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§1. Introduction.

In [T], as a contribution to the Picard-Borel-Nevanlinna theory of value
distributions of holomorphic functions, H. Cartan gave some properties of
systems of holomorphic functions which vanish nowhere and whose sum
vanish identically. Afterwards, one of his results was improved and applied
to the study of algebroid functions by J. Dufresnoy ([2]). Using this, the
author showed in that the N-dimensional complex projective space Px(C)
omitting 2N-+1 hyperplanes in general position is taut in the sense of H.
Wu ([II]) and, as a consequence of it, hyperbolic in the sense of S. Koba-
vashi ([9]), which gives an affirmative answer to the conjecture in [12], p.
216. The main purpose of this paper is, in this connection, to study families
0of holomorphic maps into Py(C) omitting & hyperplanes in general position
in the case N+2=<h <2N and to give some function-theoretic properties of
such spaces.

Let {H;; 0=Zi1<N-+t} (t=1) be N+t+1 hyperplanes in general position
in Py(C). For the space X,: = PN(C)—-kij H;, we shall show that there exists

a special analytic set C, of dimension < N—t in X, called the critical set
{cf., with the following properties:

Any sequence {f*’} of holomorphic maps of a complex manifold” M into
X; has a compactly convergent subsequence if there are some compact sets
K in M and L in X,—C, such that f“(K)NL+¢ (v=1,2, --) (cf.,
4.2).

In the case t= N, it will be proved that C,= ¢, which implies that Xy is
taut, namely, the result in the previous paper stated above.

By virtue of the above main result, we can give some properties of
families of holomorphic maps into X,. For any complex manifolds M and N,
we denote by Hol(M, N) the space of all holomorphic maps of M into N
with compact-open topology. It will be shown that the set of all maps in

1) In this paper, a complex manifold is always assumed to be connected and o-
compact. '
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Hol (M, X,) which are of rank =7 somewhere is a locally compact subset of
Hol(M, X,) if r= N—t+1. Moreover, we shall give generalizations of the
classical Schottky’s and Landau’s theorems to the case of holomorphic maps.
into X,.

We shall study also the Kobayashi pseudo-distance dy, on X,. We shall
prove that dy, (p, ¢)>0 for any pe X,—C; and g€ X, (p+#4q). By the use
of this, it will be shown that the holomorphic automorphism group of an
arbitrary subdomain of the space X,, namely, Py(C) omitting N-+2 hyper-
planes in general position is a real Lie group. In this connection, we shall
investigate the holomorphic automorphism group of X, itself and show that
it is isomorphic with the symmetric group Sy., on N-+2 elements in the
last section.

§ 2. Preliminaries.

Let us consider N+{+1 hyperplanes {H;: 0<:< N4t} (t=1) in general
position in Py(C). Choosing homogeneous coordinates w,: w;: -+ : wy suitably,.
we can write

% Hy:w;=0 (0=i=N)
sk
Hy.s: dwotatw,+ - +alwy=0 (1=s=1),
N+t
where we may assume al=al= - =al =1. Put X,: = Py(C)— ‘U H;. In the
i=0

following sections, we use always these notations unless stated to the:
contrary.

Let J=(/Jy, Jo -+, Jx) be a partition of indices I: =1{0,1, ---, N} into &
classes (2=k < N-+1), which means that I=J, U,V --UJ, i+¢ A=I=Zk)y
and iNJ.=¢ (l#m). Taking a map X: {1,2, ---, t} — {1, 2, -+, k}, we define
the set

Cop:={wy:wy:-:wye Py(C); JZ(} alw; =0, 1=<s<t}.
1< X S)

DEFINITION 2.1. We shall call the union C, of all sets C; ;"\ X, constructed.
as above to be the critical set for X,.

LEMMA 2.2. The critical set C, is an analyvtic set of dimension < N—t in
Xi. In the particular case N=t, it holds that Cy= ¢.

