2, 0,(w; ): QX)"—Q(X) is homotopic to the g-th iter-
ated loop product p,: Q(X)?— Q(X).

4) The following diagram is X,X 2, equivariantly homotopy commutative,
where p,: Q(X)*— Q(X) is a loop product.

W2, X QX)PX WY, X QX)? —> W, X WX, X Q(X)? X Q(X)?

l

(2-6) 0,%x0, WX peq X QUX)PH
. | 05sa
QX) X Q(X) ——— — QUX).

5) The following diagram 1is Z'p‘fZ'q equivariantly homotopy commutative.

idx (0,)"
W2, x (W2, X Q(X)9)P W3, xQX)?

2-7) l 0 J« 0
W3, (W)X QX)P — W3, X QUX)P —5 Q(X) .

Proor. 1) follows from the following commutative diagram.

Sv ¥ SHy ..ySY hv - Vi

S.X(A)

wo o 1d
l;l 1. [;1
SN\/ \/SN ( ) (Q) - S“X(A) .

2) and 3) follow directly from the definition. Now fix an element ¢, €QS°(2)
such that g, is the image of the element £2'S'(2) defined by
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(2t,1) = Stv S? if0st£1/2
(t—1, 2) = Stv St if 1/2=t<1.
And define 0;,.5,: WY, XWX ;— QS°(p+q) by the formula, Orpesy WX, xWX,

Q)X Q1) X id
Q(S°(p)) X Q(S°(9)) »QS%(p+q) X QS (p+ 9 » QS°(2) X

ﬂz(t) =

3p X Uz

c
(QS°(;D+£]))2—2>QS°(1>+q). Then 6;,.5, is a ;X 2, equivariant map: and
define 6,,: (WX, XW2)X(QX)?**—Q(X) by the formula (WX, XWZX,)X

02Px2q>< ld Cp+q
QX)P* ———— QS(p+4q) X Q(X)?** — QX. Then b, , coincides to the map
po(0,%80,) if we define g by means of g#,. On the other hand, we define 2 ,X 2%,
equivariant map 6%,.5,: WX, XWX —QS°(p+q) by the composition map

WY XWX, - WX, 02’—;% QS°(p+¢). And define 05,,: WY, X W2 X Q(X)P*?
—Q(X) by this 65,.5, then this map 67, coincides with another direction
map of diagram (2-6). On the other hand by Proposition 2-3, 6,, and 05,
are 2,X 2, equivariantly homotopic. So we get the X ,x %, homotopy com-
mutativity of diagram (2-6).
Proof of 5) is very similar to that of 4), so that we omit the proof.
For any X and Y = S(R*), we define a map

(2-8) pA: QX QAY)— QXAY)

in the following way, where we fix an element f< LIE((R*)% R*), and XAY
=f«(XAY). Let ,e@Q(X) and [,=Q(Y), then they are represented by
Le F(S%, S, X(A)) and [, F(S¥2, SgY (B)), where a: ACR¥, B: BC R,
Then uA(l, 1) is represented by LAl € F(SYIASY2, (S, XASY ) f(AD B))).
Then going to limit we get the map pA.

REMARK. pA is functorial for X and Y.

Let id € QS° denote the element represented by identity map id: S¥ — S¥.
And we define hg: BX;—QS° by W2 /3, =B, — WX X (id)?— WX, X

0,
Q(S)* — QS°.
PROPOSITION 2-5. The following diagram is 2, equivariantly homotopy
commutative.

idx 4,

0,
W2, % QX) » WE, % QX)) —> Q(X)
(2-9) l T =

B, X Q(X) — QS X QX —> Q(S°AX).
hyXid 22\

2-4. Let X be a ring spectrum of H* type. For each positive integer
g, we define a ¥, equivariant map
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(2-10) G0 WY X QX)) — Q(X).

At first we define a ¥, equivariant map
(2-11) G0 W3, X Q(X)! —> QEP(X)).

Then the map f, is by definition the composite map Q(yq)oﬁq: W2, xQ(X)?
—QEP(X))— Q(X). Let (w; 1, ,lpe WY, XxQ(X)%, we can assume wE
WX 1, -, I, € F(SY, Sp((A)), where a: AC RY, and m <m(A%. Then the
element 5q(w, I, <, 1) € FURY)) U co, TErnIX(SaX) A -+ A(S,X)) represents
the following map.
X((RM)?)\J oo

wxid
W I (L((R¥) U )
= by [1-7)
TERNIX(SY A -+ ASY)
XUy A e A lq)

TERNIX(SaX A -+ A SX).
And taking the limit we get the map 5q.

PROPOSITION 2-6. The maps G, have the following properties.

1) 2, equivariant, i.e., 8,(wo ;1,1 =+, Ly =lWw; Ly -+, 1) forweWl,,
LeQX), o2,

2) Functorial for a map f: X—Y of H™ type, i.e., the following diagram
is 2, equivariantly homotopy commutative.

idxQ(f)?

W, x Q(X)* » W2 X Q(Y)*
(2-12) 2 o) 2
Q(X) QY).

3) For any we W, §,(w:): QX)!—Q(X) is homotopic to the map
Qpg) ph: QX)T— QXA -+ A X)— Q(X).
4) The following diagram is ¥ ,X 2%, equivariantly homotopy commutative.

WX, % QX)X WI, X QX)) —> W, x WX, X QX)?*1

| 828, |

(2-13) QX)X Q(X) W2, X Q(X)PHe
lﬂ/\ Q) l Op+q
QXN X) » Q(X) .

5 The following diagram is Z'ijq equivariantly homotopy commutative.
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1dx ()7
WY, x (W3, x QX)9)? > W3, X QX)P
(2-14) l ; l g,
WX, X (WI)? X QUX)P —> W3,y X QUX)? —> Q(X).

6) The following diagram is homotopy commutative.

Q(i)xid i
RS’ X QX » QXX QX — QXA X)
(2-15) | 4 . | e
QS A X) - QX.

PROPOSITION 2-7. The following diagram is 2, equivariantly homotopy
commautative.

tdxidx 4,
WY X(QX)XQY ————— W X (QX X QY)"
lidx(w“
(2-16) 6,xid W, XQXAY)
Vo
HA
QXX QY QIXAY).

2-5. At the last of this section, we describe the relation between 6, and
f,. This relation is in some sense the distributive law. For each positive
integer p and ¢, a group homomorphism

(2-17) Oo: T,[Z—> Zep

is defined as follows. Denote by S,, the set of g elements, S,={1,2, -+, q:
mod ¢}. Consider the set S=S,X -+ X S,, the p-th direct product of S,. Then
the set S consists of ¢? elements. We denote an element of S by J=(j,, -+,
Jp) Where j,€5,, i=1,--,p. We consider 2,» as the permutation group of

the set S. Now the group ZJZ’Q operates on the set S by the following.
(2‘18) 5‘((j1, ’jp)) :(0-0—1(1)(ja—1(1))! Tty Ua—l(p)(jg—l(p)))

where d=(0; 0y, -, 0p) E Z'Z,fZ'q. This defines a homomorphism fg: Z’ijq
— 2 p.

