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\S 1. Introduction.

In [1], as a contribution to the Picard-Borel-Nevanlinna theory of value
distributions of holomorphic functions, H. Cartan gave some properties of
systems of holomorphic functions which vanish nowhere and whose sum
vanish identically. Afterwards, one of his results was improved and applied
to the study of algebroid functions by J. Dufresnoy ([2]). Using this, the
author showed in [4] that the N-dimensional complex projective space $P_{N}(C)$

omitting $2N+1$ hyPerplanes in general position is taut in the sense of H.
Wu ([11]) and, as a consequence of it, hyperbolic in the sense of S. Koba-
yashi ([9]), which gives an affirmative answer to the conjecture in [12], $p$ .
216. The main purpose of this Paper is, in this connection, to study families
of holomorphic maps into $P_{N}(C)$ omitting $h$ hyperplanes in general position
in the case $N+2\leqq h\leqq 2N$ and to give some function-theoretic properties of
such spaces.

Let $\{H_{i} ; 0\leqq i\leqq N+t\}(t\geqq 1)$ be $N+t+1$ hyperplanes in general position
in $P_{N}(C)$ . For the space $X_{t}$

$:=P_{N}(C)-\bigcup_{i}H_{i}$ , we shall show that there exists

a special analytic set $C_{t}$ of dimension $\leqq N-t$ in $X_{t}$ called the critical set
$\downarrow$( $cf.$ , Definition 2.1) with the following properties:

Any sequence $\{f^{(\nu)}\}$ of holomorphic maps of a complex manifold1) $M$ into
$X_{t}$ has a compactly convergent subsequence if there are some compact sets
$K$ in $M$ and $L$ in $X_{t}-C_{t}$ such that $f^{(\nu)}(K)\cap L\neq\phi(\nu=1, 2, )$ (cf., Theorem
4.2).

In the case $t\geqq N$, it will be proved that $ C_{t}=\phi$ , which implies that $X_{N}$ is
taut, namely, the result in the previous paper [4] stated above.

By virtue of the above main result, we can give some properties of
families of holomorphic maps into $X_{t}$ . For any complex manifolds $M$ and $N$,
we denote by Hol $(M, N)$ the space of all holomorphic maps of $M$ into $N$

with compact-open topology. It will be shown that the set of all maps in

1) In this paper, a complex manifold is always assumed to be connected and $\sigma-$

compact.
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Hol $(M, X_{t})$ which are of rank $\geqq r$ somewhere is a locally compact subset of
Hol $(M, X_{t})$ if $r\geqq N-t+1$ . Moreover, we shall give generalizations of the
classical Schottky’s and Landau’s theorems to the case of holomorphic maps
into $X_{t}$ .

We shall study also the Kobayashi pseudo-distance $d_{x_{t}}$ on $X_{t}$ . We shall
prove that $d_{x_{t}}(p, q)>0$ for any $p\in X_{l}-C_{t}$ and $q\in X_{t}(p\neq q)$ . By the use
of this, it will be shown that the holomorphic automorphism group of an
arbitrary subdomain of the space $X_{1}$ , namely, $P_{N}(C)$ omitting $N+2$ hyper-
planes in general position is a real Lie group. In this connection, we shall
investigate the holomorphic automorphism group of $X_{1}$ itself and show that
it is isomorphic with the symmetric group $S_{N+2}$ on $N+2$ elements in the
last section.

\S 2. Preliminaries.

Let us consider $N+t+1$ hyperplanes $\{H_{i} : 0\leqq i\leqq N+t\}(t\geqq 1)$ in generaF
position in $P_{N}(C)$ . Choosing homogeneous coordinates $w_{0}$ : $w_{1}$ : $\cdots$ : $W_{N}$ suitably,,
we can write

$H_{i}$ : $w_{i}=0$ $(0\leqq i\leqq N)$

$(*)$

$H_{N+s}$ ; $\alpha_{s}^{0}w_{0}+\alpha_{s}^{1}w_{s}+\cdots+\alpha_{s}^{N}w_{N}=0$ $(1\leqq s\leqq t)$ ,

where we may assume $\alpha_{1}^{0}=\alpha_{1}^{1}=\ldots=\alpha_{1}^{N}=1$ . Put $X_{t}$ $:=P_{N}(C)-\bigcup_{i=0}^{N+t}H_{i}$ . In the $\cdot$

following sections, we use always these notations unless stated to the
contrary.

