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§1. Definitions and notation.

A Markov process is defined to be a quadruple (£, 8, m, P) where (2,
B, m) is a o-finite measure space with positive measure m and where P is
a positive linear contraction on L'(£). P will be written to the right of its
variable, and the adjoint in L*(£) will also be denoted by P but will be
written to the left of its variable. Thus {uP, /) =<u, Pf) for ue L*(£2) and
fe L=(2). A o-finite positive measure 4 on (£, 8) absolutely continuous

with respect to m is called subinvariant if jPlA(cu)Z(dw) < A(A) forany Ac 3

and invariant if j‘Pl 4(@)A(dw)=2(A) for any Ae 3. Throughout this paper

m is assumed to be either an infinite subinvariant measure or a finite in-
variant measure. It is well known that P on L~(Q) is also a linear contrac-
tion on L'(£2) and hence it may be considered to be a linear contraction on
each L?(£2) with 1<p=<oco by the Riesz convexity theorem. The adjoint
process of (2, 8, m, P) will be denoted by (22, 8, m, P*); its properties are
studied in [4, Chapter VII].

The process (2, 8, m, P) is called

1) ergodic, if P1,=1, implies m(A)=0 or m(2—A)=0;

2) weakly mixing, if

L) {f e L(Q); lim—- 3 [KPY, /] =0}

is so small as to contain nothing more than the constant functions;
3) strongly mixing, if

Lo {fe LX2); lim<P"f, f> =0}
is so small as to contain nothing more than the constant functions.

We note that our definition of strong mixing is due to Foguel and
coincides with the notion of “mixing” proposed by Lin [7].



258 R. SaTo

§2. Results.

THEOREM 1. If 1=p<oo, fe L?D), and k,, k,, --- 1s a uniform sequence
(in the sense of Brunel and Keane [2]), then the limit

@ fl@)=lim - £ P*f(w)
exists and is finite almost everywhere. In particular, if 1<p <oco then

2) lim

1 iz k v
71,:2113 if—f

=0.
p

THEOREM 2. The process (82, B, m, P) is weakly mixing if and only if for
any fe LYQ) and any uniform sequence ky, k,, -,

3) flo)y= 7n(l.QT j fdm almost everywhere.

To prove the above theorems, we require the following lemmas. The
first lemma is an extension of [9, Theorem 1] to Markov processes.

LEMMA 1. If m is an infinite subinvariant measure then §2 is decomposed
into three disjoint measurable sets Q, 2. and Q.. such that

i) Plg, =1y, and for any A€ B with AC 2, and m(A) < oo,

11m<Pn1A, 1A>:0;
ii) Plg,=1g, and for any A B with AC 2. and 0 <m(A)< oo,
limsup {P™ 4 1,>+0
n
but

12

lim —— 2 (P14, 14> =0;

n n iz

iii) Plg,,=1lg,,, 24+ is a union of countably many sets A,€ B with
m(A,) < oo and Pl,,=1y,, and for any Ae B with AC 2., and m(A) >0,

lim sup - 3 PLy, 14> #0.
n 1=0
PROOF. Let J={f< L Q2); Pf=f} and K= {fe L Q); |P"f|.=P*f],
=|flly for n=1, 2, ---}, and define
2,,=esssup{Aeas;1l,]},
M=esssup {A€3®; 1,€K}.

Then Plg,, =P*lg,, =1g,,, Ply=P*1y =1y, and for any A€ 8 with 1,€XK,
P1, and P*1, are characteristic functions of sets and PP*1,=P*Pl,=1,;
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moreover J and K are generated by {l,;1,</} and {l1,;1,€ K}, respec-
tively (cf. [4, pp. 87-88]). Therefore a slightly modified argument of [6, p.
155] shows that M—{,, is decomposed into two disjoint measurable sets 2.
and M, such that

a) Plg+:P*lg+:lg+ and P1M0= P*lMo—_"lMo;

b) for any A€ 8 with AC 2, and 01, K,

limsup<{P™1,,1,>+#0
but

lim ——ST¢Pi1, 1,5=0
n n =

n—1 X
(the last equality follows from the fact that 1, 1 J and hence lim|1/n goP’lAﬂ2
=0 by the mean ergodic theorem (cf. [11, pp. 213-214]));
¢) for any A= 8 with ACM, and 1, € K,

im (P, 140> =0.

Define 2,=02—-(2,\U2,,). Then it may be readily seen that £,, £, and £..,
are the desired decomposition of £. The proof is complete.