Now for each j& S, take a copy (QX)} of (QX)? and consider the direct
product JI;S(QX)S. Then the group 2,X2 , operates on JIEIS(QX)? by the
following rule. 2%, operates on each (QX)? by the permutation of the factor,
and Z'qb operates on JIEIS(QX )2 by permuting the coordinates indexed by J< S.
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Consider the following homomorphism
(2-19) fo: 2,[2,—> Z,x 2

defined bY 9@((07 Oy *°*y Up)) —__(0’ 0@((0! gy, **, ap)))'
We define an equivariant map 0O =0,,, over fg: ijEq—ngpx 2 by
(2-20) 0:(QX)07P =TI (QX)a,p—>ILQX);
1, X q =

N=8p
where S,=1{l,-,p: mod p}, S, ={1, -, ¢ mod ¢}, and for X=(1;I‘j)x;i,;)5
(H)(QX)@,,-, the J-th component O(X); of O(X) is xq,;pX -+ XX¢,5,, Where
J=0 05 Jp)

And a map fg: WY, X(W2X)?P— W2 , is defined to be an equivariant
map over fg: przq‘—’qu.

PROPOSITION 2-8. (The general distributive law.) The following diagram
1s equivariantly homotopy commutative over

~

5,(z, e sy, s,
idx (0"
W3, x (W2 x (QX)%)? > W3, % (QX)?
0p
(2-21) W2, X (W2 )P X (QX)9)? QX
A Xidx O i
(WI)@+ X (W2 x QX)) Oer
WX, x (WX ,)P X JIEIS(WZP X (QX)”)JW» W % Jlgs(ﬁX>J .

To prove this proposition, we prepare some more facts. At first we
define

(2-22) ps: W2, X (W2Z)P —> QS%S)

in the following way, where S°(S) is the one point union J\/SS?,, of the sphere
<

spectra S° indexed by S. Let (w;w,, -+, w,) € WY, X(W2)?, then we can

assume w € WP, and w; € W™, i=1,---,p, for some n and m. Then

s (W: wy, -+, w,) represents the following composite map in F(X((RY)?)\U co,

VRNV e0),)
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X(RV)P)\J oo

wxid

WZ';m((RN)P)) X (X((RM)P)\U o)

= by

T(EpN)IX(RY U o) A -+ A(R¥ U 00)) = T(Exn)IX(SVA - ASY)
WX (@gWIN -+ A@g(Wp))

T(Erm)X(SY(@ON -+ AS¥(q))

~

T(Erm)X( V. 53"
JES
V T(Erm)ix S
J=8§
= by
V (IR (U((R¥)P) ) 00)),

JES

V T,
\4 (X((RY)=)\J o0) .

LEMMA 2-9. The map ¢s is equivariant map over Og: ij'ququ.

Now using this ¢s we define an equivariant map over 0
(2-24) Os: W2 x (W2)P X I Q(X)y —> QX)

xXid

C
by composition W2, x (W2 )? ><J1;ISQ(X)J s > QS(S) XJIISQ(X)J—S» Q(X).

LEMMA 2-10. The diagram (2-21) is equivariantly commutative over lg if
we replace the right hand side map 6, by 0s.

PrROOF. This is the direct consequence of definitions.

Now define an equivariant map ¢ over fg by

7 0
(2-25) Gh: WE, X (WE)P —> W3, —% QS%(q?) = QS(S) .
Now using this ¢5 we define an equivariant map
(2-26) Os: W2, (W2 X JLQX); —> QUX)
psXid

C
by composition .Y, x (WX,)? x TLQ(X), »@S°(S)x TLQUX), 2 00x).

LEMMA 2-11. The maps ¢s and ¢s are equivariantly homotopic over
Og: 2, X (27— 2 .
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Proof of this lemma is given in (2-6).
PROOF OF PROPOSITION 2-8. By definition of ¢5 and 6% the following
diagram is equivariantly commutative over fg.

U

WE, % (W37 % TLQUD, —> QX)
(2-27) | foxia 16,
WE % TLQX), — W, X QX))

On the other hand, by Lemma 2-11, 65 and 65 are equivariantly homotopic
over 0g. By Lemma 2-10, Proposition holds if we replace 0, by 6s. So that
Proposition holds by (2-27).

2-6. PROOF OF LEMMA 2-11. We prove this lemma by applying Proposi-
tion 2-3 considering GzZ’ij’q as a subgroup of X, So that we must

show that @5 and @5 satisfy the weaker conditions 1) and 2). But ¢§ satisfies
1) and 2) since 6, satisfies these. And ¢s satisfies 1). So we show ¢g
satisfies 2). We take for each positive integer N, a pair of integers (I, )
satisfying mX,(RM?)= N, [,=1,—2, and [,— oo, [, when N—oo. For
each N, consider ¢,: WX{»— %(S¥, S¥(q)) defined in Proposition 2-3. And
take a 2, equivariant homotopy @,: I'X Wfo”—> F(SY, (SM)9) combining jyob,
and constant map on 4,: S¥—(S¥)? Consider the following diagram,

JNN = Nix
S¥Q A <+ ANSN(G) - (SV)LA oo A(SH)E
(2-28) l lk
\V Sz

JES ] JeS

n

N

where k is defined by the formula: the J-th coordinate of £((x;;X -+ XXy A
<o AQXpr X oo X Xpg)) 18 (Xegjp A =* AXepsp) Where J=(Jjy, -+, €S. Then the
above diagram is a map over fg. Next consider the following diagram from
(2-23),
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(2-29)  X(RYP)\U,
(=2) (wxid)

1
T(ErN)X (SN A «+- AS¥)

idX (WA -+ NG (w,))
idX(Gu N - Niw)
T(ErMX(SH(QA === AS¥(g)) T(ErMX((STINA =+ A(SM)T)

X (AN - A

1dXR
.dx . ’
T(Eamn (V. 53" e = T(&a)X (T1 S5
’ AsXj ’
N (TEamxse™, e TL(T(ER) % S?™),
= by (1-7) = by (1-7)

J
J]:];g<WZ;’m((RN)p» X (X((RN)}) Uoo))]

!
VL WEGED (RY)UL,

V Tg Hﬂ'z

J\GIS(X((RN)’”) Us) — LR Ue)s -

J
And right hand composite map also defines a map @: WYX (W2¥)P—
EF((X((R”")”)U00),JI_1g (X((R¥)?)U 0),;), which is equivariant over fg and homo-
topy @, defines a ZPJZ’Q equivariant homotopy between jopg and ¢. On the

other hand it is easy to see that ¢ is a constant map to the diagonal
ds: X((RY)?) UmﬂJIIS(X((RN)p)‘Jw)J. This proves the lemma.

§3. The Dyer-Lashof Operations defined by 6, and 4,.

3-1. For iterated loop spaces, Kudo-Araki [2], and Dyer-Lashof [5]
defined homology operations and their properties are investigated by various

authors.
We define Dyer-Lashof operations on Q(X), and describe their properties
without proof, since proofs are essentially the same as that of previous
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authors.