Let $J=(J_{1}, J_{2}, J_{k})$ be a partition of indices $I:=\{0,1, \cdots , N\}$ into $k^{\mu}$

classes $(2\leqq k\leqq N+1)$ , which means that $I=J_{1}\cup J_{2}\cup\cdots\cup J_{k},$ $J_{l}\neq\phi(1\leqq l\leqq k)\backslash $

and $J_{l}\cap J_{m}=\phi(l\neq m)$ . Taking a map $\chi$ : $\{$ 1, 2, $\cdots$ , $t\}\rightarrow\{1,2, \cdots , k\}$ , we define
the set

$C_{J,\chi}$

$:=\{w_{0} : w_{1} :... : w_{N}\in P_{N}(C);\sum_{i\in J\chi(s)}\alpha_{s}^{i}w_{i}=0,1\leqq s\leqq t\}$ .

DEFINITION 2.1. We shall call the union $C_{t}$ of all sets $C_{J,\chi}\cap X_{t}$ constructed
as above to be the critical set for $X_{t}$ .

LEMMA 2.2. The critical set $C_{t}$ is an analytic set of dimension $\leqq N-t$ in
$X_{t}$ . In the Particular case $N=t$ , it holds that $ C_{N}=\phi$ .

PROOF. Take arbitrary $J$ and $\chi$ as above and put $m_{l}$ $:=\#\{s:\chi(s)=l\}$ for $\cdot$

each 1 $(1 \leqq l\leqq k)$ , where we denote the number of elements in a set $A$ by $\# A.$ .

Obviously, $m_{1}+m_{2}+\cdots+m_{k}=t$. Since any minor of the matrix $(\alpha_{s}^{i})(0\leqq i\leqq N$,
$1\leqq s\leqq t)$ does not vanish by the assumption, the space { $(w_{i})_{i\in J_{l}}$ : $\sum_{i\in J_{\chi(s)}}\alpha_{s}^{i}w_{i}=0$

,

$\chi(s)=l\}$ in $C^{N_{l}}$ is of dimension max $(N_{l}-m_{l}, 0)$ for each $l(1\leqq l\leqq k)$ , where
$N_{l}=\# J_{l}$ . If $N_{l}\leqq m_{l}$ for some $l$ , we have $ C_{J,\chi}\cap X_{t}=\phi$ . In the case that
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$N_{l}>m_{l}$ for any $l$ , the inverse image of $C_{J,\chi}$ by the canonical map of $C^{N+1}-\{0\}$

onto $P_{N}(C)$ is of dimension

$d:=\sum_{l=1}^{k}(N_{l}-m_{l})=N+1-t$ .

So, we have $\dim C_{J,\chi}\leqq d-1=N-t$. In the case $N=t$, we have $N_{l}\leqq m_{l}$ for

some 1 and so $ C_{J,\chi}\cap X_{t}=\phi$ . Indeed, if not, $d=\sum_{\iota=1}^{k}(N_{l}-m_{l})\geqq 2$ because $k\geqq 2$ .
This completes the proof. $q$ . $e$ . $d$ .

Now, we give
THEOREM 2.3 (J. Dufresnoy). Let $D$ be a domain in the comPlex plane $C$.