PROOF. Take arbitrary J and X as above and put m;: =% {s: X(s)=1{} for
each [ (1=[=k), where we denote the number of elements in a set A by #A..
Obviously, m,+m,+ --- +m,=1¢ Since any minor of the matrix (ai) (0=<i< N,

1=s=1) does not vanish by the assumption, the space {(W;)ics,: X aiw;=0,
iEJx(s)

As)=1} in C"' is of dimension max (N,—m,, 0) for each ! (1<I<k), where:
Ny=4].. If Ny=m, for some [, we have C,;N\X,=¢. In the case that
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N, >m, for any [, the inverse image of C, by the canonical map of C¥*'— {0}
onto Py(C) is of dimension

d: = S (N,—m)= N+1—¢ .
=1

So, we have dimC,;y <d—1=N—t. In the case N=1, we have N,=m, for

some [ and so C;xN X,=¢. Indeed, if not, d:é1 (N;—m;) =2 because k=2,
This completes the proof. q.e. d.

Now, we give

THEOREM 2.3 (J. Dufresnoy). Let D be a domain in the complex plane C.
Any sequence {f*’} in Hol(D, X,) has a subsequence {f®?} satisfying one of
the following conditions:

(a) {f®P} converges in Hol (D, Py(C)),

(b) it can be chosen suitable J and X as stated in the above such that, for
any compact subset K of D and any neighborhood U of C;y in Py(C), there
exists some A, with f*P(K)C U (A= 2y).

The proof is given by the same argument as in the proof of Critére
Fondamental and Théoréme VI in [2], pp. 18~21. Since the statements are
slightly modified from the original, we describe the proof here. We use the
following

THEOREM 2.4 (H. Cartan). Let 0% :=(¢{”, 95, -, %) v=1,2,--) be a
sequence of systems of k holomorphic functions on a domain D in C such that
PP(2)+0 A== k) and ¢+ -+ + ¢ + 0 everywhere on D. Then we can find
a subsequence {@“#} of {@*} such that for suitable indices | and m (1=<1<
m=k) {¢FPd%m-1} converges compactly on D.

This is an immediate consequence of Théoréme VII in [1], p. 312, because
for each function ¢ : = —(¢+ --- + ) the system (Pf, ---, d2)) satisfies
the conditions ¢{(2)+0 (1=<[=<k+1) and ¢M(2)+ --- +0¥(2)=0 on D.

PrOOF OF THEOREM 2.3. Using the homogeneous coordinates with the
property (%), we may write

f(”):fé”):ff”):---:f%) (V:L 2,...)’

N
where each f{” is a nowhere zero holomorphic function on D and X aif;#0
=0

everywhere for any s (1=<s=t¢). Let us consider a partition J=(J,, -+, J&)
of {0,1, -+, N} such that, for a subsequence {f“*} of {f*’} and a suitable
fixed p(l)e J;, each {f{*”/f54} converges compactly to a holomorphic func-
tion g;; on D (1 [, 1=I=<k%k). For example, if we put J,: ={} 1=ZI=ZN),
J=Ji, J» -+, Jw) is such a partition. Among partitions with the above pro-
perties, we choose here J=(J;, J5, -+, Ji) so that the number 2 of classes of
J is as small as possible. Then, for a suitable {v,} and p(l) as above, each
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Fp = 3 al(f§7/f549) converges on D to a holomorphic function F,
1€J]
: =i€_2‘, o8,
=J1

We discuss first the case that, for each s (1<s=1¢), there is an index
X(s) such that Fjy,=0. Consider the above partition J=(J;, i, -+, J) and
‘the map X:s—X(s). Then, we claim that {f“#} satisfies the condition (b)
of for the set C, Assume the contrary. We can take a
sequence {z;} in D such that ﬁljli z;=z, D and )11_r0r3 f¥%(z)=w € Py(C)—Cy 4

for a suitable sequence {f¥?} of {f“?}. Let f¥P(z)=w®: w{®: - : wP and
W=1W,: Wy:-: Wy By the definition of C,;y, X aiw;+# 0 for some s and so
. i€y (s)
w;o# 0 for some 1, € Jy,. Then, we have
. W, ; . wsd
2 ab———= 23 ai-(lim— G )
ETO) Wiy IE0) a0 Wig
=lim ¥ aifi @)

e O A CFY,

= tim L5 pop,(z)

w

— DX —

- T T Fs,X(s)(ZO) - 0
Wiy

and so X alw;=0. This is a contradiction.
iEJx(s)