Let p denote a prime number and Z,=Z/pZ. And =, denote the cyclic
group of order p and we consider =, as a subgroup of %,.

For xe H,(QX: Z,), we define Q,(x)=0,%x0(Xid)x(e;Qx") where ei(?xp
= Han(Wfrpxﬂp(QX)p: Z),1=0,1,2,---. Then if degx=n is even, Q;(x)=0
unless i=0 or —1 mod 2(p—1), and if deg x =n is odd, Q;(x) =0 unless 1=p—1
or p—2mod 2(p—1). And Quip-1-1(%) = BQsip-n(x) if degx=mn is even and
Qeitnip-n-1%) = BQuisnp-n(x) if deg x=n is odd.

We define

G- QU(x) = (—=1)F*™™* R )" Qs - mycp-1(%)

if p is odd prime, where m = 711_211»', deg x=mn,

Q'(x) = Q;-(x)
if p is 2; where n=deg x.
We denote Pontrjagin product on Hx(QX; Z,) by * And define the
pairing

- 3-2) H«(QS’: Z,) R H«(QX: Z,) — H«(QX: Z))

by Hx(QS°: Z,) Q Hx(QX: Z,) — Hx(QS° X QX: Z,) fﬁ) H(Q(S°ANX: Z,) =
H«(QX: Z,). And we denote this pairing by box for b= H«(QS°: Z,) and
x€ H(QX: Z,).

PROPOSITION 3-1. The following properties hold.

1) Q' is natural for a map Q(f) where f: X— Y.

2) Q! is an abelian group homomorphism.

3) If p=3 then

Qi (x) =0 if deg x>2i, and Q*(x)=x'"! if deg x=21.
If p=2 then
Qi (x)=0 1if deg x> 1, and Q(x)=x" if degx=1,
where xU=xx---xx, the j-th Pontrjagin product.
4) Cartan formula.

Q(x*) =, > QUun)*Q"(y),

4Q(x) = +Z 2 QU)QQ™(x")  where Ax=2x' Rx".
11 Ti=1
5) Adem relations.
If 7> pi
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QjQi — ; ('_‘Dﬁk((k—%(}f_:jl)—l)Qjﬂ_ka ,
if p=3 and j=pi

QIRQ = kE (_1)j+k<(k—;g(i);l))ﬁQj+i-ka

vuf B=D(D—D—1N\ Assi-x gk
= BT )@ Rt
6) Nishida relations. Let P% denote the dual of Steenrod reduced power
P, (if p=2 we put P%=_S5%).

107 =2 (-T2 gy,
and if p=3

PfkﬂQT —_ Zl: (—1)3“((7’_5)5(17.;);1)—1 )BQT—Hipfk

— ZL (__1)s+i((7'_83—)_(£i:11)”1>Qr—s+iﬁp£’< .

Now consider the pairing H«(QS°: Z,) Q H{(QX: Z,)— H«(QX: Z,).
PROPOSITION 3-2. The following distributive law holds.
1) (by*by)ox=33(—1)dee298="(h; 0 x")* (b0 x”).
If, by, bye Hy(WS®: Z,), x€ H«(QX: Z,) and Adx=3x"@x".
2) bo(xy*x,) = 3(—1)de8?" de81(b 0 x1) % (b" 0 xp).
If be H(QS": Z,), x;, x, € Hx(QX: Z,) and 4b=3b'QD".
Let Q;S° denote the connected component of @S°® which consists of de-
gree © maps, and [i] € H(Q;S°: Z,) denote the identity element.
PROPOSITION 3-3. The following relations hold for x € Hy(QX: Z,).
D Qlox= X Q(P4(),
2) Q*x)= 2 Q¥ (1o (c(Ph)«(x)),
where c¢(P') denotes the conjugate of P' in the Steenrod algebra A,. (If p=2,
P'=8)
PrROOF. By Proposition 2-6, the following diagram is commutative.

idx 4
Hy(Wr,/m, X QX: Zy) —> Hy( Wiy X (QX): Z)—> Hu(W3Z %1, QX)P: Z,)

| roxid Lo
B
Hy(QS°XQX: Z,) H(QX: Z,).

On the other hand h,(e,ic,-1) = (—1¥Q*([1]), and
(1dX dp)(esrp-1yQ x) = v(q) 2 (“l)le(2k+2pl—q)(p—1)(?<P£k<x))P

_V(q_l) Zt) (_1)le(2k+2pl—q)<p—1)+p® (ngﬁx)P .
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If p=2, (dX4,)(e, @ x) = 2 eieran- @ (PA(0), where »(g) = (m h(— 1y™e*-2/2 and

m=(p—1)/2, ¢g=deg x. By definition of Q/(x), we get the formula 1). And
;Q’“*l[ljoc(Pl)*(x):; S QF (PR o(PHy(x) = Q¥(x). So we get formula 2).

3-2. Let X be a ring spectrum of H* type. Then Hx(QX: Z,) has pro-
duct other than Pontrjagin product. Define product on H«(QX: Z,) by

(3-3) Hy(QX: Z,)Q H«(QX: Z,) —> H(QX: Zp): x®y —> x0Yy
Qp)
by Hy(QX: Z,)Q Hx(QX: Z,)— H«(QXXQX: Z,) —> H«(QX: Z).
PROPOSITION 3-4. The following distributive law holds.
D (xxxp)oy =3 (—1)deem2des ¥ (x, 0 y") % (x,09")
where xy, x5, ¥y € He(QX: Z,), dy =2y Q).
2) xo(¥1#y,) =X (—1)desvirdes=!(x/0y,)*(x" 0 ,)
where x, ¥y, ¥y, € H(QX: Z,), dx=2x"Qx".
Now we define the operations on H«(QX: Z,) by

(3—4) Qj: H*(QX Zp) I—— H*+2j(p—1)(QX: Zp) ’ j:O, 1; 2,

by Q7(x) =(—1H™P-22(m 1§, (iX id)s(erj-grp-» @ *7), Where eqj-gp-1,&Q*”
€ H\(Wr,X,(QX)?: Z,), degx=gq, m=(p—1)/2, for p>2, and Q¥ (x)=
6:4(e;-, Q@ x%) for p=2.

PROPOSITION 3-5. The following relations hold.

1) Q7 is natural for Q(f) where f: X— Y is a map of ring spectra of H®
type.

2 Q is an abelian group homomorphism.

3) If p=3 then

Qi(x)=0 if deg x> 2i, and Q*x)=xo0 - ox=2xP,
the p-th power in join product, if deg x = 2i.
If p=2 then
Qi(x)=0 if degx>1i and QU(x)=xox=1x> if degx=1.
4) Cartan formula.

Qi(xoy)= > Qu(x)oQ™(y).

i1+ip=t

A0i(x)= 3 T QUx)RQQ™=(x") where dx=2x'Qx".

i1+ip=1t
5) Adem relations.
If j > p1, then

Gj@i — %(__1)]+k(<k’_1;)<I§b—:]1)_1)@j+z—kék .