Any sequence $\{f^{(\nu)}\}$ in Hol $(D, X_{t})$ has a subsequence $\{f^{(\nu_{\lambda)}}\}$ satisfying one of
the following conditions:

(a) $\{f^{(\nu\lambda)}\}$ converges in Hol $(D, P_{N}(C))$ ,

(b) it can be chosen suitable $J$ and $\chi$ as stated in the above such that, for
any compact subset $K$ of $D$ and any neighborhood $U$ of $C_{J,\chi}$ in $P_{N}(C)$ , there
exists some $\lambda_{0}$ with $f^{(\nu\lambda)}(K)\subset U(\lambda\geqq\lambda_{0})$ .

The proof is given by the same argument as in the proof of Crit\‘ere
Fondamental and Th\’eor\‘eme VI in [2], $pp$ . 18\sim 21. Since the statements are
slightly modified from the original, we describe the proof here. We use the
following

THEOREM 2.4 (H. Cartan). Let $\Phi^{(\nu)}$ $:=(\phi_{1}^{(\nu)}, \phi_{2}^{(\nu)}, \cdots , \phi_{k}^{(\nu)})(\nu=1, 2, )$ be a
sequence of systems of $k$ holomorphic functions on a domain $D$ in $C$ such that
$\phi\}^{\nu)}(z)\neq 0(1\leqq l\leqq k)$ and $\phi i^{\nu)}+\cdots+\phi_{k}^{(\nu)}\neq 0$ everywhere on D. Then we can find
a subsequence $\{\Phi^{(\nu_{\mu})}\}$ of $\{\Phi^{(\nu)}\}$ such that for suitable indices 1 and $m(1\leqq l<$

$m\leqq k)\{\phi_{\iota^{\nu/\lrcorner}}^{()}\phi_{m^{\prime 1}}^{(\nu)- 1}\}$ converges compactly on $D$ .
This is an immediate consequence of Th\’eor\‘eme VII in [1], p. 312, because

for each function $\phi_{k+1}^{(\nu)}$ $:=-(\phi_{1}^{(\nu)}+\cdots+\phi_{k}^{(\nu)})$ the system $(\phi_{1}^{(\nu)}, \cdots , \phi_{k+1}^{(\nu)})$ satisfies
the conditions $\phi_{l}^{(\nu)}(z)\neq 0(1\leqq l\leqq k+1)$ and $\phi_{1}^{(\nu)}(z)+$ $+\phi_{k+1}^{(\nu)}(z)\equiv 0$ on $D$ .

PROOF OF THEOREM 2.3. Using the homogeneous coordinates with the
property $(*)$ , we may write

$f^{(\nu)}=fb^{\nu)}$ : $f_{1}^{(\nu)}$ : $\cdots$ : $f_{N}^{(\nu)}$ $(\nu=1, 2, )$ ,

where each $f_{t}^{(\nu)}$ is a nowhere zero holomorphic function on $D$ and $\sum_{i=0}^{N}\alpha_{s}^{i}f_{i}\neq 0$

everywhere for any $s(1\leqq s\leqq t)$ . Let us consider a partition $J=(J_{1}, \cdots , J_{k})$

of $\{0,1, \cdots , N\}$ such that, for a subsequence $\{f^{(\nu_{\mu})}\}$ of $\{f^{(\nu)}\}$ and a suitable
fixed $p(l)\in J_{l}$ , each $\{f_{l}^{(\mu)}\nu/f_{p}^{(}\nu d))\}$ converges compactly to a holomorphic func-
tion $g_{il}$ on $D(i\in J_{l}, 1\leqq l\leqq k)$ . For example, if we put $J_{l}$ $:=\{l\}(1\leqq l\leqq N)$ ,
$J=$ $(J_{1}, J_{2}, \cdots , J_{N})$ is such a partition. Among partitions with the above pro-
perties, we choose here $J=(J_{1}, J_{2}, \cdots J_{k})$ so that the number $k$ of classes of
$J$ is as small as possible. Then, for a suitable $\{\nu_{\mu}\}$ and $p(l)$ as above, each
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$ F_{s.l}^{(u)}\nu$