It remains to discuss the case that F,,#0 (1=[/=<k) for a suitable s,.
In this case, we shall prove £=1, which means that {f®#} satisfies the con-
dition (a) of Assume that 2=2. We take an arbitrary domain

o~ s k

D with DEeD’: =D— k_j {ze D; F,,(z)=0}. Then, we may assume that, for
k ~

the functions ¢ : =fSHFLH, ¢ #0 and 3 ¢ +0 on D. By
=1

24 {¢ER/pEP} converges on D for a subsequence {v;} of {v.} and suitable
I, m. Then, {f¢B/fSA} is also convergent on D because feB/f02,
= (@2 PGPNF SR/ FGR). Using the diagonal argument and changing indices
if necessary, we may assume that {f58//%&} converges on D’. Moreover,
it is easily shown by the maximum principle for holomorphic functions that
{fOB/f5&) converges on D. This contradicts the property of the number k.
Thus we conclude k=1. q.e.d.

REMARK 2.5. As is easily seen, in the case (a) of the limit
of {f®®} has the image included either in X; or in some H,. In case of
t=N, [Theorem 2.3 means that Xy is taut in the sense of H. Wu because of
(cf., [4], Theorem 5.
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§3. The Kobayashi pseudo-distance on X,.

In [9], S. Kobayashi defined an intrinsic pseudo-distance dy on M for
every complex manifold M, which is uniquely determined by the conditions
that (a) we have
|z—2'|

1
tanh "“Z'Ale(Z, Z/) = W‘

for the unit disc D,: = {|z| <1} in C, (b) dx(S (D), f(D)=du(b, @) (b, qE M)
for any holomorphic map f: M— N and (c) d'(p, q) = dy(p, q) for any p, gcM
if d’ is a pseudo-distance on M with the property d'(f(2), f(z")=dp(z, 2/)
(z, 2 € D,) for any holomorphic map f: D,— M.

By the condition (b) we see easily

(3.1). (i) For any submanifold M in N, we have du(p, Q) =dx(p, ¢) (p, g M).

(i) If f is a holomorphic automorphism of M, then dyu(f(D), f(@)=du(D, q)
for any p, g= M.

The Kobayashi pseudo-distance dy, on the space X, stated in the previous
section has the following property.

THEOREM 3.2. It holds that dy(p, ) >0 if pe X,—C, and g€ X, (p#q),
where C, is the critical set for X,.

PrROOF. On X,, we can consider a system of global coordinates z,, -+, Zy.

N
It may be assumed that, for the unit ball B: = {(zy, -, zx); > |z:—a;|2 <1}
i=1

with center at p={(ay, ---, ay), we have BNC;,=¢ and g& B. In view of

Lemma in [8], p. 50, it suffices to show the existence of a pair (r,d) with

0<r7, 0<1 such that any holomorphic map f: D,: = {|z] <1} — X, with f(0)
N

€ B,: = {(zy, , zy); 2 l2z;—a;|*<r? satisfles the condition f({|z|<d})C B.
t=1

Assume the contrary. As in the proof of Proposition 2 in [8], p. 51, we
can take a holomorphic map f, of D; into X, with f,(0)e B,., and f.({|z|

<1/v})E& B for any v=1,2, ---. Obviously, {f.,} has no subsequence which
satisfies the condition either (a) or (b) of This is a contradic-
tion. Thus we have [Theorem 32. g.e.d.

By definition, a hyperbolic manifold is a complex manifold on which the
Kobayashi pseudo-distance is a true distance. As an immediate consequence,
we see

COROLLARY 3.3. The space X,—C, is hyperbolic.

REMARK 3.4. For any 2= N—t+1, the space X, is of type MH, in the
sense of A. Eisenman [3], p. 54. Indeed, for any k-dimensional real analytic
submanifold N of X, and non-empty subdomain N’ of N, NN—N’'NC, is also
of dimension % because of By the k-dimensional
Hausdorff measure d%, with respect to dy, is a Borel measure on N (cf.,
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(3], Propositions 1.24 and 1.28 etc.).

Now, we apply to the study of holomorphic automorphism
groups. Let D be an arbitrary subdomain of the space X;, namely, Py(C)
omitting N-+2 hyperplanes in general position. By Aut (D), we denote the
space of all holomorphic automorphisms of D with compact-open topology.