Homology operations on ring spectrum of H> type 299
If p=3 and j=pi then

A7 0t — t((R—=D(P—DN pA+i-r A%
Qa0 =3 =1y (L) s
___2( l)]+k<<k D(p _—1)_1>@j+i-kﬂ6k.
6) Nishida relations.
Ps Q’)"__E( 1)z+s<(7 S)(p 1))Gr—s+ip>ik-
If p=3 (
s T i+s((F—S$ 1 )r-s+i pi
PisQ = (-1 (VD) pgr iy
1+s (7 5)(p 1) 1 r-s+1 i
=S (AT T )@ Py
3-3. Now we shall investigate the relation between loop product * and
operations Q’. In §5 of [14], I considered the primitive form of this section,
and later Ib. Madsen [7], and P. May got the mixed Cartan formula

relating these. Our formulas are slight extensions of their results.
Consider the diagram in the case of ¢=2.

(3-5)
W3, X (QXXQX)?
idx(/lv)p
\ id X (6,)?
WE X(WZ,X(QXXQX))?P idx{6) —=- WX, X(QX)?
dypiXidXid b,
Y '
(W) (W)X ((QX)")P QX
[
1dX1dX Op,e
\
(WP < (W x TLQX)S WE,0(QX)*
- |
0®>< H (ﬁ-p)l
JES

W3, X (WE)PX JHS(WZ’ »X(QX)?)s =W 2 QX
= €S °
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Consider the set S,, =(Sp)? =S5;X -+ XS§,, S; = {1 or 2mod 2}, and for each
integer 1, 0=<i<p, consider the subset S[i] of S,, defined by S[i]={/=
Gy =1 Jp) E(Se)?; #1753 7. =1} =i}. Then the symmetric group X, operates
on S[7] by permuting the coordinates.

Now define operations Q7, i=0, ---,p; j=0,1,2, - by
(3_6) Gi’ qu(QX: Zp)®Hq2<QX Zp) E— Hq1+q2+2j(p~1)(QX: Zp)
by the formula. xe H,(QX: Z,), y&€ H(QX: Zp), ¢=q:1+¢s.

B-7)  Qi(x®Y)=(—1)7*Bm-0>m g ;0 (iX (id)?) o (eczj-arp-1 R (X @ ¥))

if p=3,
Q_{ (xQy) = 0®,i o(ej-gyp-&Q x®¥)?)

if p=2, where fg,;: W2, X(QXXQX)?—QX is defined by

Os,:
W3, % QX% QX)? ° » QX
l Ami+1>< Di
mg 0
w2y +1><JEISIm(QX )5 ®
O, ¥ 1d
WX, x II (W2, x(QX)?), ———— W2 X II (QX),
J=8[i] (i) Je8[4]

where 0O,;: (QXX QX)pﬁJI}[.](QX)g is defined by
Ou((x1,1, X1, X -+ X(Xp,1, Xp,2)) :Jg[i](x(l,h)x Xx(p:fp))J =y s Jp) -

PROPOSITION 3-7. Mixed Cartan formula.
Qix+y) = ) Ej ; > Q(xo @) -+ +Q (%, R3y)
o+ +ip=
where Ap+1(x®y) =2(% RV Q -+ ®(xp®yp>-
PrOOF. This follows from the following 2, equivariant homotopy com-
mutative diagram.

1d X p
W3, %X QX% QX)? ey W ,%(QX)?
| 4y dyy A
(WZ,)7 X (QX X QX)P* 0x
! M0
(WE, X QXX QX)PH — - (QX)?*.

And homotopy commutativity follows easily from the homotopy commuta-
tivity of the diagram (3-5).
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PROPOSITION 3-8.
1) Qix®y) =0 (e(x) - 3)
2) QxR =0 x-e(y)
where ¢: Hy(QX: Z,)— Z, denotes the augmentation.
PrROOF. This follows easily from definition.

PROPOSITION 3-9. For 0<i<p, m,:—;(f) then

Qi (x®y) =[mJo(ZQ!(x,0 -+ 0x,09,0 -+ 0¥,.}))
where 4ix=3x,Q - Qxyy dp-iy =291 Q > QVp-i.

’ p—lr p
, b2
cyclic group generated by ¢, and S,[:]C S[¢] denote a fixed complete repre-

sentative set of orbit set S'/rx, At first consider the following 2, equi-
wvariant map F.

PROOF. Let t€ X, denote the element ( %’ ), and m, denote the

idx Ap dXx O
WZ,x(QXXQX) W2, X (QXXQX)? WX 11 (QX)?);
\
idxT10,
WZpx 11 (QX)s—= W2,x IL (W2, (QX)?),

For each Je S,[1], fix an element o(J) € Y, with o(/)"%((1, -+, 1,2, -+, 2) =
(J, =+, Jp)=J. Then we have

Fw, (o 9)=w; T T 00,00, (4ol =+ 5,3, -, 9]t
=, T T80t 70()), (%, -\ 2,3, =, ) eins) -
J=8pli] j=0

p—1
Now consider the set A=WX,x II II(WZX,).i;» and m, operates on this

JESolil j=0

p—-1 -1
set by #(w, IJI I%w(th)) = (wt, EI ,IIO(wuj—lJ))(m))- Then the map W23 ,— A defined
J= J=
—1
by w—(w, I zi'[ (wt¥a(]))wisy) 1S 7w, equivariant map, and this map is n, equi-
J j=0

-1
variantly homotopic to the =, map WX ,— A defined by w—(w, 1JIJI=IO (Wo)wiry,

where w, € W2, is a fixed element. So that F is &, equivariantly homotopic

to the following 7, map F,.
1dX (4 X dp-3) . .
W2, x(QXXQX) W2, x(QX)* X (QX)"™*

lFo id % A({) l WdXxX0(wy: )
W3, % 11 @QX), W3, % QX.
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Then consider the following 7, equivariantly homotopy commutative diagram

WE,%(QXXQX) £ WE,% T1 (QX),s
Wp—i 9®ixid
WZP " (QX)p WZ(?) X JL;ISIEi] (QX)J
1dX6(w,: .
) o(P)xid |0
my X1 » c ¥
(WZ, "X QX W3, XQX Qs%JxIKQX»—»Qf
04, % id
P %id ° 9"(?) x4 ¢ ’
™o id WZ(I,)XQX hwid QSOXQX (QX)mi
! i @ |
(e)ms
. idx 4 . . A
(RSHO™X QX - (QS)™ix (QX)™ (QS*>xQX)™ |

Denote by G, the left hand side map in the above diagram, G: W2, x(QX
XQX)—QX. Then the following diagrams are %, equivariantly homotopy
commutative.

G
W2, X (QXXQX) QX
lidxdp T
W3, % (QX X QX)?

l idX (A% dp_i)?

idx (6w, : ))?

W2, X (QX)P)?

(W2, % QX)) —> QX)™

tae 7,

This shows the Proposition.

05
»W2, X (QX)” — QX .