$:=\sum_{i\in J_{l}}\alpha_{s}^{i}(f_{\ell}^{(\mu^{1}}\nu/f_{p(l)}^{(\mu)}\nu)$ converges on $D$ to a holomorphic function $F_{s,b}$

$:=\sum_{i\subset- J_{l}}\alpha_{8}^{i}g_{il}$ .
We discuss first the case that, for each $s(1\leqq s\leqq t)$ , there is an index

$\chi(s)$ such that $F_{s,x(s)}\equiv 0$ . Consider the above partition $J=(J_{1}, J_{2}, \cdots , J_{k})$ and
the map $x;s-,\chi(s)$ . Then, we claim that $\{f^{(\nu)}\mu\}$ satisfies the condition (b)

of Theorem 2.3 for the set $C_{J,\chi}$ . Assume the contrary. We can take a
sequence $\{z_{\lambda}\}$ in $D$ such that $\lim z_{\lambda}=z_{0}\in D$ and $\lim f^{(v\lambda)}(z_{\lambda})=w\in P_{N}(C)-C_{J,\chi}$

$\lambda-$ $\lambda-$

for a suitable sequence $\{f^{(v\lambda)}\}$ of $\{f^{(\nu_{\mu})}\}$ . Let $f^{(v\lambda)}(z_{\lambda})=w_{0}^{(\lambda)}$ : $w_{1}^{(\lambda)}$ : $\cdots$ : $w_{N}^{(\lambda)}$ and
$w=w_{0}$ : $w_{1}$ : $\ldots$ : $w_{N}$ . By the definition of $C_{J,\chi},\sum_{i\in J\chi(s)}\alpha_{s}^{i}w_{i}\neq 0$ for some $s$ and so
$w_{\iota_{0}}\neq 0$ for some $i_{0}\in J_{\chi(s)}$ . Then, we have

$\sum_{l\in J_{\chi(s)}}\alpha_{s}^{i}\frac{w_{i}}{w_{i_{0}}}=\sum_{\chi(s)}\alpha_{s}^{i}i\in J(\varliminf_{\lambda}\frac{w_{i}^{(\lambda)}}{wk^{\lambda)}})$

$=\varliminf_{\lambda\infty i}\sum_{\in J\chi(s)}\alpha_{s}^{i}\frac{f_{i}^{(\lambda)}\nu(z_{\lambda})}{f_{i0}^{(\lambda)}\nu(z_{\lambda})}$

$=\varliminf_{\lambda}\frac{f_{p(\chi(s))}^{(\lambda)}v(z_{\lambda})}{f_{i0^{\lambda)}}^{(\nu}(z_{\lambda})}F_{s.\chi(s)}^{(\lambda)}\nu(z_{\lambda})$

$=\frac{w_{p(\chi(s))}}{w_{i_{0}}}F_{s,x(s)}(z_{0})=0$

and so $\sum_{i\in J_{\chi(s)}}\alpha_{s}^{t}w_{i}=0$ . This is a contradiction.

lt remains to discuss the case that $F_{s_{0},l}\not\equiv 0(1\leqq l\leqq k)$ for a suitable $s_{0}$ .
In this case, we shall prove $k=1$ , which means that $\{f^{(\nu_{\mu})}\}$ satisPes the con-
dition (a) of Theorem 2.3. Assume that $k\geqq 2$ . We take an arbitrary domain
$\tilde{D}$ with $\tilde{D}\Subset D^{\prime}$ $:=D-\bigcup_{\iota=1}^{k}\{z\in D;F_{s_{0},l}(z)=0\}$ . Then, we may assume that, for

the functions $\phi_{\iota^{\nu}}^{(\mu)}$ $:=f_{p(l)}^{(\mu)}\nu F_{s_{0}}^{(\mu_{l})}\nu\phi_{\iota^{\nu}}^{(\mu)}\neq 0$ and $\sum_{\iota=1}^{k}\phi_{\iota^{\nu}}^{(\mu)}\neq 0$ on $\tilde{D}$ . By Theorem