Let us consider the domain D’: = AU( )f(D—Ct). Obviously, D—C,cD’'cD.
SZAut(D
LEMMA 35. The domain D’ is hyperbolic and hence Aut(D’) is a real Lie
group.

PrROOF. Take two distinct points p and ¢ in D’. We may describe
p=fo(bo) with a suitable p,= D—C, and f, < Aut (D). By (3.1), we have

dp(p, @) = dp(fo( Do), [o( (D))= db(bo, [7'(q)
= dxy(bo, [51(Q))

On the other hand, since p, # f5%(q) and p,& D—C,, we see dx,(Po, [5(q)) >0
by [Theorem 3.2. So, D’ is hyperbolic. The last assertion is a direct result

of S. Kobayashi [9], Theorem 6.2. q.e.d.

THEOREM 3.6. For the above domains D and D’, Aut(D) is topologically
isomorphic with a closed subgroup of Aut(D’) by the canonical restriction map
o: fe Aut(D)—p(f): =f|D" € Aut(D").

PROOF. According to Lemma in [7], since D is certainly K-complete and
D—D’ is a thin analytic subset of D, p: Aut(D)— Aut(D’) is a homeomor-
phism onto a subgroup of Aut(D’) and, moreover, the image of p is closed
because Aut (D) is complete (cf., the proof of Theorem 3 in [7]). q.e.d.

COROLLARY 3.7. For any domain D in X;, Aut(D) is a real Lie group.

REMARK 3.8. The space X,: = Py(C)— I H, defined by N-+1 hyperplanes

=0
{H;} in general position is biholomorphically isomorphic with (C—{0})¥. As
is easily seen, Aut(X;) is not a real Lie group if N=2.

§4. A generalization of J. Dufresnoy’s theorem.

LEMMA 4.1. Consider polydiscs D: = {|z;|<7;, 1=1=n} and G:={|z]
<rh 1<i<n} in C*, where 0<v;=r, If a sequence {f*’} in Hol(D, X;)
converges compactly on G to a map g< Hol (G, X,) with g(G) & C,, then it con-
verges in Hol (D, X,).

For the proof, we need the following T. Nishino’s result [10], Lemma I

THEOREM. Let {f,(2)} be a sequence of holomorphic functions on D: =
{lz;|<ri, 1=<i1<n} which converges compactly on {|z,|<r}ND (0<ri<ry)
and, moreover, on {|z,|<r,} as functions of z, for any fixed z'=(zy -, 2,)
(|z;| <7y 2=1=mn). Then, it converges compactly on D.
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PrOOF OF LEMMA 4.1. It suffices to prove in the case that
v <y, vh=r, -, r,=r, Indeed, if it is shown, {f*’} converges compactly
on {|z;|<ry, lz;|<7ri 2=<1=n} and then by the same argument we see that
it converges compactly on {|z,| <7y, |z,| <7y |2:|<ri 3=i=n}, hence, on
{lz;| <7y |2;1 <7}, 1=1<3,4<j=<n} and so on. Let fP=f:f P f¥
and g=g,: &;: - : gy with holomorphic functions f{ and g;, where we may
choose [ =1 and g,=1. For any partition J=(J,, ---, Ji) of I:=1{0,1, ---,
N}, we can take an index s(J) with the property that

Zoenr(2): = ZZ:] akn8:(2) %0

for any [ (1=[Z£k). Because, if not, there is a map X: {1,2, ---, t} —> {1, 2,
-+, R} with g y(2)=0 for any s, i.e.,, g(G)CC,; ;. We denote anew all func-
tions Zyw,1, senyer o0y sy constructed as above for each partition J=(/,,
v, Jo) of I by Gy, Gy, ooy Goye Let D/ i = {2/ =(2,, =+, 2,); |2:1 <75, 2= 1= n}.
Consider a thin analytic set

Vi=U{z’eD’; G(z,2)=0 as a function of z;}

4]
=1
in D’,

Now, we take an arbitrary point 2z’ in D’—V. Apply [Theorem 2.3 to

the sequence of maps
K@) = f (2, 2): e [Pz, 2)
of {|z,|<r} into X,. If |z, |<7{, then lim A®(z,)= g(z,, z’) by the assumption.