3-4. Now we shall investigate the relations between B°Q¢ and g¥Q’.
By Proposition 3-3 and Cartan formula

(3-8)

2) Q'Q(9) =0T Q1o c(PHu(v)

= 3 3 OUQM[1D) 0 Q'(c(PHx(x))

v =11
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and for p=3

b) Q'BRI(x)= @i(; (Q7*' 1] (Be(PH(x)+ BRI [1] 0 c(PH (X))
= 1+§:¢ ; (Q1Q*' 110 Q"2Bc(PH(x)+ Q1 QI [1]0 Q'2c(PH(x)) -
Now define an operation Q/[1Jo, j=0,1, 2, --
(3-9) Q/[1]o: HeQX: Z,) —> Hyrs5p-(QX: Zp)
if p=3
Q[1]o: Hu(QX: Z,) —> Hyi;(QX: Zy)
if p=2 by
Q[1Jox= Zl]@f”(Pik(X)) (p=2, P'=SY).
PROPOSITION 3-10.
Qi) =2 Q™ (10 c(Px(x)

PROOF.

S QM 1Joc(PH(x) = sz) Q7 R(PE(PY)(x))

=Q/(x).
PROPOSITION 3-11. In Hy(QS°: Z,) we have
Nl n — 1y 1 —1 " —1
1) QlleQ [1]= > 0t - (p—1) (n<§)l )) <n <i )>

11+"'+lp+lp+1(p~1):l(p——l)
n1+-~+np+1=t+n

QM1 % - #Q™[1]* ([ p*—1Jo Q»11[1Jo Q@ pr17'pH[1]).
2) Q'[1]oBQ 1]
— 5 ip l(p“l)— 1 (p—]-)_ D
= » 01 s (p—1) (” L 5)...(”1’ L 5)

{1+ HpHipy1(p—1=1{p—1)
ny1+Fnpyr=i4n
g1+ tepy1=1

QM1 * -+ % BerQrr[1]x ([ p*—1]o Q'»+1[1]o ﬂ5p+1Q”p+1*‘p+1[1]) .

For p=3.
PROOF. Consider the following diagram
idx 4,
Hy(Wrp/mpX s X Wry[Tp: Z)) Hy(Wry X of(Wry/mp)? 2 Zy)
e [ix@yr
6
Hy(QS°: Z,) d Hy(WE, %5,(QS%): Z,) .

Then by the same method as the proof of Proposition 3-3, it is easily proved
that

01[1] o Q1= (’DHJ'G(%up—n@ ng(p-l)) .
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And for p=3
Cil:l] o BQ[1]= (*‘DiHG(ezicp—n@ €2jcp-1>-1) -

But by Proposition 2-8 the following diagram is commutative.

id X h
Hy(WrpX o f(Wry/7p)? 2 Z,) 1a XNy H (W2 ,X:(QS)?: Z,)
b5
/
H(WZp X5 (WE,y/2,): Z,) H(QS°: Zy)
O
hyp

HoWZ /5 Zy)

On the other hand the following diagram is commutative up to inner auto-
morphism in X ,.

idx 4
Tp X T ——>pfrpj‘7rp — Z’JZP = 2
(3-10) Aoy 1
- S>)
(mp X my)PP7orpt
shuffle 2 X Z’pp_pz
4
(, X )P X (7, X 7,)PP 21
p p_IP ' ‘ » D @de
,H=o(( Y Xid) X (®)?
(X)PX P
(mp X )P X (sz)pp—z"1 — X pr-pz .
This proves the Proposition.
LEMMA 3-12. The following relations hold.
1) L@ 1] =~ P gnopg,

P 11D =("? Ve,
2 For p=3
Pu(aQnrL) =(— 1y DTY) gomeipa,

o(POu(pQ 1) = (" TP TN gy,
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PROPOSITION 3-13. When p =2, in H«(QS°: Z,)

o-e=3(p T )e- e

PROPOSITION 3-14. When p=2, in H (QX: Z,)

O’t—ka(x): N b f—“k—l—j—261>

je1, 63 dr=3z'@xr k—j—c,+c,
Qe s+ QUGHa")
PROPOSITION 3-15. When p is an odd prime, then

) QML =k (DQTII*[ 7 —p1—Q Q1]+ [pP—1*]

-+ xdecomposable ,

2 QBRI =dXPBQTII*[$7—p1—Q"BQ 1T [ p*—$"]
+ xdecomposable ,

where c(p) and dF(p) are some constants.
CONJECTURE 3-16°.
_ _ (t—k—1
D d=d®)=—(,_y)mod,

§4. Applications.

4-1. In this chapter, p always denotes an odd prime number. And we
denote Hy(X) instead of Hix(X: Z,).

For any sequence J=(e;, Jjy, =+, & Jr), Where ¢;=0 or 1 and j; are non-
negative integers, we denote Q7 for 8Q”1, ---, B7Q’". And we define degree
of I=d(I)=Zi(2j,-(p—1)—si), length of I=|I|=r, and excess of I=e¢(l)=

th—-sl-—é 2j(p—1)—e;). And we say that I is admissible if pj;—e; =j;_, for
1=2, -,

The following result is established by Dyer-Lashof [5].

PROPOSITION 4-1. The Pontrjagin ring H«(Q,S°) is the free commutative
algebra generated by {QI[1]x[—p'1"]; e(I)+e, =1, I: admissible}.

Now we denote SF for Q,S° then this becomes an H-space by composi-
tion products. The following results are proved in [8], and [14].

PROPOSITION 4-2. The Pontrjagin ring Hy«(SF) is the free commutative
algebra generated by {QI[1]x[1—p'1"]; e(I)+e, =1, I: admissible}.

1) These conjectures are proved in §4 by different methods.
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One of the main results of this chapter are the following two results.
These are proved in 4-3.

PROPOSITION 4-3. The Pontrjagin ving Hy(SF) is the free commutative
algebra generated by
(4_1) 1) ﬂEQJI:l:I*[l—p]’ 620 or 1) ]:ly 2! )

i) QM11x[1—p%]1; |I|=2, e(I)+e, =1 I: admissible,
i) QUQUMII*[1—p2); =2, |JI=1, e[, D+e >1,
(]x ]) admissible, and ]:(51’ jl: &y ]r) .

Recall that Im js: Hx«(BSO)— Hy(BSF) is the free commutative algebra gen-
erated by Z;,7=1, 2, ---, deg Z; =2j(p—1),and we can assume 42; =22, %,_,,
2,=1, cf. §6 in [13].

We denote by o: Hy(SF)— Hy,.,(BSF), the suspension homomorphism.

THEOREM 4-4. The Pontrjagin ring H«(BSF) is the free commutative
algebra generated by
(4-2) ) 2z, o(QTT11x[1-p]D); i, 1=12, -,

i) o(QIT1]=[1—p%D); [I|=2, el)+e, =1, I: admissible,
i) Q(e(Q[1T+[1—p2); I1=2, [JI=1, e(/, I)+e, > 1,
(J, I): admissible and J=1(ey, J1, *** » €ry Jr) -

4-2. Now we show the following two propositions.
PROPOSITION 4-5. In H.(SF), if deg Q'[1]>0, then

(4-3) QUQIC1I*[1—p"1])
=QIQI1]*[1—p 1+ ]+-QIQI[1]*[1—p*!] mod decomposables.