Let &y, k,, --- be a uniform sequence, and let (X, 2, ¢, ¢) and y, ¥ be the
apparatus connected with this sequence. @ will denote the operator on
L?(X), 1=p =00, induced by ¢. Taking (£2’, 3/, m’) to be the direct product
of (2, 8, m) and (X, &, ) and P’ the direct product of P and @, it follows
easily that P’ is a positive linear contraction on each L?(2’) with 1=<p=oo.

LEMMA 2. Let m be a finite invariant measure. If the process (2, B, m,
P) is ergodic and if P and @ have no common eigenvalues other than 1 as
operators on L*(Q) and L*¥X), respectively, then the process (2, B’, m’, P’) is
ergodic.

ProoOF. Without loss of generality it may be assumed that m(£2)=1.
Let f L¥(2) and g L¥(X). If f 1 {he LY R2); Ph=ch for some constant ¢
with |c¢]=1} and <{g, 1> =0, then

lim - 33 [CPY, 3] =

i=0

and
lim ~n- (D', gy =0.
n 1=0
Hence
@ lim <=5 CPYf, FX(0'g, £y =0.

Similarly, if {f,1>=0 and g1 {he L¥X); ®h=dh for some constant d with
|d| =1}, then (4) holds. Next suppose that Pf=cf, ®g=dg, |c|=|d|=1 and
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c¢#d. Then, since cd+# 1 by hypothesis, (4) holds also. Thus an approxima-
tion argument shows that for fe L¥ Q) and g L¥(X),

n—1 R .
lim = S (P, 1(0'g, 8) =<f, 11, 8,
from which it follows that if f/, g’ € L*2’) then
n—1 .
lim -5 (P, gy =, 11, 8.

This completes the proof of the present lemma.

We are now in a position to prove the above theorems.

PrOOF OF THEOREM 1. Since ||P|l.=1, the first half of the theorem fol-
lows from [8, Theorem 1]. Hence we prove here the second half. The
method of proof is somewhat similar to that given in [9]. By Lemma 1 it
is sufficient to prove that if fe L?(Q) with 1 < p < o is supported on 2, 2,
then

) lim| L 3 prig| =0
n n = D
for any uniform sequence %y, &, ---. An approximation argument then shows

that it is sufficient to prove (5) for f=1, with AC 2, £, and m(A) < oo,
Since |P|l.<1, it is also sufficient to consider the case 1<p<2. It follows
from that there exists a subset S of the non-negative integers having
density zero such that if n is restricted to be outside S, then lizn (P™1,4, 1D

=0. But, since lim ((P™**1,, P*1,)—<{P"14, 1,)=0 uniformly in & (cf. [4, p.

86]), it follows that for any given ¢ >0 there exists a positive integer N(¢)
such that if n > N(¢) and n& S then

(6) (P™*1,, P¥1,><e  for k=0,1, ---.
Define D(k, N(e)) ={j=0; |k—j|= N(e)}, d=p—1, and
ape=1/n if k=F; for some 1<1<n,
{ Ap =0 otherwise.

Since 0< 0 <1, it follows that

1 2 o,
HTEP L

"= (1 3 4, P*1407dm
¥4 k=0

<Y au [P T a,,P1)dm
k=0

J=D{k, N(z))

+ i an,kj‘PklA( Y a,,;P1,)°dm
k=0 jeElllg(k,_N_(g))

—Jl=

+ B 0[P D a,, P dm
AR
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=1(n)+1I(n)+1I(n) .
It follows easily that lim I(n) =0. Next we estimate II(n). It is clear that

)= 2 a,, [P S a,,PL)dm
k=0 X3 S

“i=

=X an,k( 2 an,k+j)am(A>
k=0 j=8

H( 2 anyn-5)’m(A) .
je8

jskn

It follows from a slightly modified argument of [5, pp. 146-147] that

lim 3 a,,( 3 appee)’m(A)=0.
n k=0 Jj=S
On the other hand,

ke 1GES; ik _
n k,

2 Ang-i ="
P=r in=J
J=kn

limII(n)=0. Therefore in order to complete the proof it is sufficient to
n

as n— oo, since the k,/n are bounded (see [2]) and S has density zero. Hence

prove that III(n) can be arbitrarily small for all n. To see this, let for any
& > 07
Gn, k;e)={wcR; 3 a,;P1(0)>e}.

’ je=D(ic, N (2))
Th—7les

Then (6) implies that

1 ; €
(P*ly, la(n,k:el)>§”e’*‘ > a4, {P*l,, Pl y=—.
1 J€|E€(—k’|]evt(§)) &

==

Thus
IMi(n) = kz:.:oan,k(< Py, Lo,k 51)>+5? m(A))

< S L dmd).
&

Since the right hand side of the last inequality can be arbitrarily small, this
completes the proof of [Theorem 1.