And, since z’ € D’—V, it holds G.(z;, )£ 0 (1 £ ¢ <¢,), which means g({(z,, 2/):
|z,] <7r})EC.. So, {h*} has no subsequence satisfying the condition (b) of
In view of the condition (a) of it has a sub-
sequence converging to some g'in Hol({|z,| <7}, Py(C)). Moreover, by the
same reason, any subsequence of {A®’} has a convergent subsequence, whose
limit g* is necessarily equal to g by the fact that g*(z,)=g(z;, z’)=g(z,) on
{l]z;] <7i} and by the theorem of identity. Then, as is easily seen, {h®}
itself converges to g in Hol ({|z,| < 7.}, P~(C)). In conclusion, each {f{(zy, z’)}
(1=1= N) converges compactly in {|z,|<r;} as a sequence of holomorphic
functions of z, for any arbitrarily fixed 2z’ in D’—V. Then, by the above
[Theoreml, it converges compactly on {|z,| <7} X(D'—V) as functions of n
complex variables. Moreover, we can easily conclude that {f“’} converges
in Hol(D, Py(C)) by the maximum principle. On the other hand, we know
that the limit of any convergent subsequence of nowhere zero holomorphic
functions vanishes identically or vanishes nowhere. This concludes that the
image of the limit of {f*’} is included in X,. Thus we have Lemma 4.1.
q.e.d.
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THEOREM 4.2. Let M be a complex manifold and {f*’} be a sequence in
Hol (M, X,) such that there are some compact sets K in M and L in X,—C,
with f(K)N\ L+ ¢, where C, is the critical set for X,. Then {f®} has a
subsequence which converges in Hol (M, X,).

PROOF. By the assumption, we can find a sequence {p,} in M and a
subsequence {f“#} of {f®’} such that limp,=p,€ M and lim f“#(p,)=q,

oo

p—'OO
e X,—C, exist. Take the unit ball B with center at p, with respect to a
system of local coordinates in a neighborhood of p, and an open neighborhood
U of g, with U& X,—C,. Letd: =mg]1 dx(q, 9, W:={pe B; dg(p, p,)<0/2}
ge

and V be the connected component of the set {g& X;; dx/(q, ¢,) <0} with
g€ V, where 0U denotes the boundary of U. We have then p,& W, f**(p,)
e V and dy (f®?(pn), q,) < 8/2 for sufficiently large p#. So, for any pe W,

dX;(f(v#)(p)’ QO> é dX;(f(v#)(p>! f(Vy)(p‘u))_*_dXt(f(V,u)(p'u)’ 40)
é dB(j)’ p,u)_l_dXt(f(p#)(pﬂ)’ QO)

This shows that f*2(W)C {g€ X;; dx,(q, ¢o) < 0}. Since f*(W)NV +#¢ and
F¢P(W) is connected, we obtain f“*(W)C V. On the other hand, we may
consider V as a bounded domain in C¥= Py(C)—H,. We can choose a
subsequence {f%} of {f®#} converging compactly on W. Obviously,
g: = £Lrg (f*?|W) satisfies the conditions g(W)cC X, and g(W)d& C,. Now,
let us consider the set M’ of all points p in M such that {f®*} converges
on some neighborhood W, of p» to a map g, in Hol(W,, X,) with g,(W,)C X,
and g,(W,) ¢ C,. As was shown in the above, M’ is not empty. Moreover,
[Lemma 4.1 implies that M’ is open and closed in M. It follows that M'= M

because M is connected, whence we have by the usual diagonal
argument. g.e.d.

§5. Families of holomorphic maps into X,.

There are some applications of to the study of families of
holomorphic maps into X,.

THEOREM b5.1. Let M be a complex manifold and r = N—t+1. Then,

Hol"(M, X,): = {feHol(M, X,); f is of rank =r somewhere}

is a locally compact subset of Hol (M, X,), where the rank of f means the rank
of the Jacobian matrix of f.
PrROOF. Take an arbitrary f, € Hol"(M, X,). By there is a
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point p in M such that fo(p)<& C, and f, is of rank =7 at p. We make use
of the Jacobian matrix of f at p with respect to arbitrarily fixed local
coordinates in a neighborhood of p and fixed global coordinates on X,. For
an open neighborhood V of f,(p) with V& X,—C, and a real number d >0,
U; be the set of all maps f< Hol"(M, X,) satisfying the conditions that f(p)
&V and the Jacobian matrix of f at p has a minor of order  with the
absolute value >0. Clearly, I1; is an open subset of Hol(M, X,). By the
assumption, at least one minor of order » of the Jacobian matrix of f, at p
has the absolute value >d, (>0). Then, Il;, is a neighborhood of f,. More-
over, any sequence {f“’} in U;, satisfies the assumption of and
hence has a subsequence {f“#} converging in Hol(M, X,). The limit of
{/“»} is obviously contained in Hol"(#, X,). This shows that s, is relatively
compact in Hol (M, X,). q.e.d.