PROPOSITION 4-6. In Hyx(SF), the following relations hold mod decomposables.

@44 1) QUMD *[1—p*]) = ctupQ 1]+ [1—p]—QQ*[1]*[1—p*].
2) QBRI *[1—p7]) = d% QI 1]1+[1—p]—Q ' BQ* 1]+ [1—p*].
3) If |JI=2 then

VQTD+Lp D= 2 ex@[11+[1=p]

where ¢, and d%, are constants which appeared in Proposition 3-15, and cg
are some constants.

At first we prepare some lemmas without proofs. These can be proved
using the results in § 3.

LEMMA 4-7. For x, y € H(QS®) with deg x>0 and degy >0 we have
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(4-5) 3 QUx)oQ(x) =21 for some z.
i+j=n
LEMMA 4-8. For x < Hx(Q,S°) with deg x>0 we have

(4-6) xP =21 for some z.

LEMMA 4-9. For x, vy H(Q,S® with degy>0 and y=y for some v,
we have

4-7 x+y*x[1] is decomposable in Hyx(SF).

LEMMA 4-10. For x;,=Q7{1]x[—p"i], 1=1, ---,r, with degx;>0. We
have

(4-8) Xk ek x.x[1]=(—1)"(r—1) ! (x,0 -+ ox,)*[1]
mod decomposables in Hy(SF).
LEMMA 4-11.  For x,=QU[1]+[—p'"*], y;=Q7[1]+[—p"17]; i=1, -, 7,

Jj=1,-+,s and deg x; >0, degy; >0, then we have
1) If r>s=1 then

(4-9) (xy# e kx)o (Y x e xy)x[1]=0
mod decomposables itn Hyx(SF).
2) If r=s=1 then
(4-10) (X% e xx)o(Yyx e %y )x[1]=7r!(xy0-0x,0y,0 - 0y,)x[1]
mod decomposable in Hy(SF).
LEMMA 4-12. For x=Q[1], y=Q[1], deg x>0, degy >0, then
(4-11) 3 @@= Q) [L—pP ] =0
mod decomposables in Hy(SF).
PROOF OF 4-5. By mixed Cartan formula
A= QUQIIT*[—p'' T+ [1])
= 2 BRQUTIs[—p I+ [1]x
*QB(Q 1] [—p P D+ [1]*[1].

I()+---+Ip._1=1
For 2<i<p—1 if deg Q#((Q%[1]*[—p " D*[1]) >0 then by Proposition 3-9
and Lemma 4-7, this is 2™ for some z, with degz>0. So that by Lemma
4-9, the term containing this term is decomposable. So that mod decom-
posable
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A= 2 Q’“((Q’ L1+ [—p 1D *[1)* QPQI[1I*[—p' T D+ [1D)=[1]

Jo+h1=J
Io-l-—Il._

T f JHQj QLT+ [—p N+ Q@111+ [—p 1)+ [1].
Ip+h=1

Again using mixed Cartan formula and Cartan formula, by Lemma 4-12, if
deg I, >0, and deg I, >0, then the term

3 QMQI[II*[—p1 D+ QMQN[1T+[—p'F D)+ [1]

Joti1

is decomposable in Hx(SF). So we get

A=QIQI1]*[1—p* T+ QIQI[ 1]+ [1—p 1#1].

PROOF OF PROPOSITION 4-6. At first
QIQ* 1]+ [1—p?] = El (Q*'[1]oc(PHQ*[1]) *[1—p7].

So that we show that (Q™[1]oQ*[1])*[1—p?], for m >0, n =0,

— (m+n)(p-1> m+n m n 2
=My QM [1—p1- Q110 Q (11 [1—1"]

mod decomposable in Hx(SF). Then we get easily the formula (4-4) 1). By
Proposition 3-11

Qm{110 Q"[1]#[1—p"]
— » OmiLme .. (p— 1)m,,(l (p— 1))(12(1) 1)) (lp(.b 1))

my+-tmptmpyi(p—1)=mip—-1)
ny1+tnptnpy(p—1)=n(p—1)
mi+ni={;(p—1) for some {;

QU1 % - % QW1 ([pP~2—1]0 Q™+10 Qo1 [1]) x[1—p7].
But for 3sk=<p, 0=1,< - <3, <(p—1) and a>0, b=0,

) llk(l {(p— 1)) (lk(p D)Qll[ljo .o QU[1]

ayt+- +ak a(p— 1)
b1+ b =t(p—1)
a;+b;=1l;(p—1)

= 2zt for some z.
And for 0=14,<i,=<(p—1) and ¢ >0, 6=0,
Z ]allgz 1(17 1))(12(? D)Qll[lj le[lj

a)+az=a(p—1)
b1+E2 b(p—1)
a;+b;=l;(p—1)

=Q[11oQ°[1].
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So by using Lemma 4-10 mod decomposable

Aym n — = Tmy(p- (”11+n1>(p—'1)
Q ° Q [1] * [1——1)1’] _mli"%:+l=m 1=0 i D< ml(p"'l) )>
nytnpy1=n

QMM 1 x([pP~2—1]o Q™+ [1]o Q™+1[1]) x[1—p?]
and £=1 and a>0, =0, 0 i< p—1,

ja(p-1 (1+b1>(p"‘1>
2 e )( aal(p—l) )

a1t+ags+agg=a
b1+b2+“'+bk+1:b

Qu*%2[170(Q%[1]0 Q”2[1]) o+ 0(Q%*+1[1]0 Qbk-)-l[l:D = ztP1

So by using Lemma 4-10 mod decomposable

Qri1e@ 0+ [1-1= (g im@-l)((mn’i”(g)—(_l?l)*l)))

Q™ [1]*[1—p+([p?"*—1]0Q™[110Q"[1]) +[1—p*~*].

On the other hand, using Lemma 4-10

CpP* =170 Q™[1]eQ"[1D*[1—p*~"]

=—Q"[1]10Q"[1]1*[1—p] mod decomposable.
So we get
Q™10 Q"[1]1*[1—p*] for m >0

— (m—i—n)(p——l) m+n m n %1 —p2
= (V) @r i« 10— QP (110 Q71T+ [1—$7].
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2) is proved in the same way. Now we prove 3). Assume |/|=7r=2, then

since ‘QI[H:”é‘lﬂc‘/(‘@leh[l])o"'O(ﬂETerl:l])- And @"(Q’[ll):Z}Q—"“D]O

(c(PHQ'[1]) and c¢(PHQI1] :1Il§7deQJ[1], it is sufficient to prove that

(@T1To(F* Q7 [1D)o - o (BTQT 1) *[1—p?"]

E[KIZ_)|J|CKQK[1] mod decomposable.