PROOF OF THEOREM 2. Case I. Suppose m is a finite invariant measure.
If (2, 8, m, P) is weakly mixing then, clearly, it is ergodic. Hence Lemma
2 implies that the Markov process (27, 8/, m’, P’) is ergodic. Thus a slightly
modified argument of [2, p. 236] (see also the proof of [8, Theorem 1]) is
sufficient for the proof of (3), and hence we omit the details. If (2, 8, m, P)
is not weakly mixing, then there exists a function f& L*2) such that f+0,
{f,1>=0 and Pf=cf for some constant ¢ with |¢c|=1. Define, as in [10], a
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uniform sequence k,, k,, --- by the following way:
ky=min {j=1; —rn/4<arg(c)<m/4},
k,=min {j > k,_,; —n/4<arg (/) <zm/4}.

It is then clear that f(®)=1im iA > P¥if(w) is not a constant function.
n =1

Case II. Suppose m is an infinite subinvariant measure. If (2, 8, m, P)
is weakly mixing, it follows easily that for any fe L'(2),

n—1 .
lim ——; > P flw)y=0 almost everywhere.
n 1=0

Thus clearly (3) holds for any uniform sequence &, k,, --- and any f< L'(£2).
If (2, 8, m, P) is not weakly mixing, it follows from that there
eXxists a measurable set A with 0 <m(A) < oo and P1,=1, almost everywhere.
Hence for any uniform sequence k&, &, --+,

M

lim ni PF¥i] () =1 4(w) almost everywhere.

1

This completes the proof of

From the proof of we have the following result (cf. [2,
Corollary]).

THEOREM 3. Let (2, B, m, P) and k,, k,, --- be as in Lemma 2. Then for
any fe LY(Q),

51
Hw)y= (2) jf dm almost everywhere .
It is known that i) if m is a finite invariant measure then (2, 8, m,

P) is strongly mixing if and only if for any p with 1<p <o, any fe L?(2)
and any strictly increasing sequence %, k,, --- of non-negative integers,

{7) lim

1 & ks 1
D P gy S

m

::O;
i »
ii) if m is an infinite subinvariant measure then (£, 8, m, P) is strongly
mixing if and only if for any p with 1 <p < oo, any f& L?(£2) and any strictly
increasing sequence k,, k,, -+ of non-negative integers,

8 lim

n

1 2 i,
2P

=0.
»

Under the same direction, we have the following

THEOREM 4. a) If m is a finite invariant measure then (2, 8, m, P) is
weakly mixing if and only if for any p with 1< p<oo, any fe LP(Q), and any
strictly increasing sequence ki, k,, --- 0f non-negative integers such that the k,/n
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are bounded, (7) holds.

b) If m is an infinite subinvariant measure then (2, B, m, P) is weakly
mixing if and only if for any p with 1<p< oo, any fe LP(Q), and any strictly
increasing sequence ki, ky, -+ of mnon-negative integers such that the k,/n are
bounded, (8) holds.

PROOF. Arguments analogous to those given in the above for the proofs
of Theorems 1 and 2 are sufficient, and hence we omit the details.

REMARK 1. If m is a finite invariant measure and if (2, 8, m, P) is
ergodic, then the following statements are equivalent:

a) (£, 8, m, P) is weakly mixing.

b) For any (1, 2)-sequence £k, k,, -+ (for the definition, see [1]) with
lower density greater than 1/2 and A< 8 with m(A4) >0,

m{we Q: g P¥rl (@) > 0)) = m(Q).

¢) For any A€ 8 with m(A4)>0, the upper density of the set {n=1;
{P™,4, 1>+ 0} is greater than 1/2.

This follows from arguments analogous to those given in [1] and [3],
and hence we omit the details.

REMARK 2. If m is a finite invariant measure, then the following state-
ments are equivalent:

a) (2, 8, m, P) is strongly mixing.

b) For any fe L'(£2) and any strictly increasing sequence £k, k,, --- of
positive integers, there exists a decreasing sequence c¢,, ¢, -+ 0f positive

reals such that §cn diverges and
n=1
lim (2 eP*if()/ 35 ¢,) = (1/m(@) [  dm
n =1 i=1

almost everywhere.
This follows from a slightly modified argument of [2, pp. 238-239], and
hence the proof is also omitted.
Department of Mathematics
Josai University
Sakado, Saitama 350-02, Japan
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