The following theorem is in a sense considered as a generalization of
the classical Schottky’s theorem (cf., [2], p. 23).

THEOREM 5.2. Let M be a complex manifold, K an arbitrarily given com-
pact set, p, a point in K and q, a point in X,—C,. Then, therve is a compact
set L in X,—C, such that any holomorphic map f of M into X, with f(p,)= g,
satisfies the condition f(K)C L.

Proor. If the conclusion is not wvalid, we can find compact subsets
L, (v=1,2, ) of X;—C, with L,C L, and X,=\U,L, such that there is a
holomorphic map f* of M into X, with f®(p,)=¢q, and f(K) L&, where
L, denotes the interior of L,. The sequence {f®’} has no convergent sub-
sequence though it satisfies the assumption of [Theorem 4.2, which is absurd.
We have therefore g.e.d.

Before we state another application of we give some com-
ments to the results in the previous paper [5]

As in § 2, we consider a partition J=(/,, -+, Jo) (=2) of [:={0, 1, -, N}
and a map X:{1,2, -, —{1,2, -+, k}. Using homogeneous coordinates
w,: -+ wy on Py(C) with the property (), we define this time the set

Ejp:={we::1wye Py(C); B aqw; =0, 1=k, [#X(s), 1=s=1}

! t=Jy
in PN(C). ObViOUSlY, ‘\J EJ’XC U CJ’X.
J, X J, X

We can prove the following improvement of B in [5].

THEOREM 5.3. Ewvery holomorphic map f of C™into X, satisfies one of the
Sfollowing conditions (a) and (b):

(a) f is of constant,

(b) f(C™CTE;y for some suitable | and X.

Moreover, in the case (b), f(C™) is included in a linear subvariety of dimen-
sion k—1 if J is a partition of I into k subclasses.
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This is easily proved by Lemma 5 in [5] and the same argument as in
the proof of B in it.

REMARK 5.4. If we have the case (b) in the number £ is
always <[N/(t+1)] (ctf., [5], §7).

We have also the similar improvement of A in [5]

THEOREM b5.5. Ewvery holomorphic map of a complex manifold M excluding
a regular thin analytic subset S into X, satisfies one of the conditions:

(a) f can be extended to a holomorphic map of M into Py(C).

(b) f(M—S)CE,;y for some suitable | and X.

REMARK 5.6. If we have the case (b) in as was shown in
the proof of A in [5], f(M—S) is included in a linear subvariety
of dimension N—(k—1)t< N—¢ because k=2. So, fis of rank =< N—t every-
where, which shows A in [5].

Now, we give a generalization of the classical Landau’s theorem.

THEOREM 5.7. For any given 6 >0 and point q in X,—C,, there exists a
real number R (0< R< +o0) depending only on o and g with the following
property:

If p>R, then there is no holomorphic map f(z): =1: fy(2):-: fn(2) of a
disc {|z]<p} in C into X, such that f(0)=q and

IO 2+ - + 1 f3(0) 2= 07

PROOF. Assume the contrary. We can find a sequence {R,} of real
numbers with R, <R, < --- and lim R, =o0 such that there is a holomorphic

y—00

map f* of D,: ={lz]<R,} into X, with f*(0)=g¢ and

O O 2

for each v. As is easily seen by and the diagonal argument,
we can choose a subsequence {f®*} of {f®’} with the property that for any
u¢ the sequence

f(V‘u)’ f(V/,e+l), f(V‘tt+2)’ e

converges in Hol(D,, X;). Then, {f®*} may be considered to converge to
a holomorphic map f: C— X,. Obviously, f(0)=gqg& E,;, for any J and X and
f is not of constant. This contradicts We have therefore
Theorem 5.7 g.e.d.