Now consider the following diagram.

idx 4,
HWry/mp X (Wr,/7p)") He(Wrp X 2 (Wrp/75)")P)
| i)
G H(W 25 %5,(QS)?)
| | idx sy

p

Hy(QS°) Hy(W2p X 5,(QS)7).
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Then by definition and by proof of Proposition 3-11, Q[1]o((87Q"[1])o ---
o(‘BE’QjT[lj)) is in the image of G. On the other hand, by general distribu-
tive law the following diagram commutes. And up to inner automorphism
in ;. the following diagram is commutative.

dx Pr ixd,
Ty X (7p)" TpX 2 prfp,
Apr+1 0
(7p X (@) )P = (1, X (p)")P" X (7 X (7))
(4, X1d)?P" x P+ 2 pr
(@) X (@))% 2 s !
T (O (O x(idyxid ®
()" X () )P" X & i 2 o X 2 ppresr
(shuffle)?” xid BB
(e X 7)) X 5,0 (+)? XApT—l(p<P—2)T——1)7((ﬂ_p)r>pr><(Zpr+1)pr—1(p(p—2)’r_1) .

So that we get, since r =2,
QI[1]o((BQ7[1])o -+ o (BTQ'1D)

= (_1)*F(e2j(p—1)®(ezjl(p—1)~61® ®ezjr(p-1)—sr)) * [ pPToRT ]2t
where F is defined by

4, (4, x1d)*"
Hy(my X (mp)") —> Hy(mp, X (7,)7)?" - —> Hy((mp)™ X (zp)")*"
|7 T (O ) O xdy) |
H(QS") Hyl(mp)" % ()"
T R por l (shuffle)”
) .
H(Z por) ———— Hil(m)")” Hul(my X 7,)')?

Then by the same method of the proof of 1), by using Lemma 4-10, we get
Q[11o((B*Q™ 1o -+ o (BQ’T[1D]) X [1—p7"]
= b .(Oil(li—l)__}_ +(p_1>i1(p-1)) (Oir(p-l)+ —{—(p-—l)“‘p‘”)

T+t ie=t

(i1+j1)(:b~1)—61) ((1 i) (p— 1)—sr)
L(p—1) i,(p—1)

LB Q™ 1[1])o - o (B Q"* /" [1])]*[1—p"] mod decomposable .
This proves the statement 3).
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COROLLARY 4-13. If r=2, then we have
QU((FQM D)o - o (BTQ 1T [1—p*"]

= 2 11+]1(51) Cz?g-i—jp(ep)
i1+ +1.p =

(BQ™ 10 - o(BTQ" ) ]x[1—p"] mod decomposable

in Hy(SF), where
ck e=0
ci (&)=
d¥  e=1.

4-3. At first consider H*(SO)= A,(u,, u,, ---), deg u; =4j—1; we take u;
such that (i) u; are primitive elements and (ii) <o(u;), P;> =1, where P; is
the j-th Pontrjagin class.

PROPOSITION 4-14. For jx: Hy(SO)— H«(SF), the following relations hold:

D Jeu)=0 14 j=£0 (p—1)/2

2 jxlttyepre) = (—1cBQIIT*[1—p1+d,
where ¢ is a non-zero constant independent to j and d; are some decomposables.

PROOF. Assume j#0 (p—1)/2 and j«(u;) # 0, then j«(u;) is indecomposable,
because u; is primitive, and o: QHx(SF)— Hx(BSF) is monomorphism in this
dimension. But in this dimension H,;(BSO)— H,;(BSF) is zero map, so this
is a contradiction. By induction on j, we prove 2). For j=1, jx(Up-1y) =
—1¢,Q'[11+#[1—p] by dimensional reason and c¢;#0 since jx(tUcp-1y) # 0.
Assume 2) holds for up to j—1. We set, mod decomposable

(4-12) J#(Ujep-1y2) = (—1)c; Q1T+ [1 _p]_i"lK‘Z;ZCKQK[l] *[1—p%1]

where K moves the generator in Proposition 4-2. At first we prove cx =0
for all K. Let |K,|=2 be such an element that appears as cg,+ 0 and | K,|
is maximal among those {K} which appear cx =0. Apply BQ’ on both terms
in [4-12) Then j«(fQ%(4;p-1,) =0. On the other hand, by Propositions 4-5
and 4-6 the term cg,BQ Q¥ [1]x[1—p'Fo*1] appears in the left hand side, and
this is an element of basis by Proposition 4-3. This is a contradiction. So
that all cx=0. And since 07x(tjp-1)) #0 so that ¢;# 0. If j=p" for some
7 then a >0 such that P%u ¢, .1y = XU¢j-axp-1se X # 0 and in this case P*SQ1]
=(—1)%x BQ’-°[1]. Then naturality of P® shows that ¢;=c;_,=c¢;. Assume
j=p" for some »=1. Then by Kochman

Q’ (u(p ) =(— 1)j<p 2 Ucj+np-12) -

On the other hand, by Propositions 3-11, 4-6

Qp@r1sr1—pD = — (VTP VT) pormpigari—p]
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mod decomposable. By naturality of {7 we get
Ts(Ueis0p-12) = (—1)7 ¢, QI [1]+[1—p] mod decomposable.
Applying PL we get
T3 jcp-1y2) =(—1)7¢; Q7 [1]*[1—p] mod decomposable.

This proves the Proposition.

COROLLARY 4-15.

t—k—
df:(k(p—l)il) mod .

PROOF. This follows from Proposition 4-14, naturality of Q7 on j«: H«(SO)
— Hx(SF), and Kochman’s results [6] on Q7(u).

PROOF OF PROPOSITION 4-3. This follows directly from Proposition 4-2,
Proposition 4-5 and Proposition 4-6.

PROOF OF PROPOSITION 4-4. This follows directly from Proposition 4-3
by the same method of the Proof of Theorem II in [14], so we omit it here.

4-4. Let BO(8BN) denote the space obtained by Kkilling homotopy groups
m;(BO), 1<8N. Let fN:S% —BO(8N)> be the canonical generator of
men(BOBNY) = Z. Taking the iterated loop, we get the map gy = 2% fey:
Q8VSEN — (¥ BO(BN>. Taking limit on N we get

(4-13) g: lim 2VS3 = QS° — lim 2 BO8N)> =Zx BO.

Consider 1XBO =B0OgC Zx BO, then this BOg becomes an H space by
tensor product and the map g,: Q,S*=SF— BOg is an H space map. The
following two lemmas are proved at the end of this section.

LEMMA 4-16.

t—k—1

ct=— k(p—1)> mod p .

LEMMA 4-17. g«(Q'Q°**[1—pP]) is decomposable in Hyx(BOg) for any non-
negative integers t and s.

Now consider the map k: SF— F/PL.

PROPOSITION 4-18. The following relations hold for ky: Hy(SF)— Hy(F/PL).

D EQQTI[I—p* D= — (5 QT [1-£D)
mod decomposables.