§6. Holomorphic automorphisms of X,.

The purpose of this section is to study holomorphic automorphisms of
the space X;, namely, Py(C) minus N+2 hyperplanes in general position. We
shall prove
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THEOREM 6.1. FEvery holomorphic automorphism of X, is given by a linear
automorphism of Py(C). Moreover, Aut(X,) is isomorphic with the symmetric
group Sy., on N+2 elements.

For the proof, we need the following lemma on polynomials of N vari-
ables z,, ---, zy.

LEMMA 6.2. If k< N+1 and

K
() X ez gLz o bz =0,
i=1
then we have
d liy Liy Slin+1
2) igai% e ay' Nz =0

for another new variable zy.,.

PrROOF. The proof is given by double induction on N and k. If k=1,
Lemma 62 is evident for any N. In the case of k=2 and N=1, from the
identity

a2 (14224 a2 (14-2,)22 =0,

we conclude easily a, = —a,, l;;=1,, and l;,,=1,,. So, is valid in
the case of N=1. For our purpose, it suffices to prove Lemma 6.2 under
the assumption that it is true for polynomials of < N—1 variables and poly-
nomials of N variables with <k—1 terms, where 2< N and 2=k N+1.
Here, it may be assumed that /;y.,=0 for some ¢ and [;y+; >0 for some j.
For, if not, consider the polynomial whose terms are constructed by the
division of a common factor in (1). Changing indices, we may assume that
lLine:=0 (Q1=i=7) and l;y;, >0 r+1=i1=k). In (1), putting zy=—1+z+
-+ +2y_y), We obtain

;1 Q250 o 2 (— (1 2y o L2y )Y =0,
It follows from the induction assumption that
1% az 0 g =)
Then, by (1), we have also

k
S gzl e (12, e zy)I =0

i=r+1

Since k—r < k, we get by the induction hypothesis on &
k L Liv s
2 @z Z N Z I =0

i=7r-+1

and hence the identity (2). g.e.d.
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PROOF OF THEOREM 6.1. According to Theorem 6 in [5], every holomor-
phic automorphism f of X, can be extended to a bimeromorphic map of
Py(C) onto itself. As is well-known, every meromorphic function on Py(C)
is rational. Therefore, using the inhomogeneous coordinates z, =w,/w,, -,
Zy =wWy/w, and u, =v,/v,, -+, Uy =vy/v, for homogeneous coordinates w,: w,:
««:wy and vy vy it vy on Py(C) with the property (%), we can write f=
(fi, -+, fx) with rational functions u;=/f;(2)=P(2)/Q,(2) 1=Z1=<N), where
P,(z) and Q,(z) are mutually prime polynomials in z,, ---, zy. Then, any prime
factor of each P; or @Q; is necessarily a constant multiple of the polynomial
21, Zgy ++, 2y Or 142+ -+ +2y. Indeed, if not, we can find easily a point
a=(ay, -+, ay) in X, with f(a)& X,. Accordingly, we can write

3  w=fl@=az - P (12t - Fzy) W (1SiN),

where [;; are not necessarily non-negative integers. Moreover, since a
rational function 1-f,(2)+ -+ +f~(2) has non-zero finite values everywhere
on X;, we can write also

4) 14+ u+ - +uy :aN+1ZiN+n ZAZINHN(I_*_ZI__{_ +ZN)1N+1N+1 .

The same argument can be applicable to the inverse map g: =f"! of f. It
can be written g=(g,, ---, gy) With the rational functions

B z=g,W)=bu - uy (I ut - Fuy)™ T (1=7=N),
and moreover we have
(6) 14z - dzy =byy ¥ UV (AU e Fuy) YN
‘Substituting (3) and (4) into (5) and (6), we get
2y = gt e 2N (L o b2 (LSS N)

n n n
1+Zl+ vee +ZN:CN+121N+H e ZNN+1N(1+Z]+ es +ZN) N+1N+1’

(7)