D eQUQTUI L2 = — () BQTI5[1-5D)

mod decomposables .
PrOOF. The following is proved in §1 in [I5]. Let P denote the set of
all odd prime numbers, and Cp is the class of abelian groups without P tor-
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sions. Then there is a Cp homotopy equivalence
(4-14) G: F/PL —> BOgp with

(1) &: H-map (2) gi: SF— BOg — BOgp and ok: SF—F/PL—
BOgp coincide up to homotopy.

Then the proposition follows from Lemma 4-16 and Lemma 4-17, and
from Propositions 4-5 and 4-6.

The following lemma follows from Proposition 2-7 of and (4-14).

PROPOSITION 4-19. The following results hold for k: H«(SF)— Hx(F/PL).

1) k(Q[1]*[1—p]) are indecomposable.

2) Image of ks is the polynomial algebra generated by k«(Q'[11+[1—pD),
i=1,2, -

Now consider ix: Hx«(SPL)— Hy(SF). Define v;< H,;_,(SPL) by (1) v;=
Jx(uy) if j=0(p—1)/2 where jx: Hi(SO)— Hx(SPL); (2) v;=jx(d;) if j£0(p—1)/2,
where jx: He(Q2(F/PL))— H«(SPL), H«(Q(F/PL)) = A(d,, d,, ---), deg d; =4i—1.

And considering Serre Spectral sequence associated to SPL— SF— F/PL
we get for (eq, Jy, €5, Jo) =1

(4-15) There exists element %; € Hx(SPL) with the property
BQTAEQTII*[1—p*] if (e, &) #(0,0)
1) i*(fl): j1nyJi2 2 jl_l J1+Jj2 s —
Q@ LI [1—p"1+ (1)) @ L1I*[L—2] if (e1y e)=(0.0)-

2) These Z; are determined uniquely mod decomposable.

PROPOSITION 4-20. The Pontrjagin ring Hx(SPL) is the free commutative
algebra generated by

1) v;;7=12, -

2) X;; I=(0,7,¢,5), el)+0=1, I: admissible.

3 Q% J=(enJy =y enin) 721, I=(0, 1,6, 9), e(J, D+e, =1,

(], I): admissible.

LEMMA 4-21. Consider the map 1: Hy(F/PL)— Hx(BSPL) and jx: Hx«(BSO)
— H«(BSPL). Then the Hopf algebra generated by image of ix and jx is a
polynomial algebra Z,[b,, by, -], deg b; =47, A(b;)=25;Rb;-;.

Now it is easy to prove the following theorem. '

THEOREM 4-22. The Pontrjagin ring Hx(BSPL) is the free commutative
algebra generated by

1) b5 7=1,2,

2) o(Xp; I=(@,71,¢5), e(l)+06=1, I: admissible.

8) QoED); J=(ex, 1, e ), 721, I=(3,7,¢, ),

e(/, D+e,>1, (J,I): admissible.

PROPOSITION 4-23. The image of jx: Hy(BSPL)— Hy(BSF) is the free com-

mutative algebra generated by
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1) Z;:7=12,--.

a(BPQ" B Q1]+ [1—p*]): if (3, €)= (0, 0)

o(Q QT+ [1—p2+ (5 _3))o(@ 11+ [1-5D),
where I=(0,7,¢,5), e)+d=1, I: admissible.

3 QUslo(®)), J=(es, Jay =+ s e Jr)y 21, I=(3, 1, 5, 9),

e(]J, +e,>1, (J, I): admissible.

PROOF OF LEMMA 4-16. Consider infinite loop space ZxXBU, Hx(ZxBU)
has Dyer-Lashof operations Q7. On the other hand, let £: F—X be a com-
plex vector bundle, then we can construct new vector bundle P(&): WZ'quqEq
— WX X5 X% And this defines the map P: W2, X5 (ZXBU)*—ZxBU. In
§2 of [15], we showed that the Dyer-Lashof operations defined by P coincide
with that defined by infinite loop structure of ZX BU defined by Bott periodi-
city. Recall that Hy(0XBU)=Z,[a,, a, --] where a;=7yx(b;)*[—1], where

b; € Hy;(CP=), and y: CP*—1X BU represents the canonical line bundle. Con-
sider the following map F.

. 'X p
Wi p/zyX CP= idx 4y WipX z,(CP=)? —i—(r)——wsz;p(ZxBU)v

\‘ * P
F Z%BU

On the other hand, it is easy to see that F is a representative map of the
bundle NQy— Wr,/n,X CP=, where N— Wr,/x, is the bundle of dimension
p defined by regular representation N: 7,— U(p). So that we get

0t ... (p~1)1p<i12tf1> <ip?;jp>

2) 0(731) =

F(e2i(p-1)®bj):_ )
i+ +Hip=1(p—1)
st +ip=7

bi1+j1* *bip+jp-

On the other hand, by Kochman's results and Cartan formula
Qi(by) = (*1>i+]'+1<1'}1> bjricp-1*[p—1]+dec.
But the above argument shows that

(_l)iQitljobj:(oi(p—l)+ +(p—1)@‘(11—1))(1'(?(;1)1'1)‘.7.)bj”(p_l)*[p—1]+dec_

On the other hand, if ¢(P")(b;ep-17) = xb¢;-1yp-1) then ¢(PHQ[1]=(—1)xQ’'[1].
And QU QM1 =Cr Q'+ p?—p]—Q* *Q (1] [p”—p*]+dec.
And Q QI =2 Q" ' 1Joe(PHQ 1.

And O [170 Q™17 = (0Dt ... +(p_1)1(1}-1))((1—11-(/;)_(_171)—1))
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Q@™ 17*[ pP—p]1—Q'[1]o Q™11 %[ p?—p*] mod dec.
Qz_k(bj(p-1)> = ; Q' ' 1]o C(Pl>bj<p—1> .

These show that C¥= — (2-(—;—_1%)

PROOF OF LEMMA 4-17. Consider the following map H.

idxh, ix4,
Wrp/mp X Wry/np —> Wrp/my X QS°® —> W, X5 (QS)?P

| Vs
Z X BU ¢——————— Z % BO ———QS".
4 g

By general distributive law the following diagram is commutative.

ixh
Hil(Wry/my X Wry/my) —> Ho(WE,/3, % QS®) —> Hu (W2, X 5,(QS%)?)
Jixa, |7,
0
H(WE %5 (W) m)?) ——— Ho( W,/ 5, — s H(QSY).

Ogo(IX4),)
And the map Wr,/m,X Wa,/ny ————— WX /% , is analysed in [3-10)

So that He K(Wr,/n, X Wr,/m,) represents pgl(m@Nz)-}—(pp-z_l)N]@Nz where

T
p; is canonical line bundle defined by n,X=, = wp,— U(1l), and N; represent

Ty N .
the regular representation w,Xm, —> 7, —> U(p), 1=1,2. On the other

hand, T?;(‘: pi= N, so that H=pP"*N,Q@N,, so that we get
2x(Q'Q*[1]) = [ p?"*]0 gx(Q*Q*[1])
=g«([p?"*10 Q*'Q*[1])
= g«(Z™).

So we get the lemma by Lemma 4-9.
Department of Mathematics
Nagoya University
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