N+1
where ¢;= bja1mj1 a%ﬂ“ 15 N+1) and Ny = kz__llmjklki (1= i, IS N+1),

i.e., the matrix (n;;) is the product of the matrices (mj) and (I;). In (7),
by transposing factors with negative powers into the left side of the equa-
tions and by observing the coefficients of each term in their expansions, we
see ¢;=1 and n;;=40;;, where 0;;,=1 if i=j and =0 if ¢#;. In particular,
a;#0, b;#0 and det(l;;)=det(m;;)=+1. On the other hand, putting [y;=
—min {0, Lij, Loj, =+, Iyaaj}, lij: =1i+10; (20), ap=1, aj=a; (1=i1=<N) and
Ay = —ay4;, We get by (3) and (4)

N+ ' I "
(8) z.:::aéZi“ Zi\l,-N(l—}—zl—}— +ZN)11N+1 =0,

“where for each j (1<j=< N-+1) there is at least one index ¢ with [j; =0.
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Let {0,1, -, N+1} =L\ - UL, I, +¢, . NI, =¢ if k+£’) be a parti-
tion with the property that for any «

I3 LN 3
2[ a:ZI e an (1+Zl+ T +ZN) Nt - 0 ’
Ly

where we choose it so that the number «, of classes is as large as possible.
Clearly, #I, =2 for any ¢« (1=r=rx,). After a suitable change of indices, it
may be assumed that [, = {0, 1, ---, £} (k=1). Assume that k< N. By
6.2,

'

k L I ¥
2 (ZQZLU ZNLN(1+21+ +ZN) zN+1:O
=0

implies

bty Ly LN+l _

izoaizl e zntzar T =0,
In this situation, we have [;=I[{;=--=10; (1=j=<N+1). Indeed, e.g., if
0n=Il4=--=ly and [}, # g for any 7 with k'+1=i=Fk (k"< k—1), we see
easily

i . , % . ,
l; L. l; l;

! 1 IN+1 / i1 IN+1__

S aizy e zytit=0 and X aiz -z =0,

1==0 i=kKk'+1

which contradicts the property of x£,. Now, it holds that

7 4
1 lo1 ON+1

! 4
1 1" liN+1

1 15v+11 l;v+1N+1
(1D

7 ’
1 01°°° ZON+1

0 I, Livs =det(/;;)==*1.

0 ZN+11 ZN+1N+1

On the other hand, this is equal to zero because at least two rows are equal
to each other. This is a contradiction. We conclude 2= N+1 or «£,=1.

In (8), after a suitable change of indices, let [y, =0 (0=:1=7) and iy,
#0 (r+1<i1< N+1). If »r< N—1, substituting zy = —(14+2;+ -+ +2y-,) in (8),
we obtain

— Ly- lin
T ajn ™ e e (bt e Fay) =0
and hence by the identity

oot LN
>aiz ez =0,
=0
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which contradicts the above shown fact k,=1. Therefore, there is at most
one index ¢ with [iy,, >0. By a suitable non-singular linear transformation
of variables, it can be similarly proved that for any j (1 <5< N+1) there is
at most one index i with [;; >0. Moreover, in this situation we have at most
one index j with [;; >0 for any i. Indeed, if not, two distinct rows of the

matrix (11) are equal to (1,0, ---, 0) and then det(/;;)=0. In conclusion, we
have a subset {iy, 1, -, iys:} (G #EL, if [#=m) of {0,1, -, N+1} such that
any [li; is equal to zero except li,y, li, =+, liypinv+r. Then det (ly;) =10l -+
liysiwer= 1. Since [[; =0, we get [, =l = =lyunve1=1

We put [jy=1 if l},=l,= - =Ly, =0 and [j,=0 if ;=1 for some j.
Then, rewriting the representation (4) of f by homogeneous coordinates
We: Wyt -1 Wy and vy: vy: -+ Uy, We have

Ly U L . )
(11) vi:agwozowl 2 N WNLN(U}O—%—LUI-{— +wN> iN+1 (OéléN}
and the identity
3 t ! '
(12) Vot vt o AUy = @l YW, M L NN 4 gpy) NIV

where a; (0<1< N) and aj4; are uniquely determined up to a non-zero con-
stant common factor by the identity (12) and (/j;) (0=1, j< N+1) is a non-
singular matrix whose components are either 1 or 0. The formulas (11) and
(12) show that any given f in Aut(X,) is a linear automorphism of Py(C)

which induces a permutation among the spaces H,, H,, ---, Hy;;. This com-
pletes the proof of [Theorem 6l1. q.e.d.
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