2.4 $\{\phi_{\iota^{\nu_{\lambda}}}^{()}/\phi_{m}^{(\lambda)}\nu\}$ converges on $\tilde{D}$ for a subsequence $\{\nu_{\lambda}\}$ of $\{\nu_{\mu}\}$ and suitable
$l,$ $m$ . Then, $\{f_{p(l)}^{(\lambda)}v/f_{p(m)}^{(\lambda)}\nu\}$ is also convergent on $\tilde{D}$ because $ f_{p(l)}^{(\lambda)}\nu/f_{p(m)}^{(\lambda)}\nu$

$=(\phi_{\iota^{\nu}}^{(\lambda)}/\phi_{m}^{(\lambda)}\nu)(F_{s_{0}.m}^{(\lambda)}\nu/F_{s_{0}.l}^{(\lambda)}\nu)$ . Using the diagonal argument and changing indices
if necessary, we may assume that $\{f_{p(l)}^{(\lambda)}\nu/f_{p(m)}^{(\lambda)}\nu\}$ converges on $D^{\prime}$ . Moreover,
it is easily shown by the maximum principle for holomorphic functions that
$\{f_{p(l)}^{(\lambda)}\nu/f_{p(m)}^{(\lambda)}\nu\}$ converges on $D$ . This contradicts the Property of the number $k$ .
Thus we conclude $k=1$ . $q$ . $e$ . $d$ .

REMARK 2.5. As is easily seen, in the case (a) of Theorem 2.3, the limit
of $\{f^{(\mu)}\nu\}$ has the image included either in $X_{t}$ or in some $H_{i}$ . In case of
$t=N$, Theorem 2.3 means that $X_{N}$ is taut in the sense of H. Wu because of
Lemma 2.2 (cf., [4], Theorem 5.1).
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\S 3. The Kobayashi pseudo-distance on $X_{t}$ .
In [9], S. Kobayashi defined an intrinsic pseudo-distance $d_{M}$ on $M$ for

every complex manifold $M$, which is uniquely determined by the conditions
that (a) we have

tanh $\frac{1}{2}d_{D_{1}}(z, z^{\prime})=\frac{|z-z^{\prime}|}{|1-z\overline{z}|}$

for the unit disc $D_{1}$ $:=\{|z|<1\}$ in $C,$ $(b)d_{N}(f(p), f(q))\leqq d_{M}(p, q)(p, q\in M)$

for any holomorphic map $f:M\rightarrow N$ and (c) $d^{\prime}(P, q)\leqq d_{M}(p, q)$ for any $P,$ $q\in M$

if $d^{\prime}$ is a pseudo-distance on $M$ with the property $d^{\prime}(f(z), f(z^{\prime}))\leqq d_{D_{1}}(z, z^{\prime})$

$(z, z^{\prime}\in D_{1})$ for any holomorphic map $f:D_{1}\rightarrow M$.
By the condition (b) we see easily
(3.1). (i) For any submanifoldM in N, $wehaved_{M}(p, q)\geqq d_{N}(p, q)(p, q\in M)$ .
(ii) If $f$ is a holomorphic automorphism of $M$, then $d_{M}(f(p), f(q))=d_{M}(p, q)$

for any $p,$ $q\in M$.
The Kobayashi pseudo-distance $d_{x_{t}}$ on the space $X_{t}$ stated in the previous

section has the following property.
THEOREM 3.2. It holds that $d_{x_{t}}(p, q)>0$ if $p\in X_{t}-C_{t}$ and $q\in X_{t}(p\neq q)$ ,

where $C_{t}$ is the critical set for $X_{t}$ .
PROOF. On $X_{t}$ , we can consider a system of global coordinates $z_{1},$

$\cdots$ , $z_{N}$ .
It may be assumed that, for the unit ball $B:=$ $\{(z_{1}, \cdots , z_{N});\sum_{i=1}^{N}|z_{i}-a_{i}|^{2}<1\}$

with center at $p=$ $(a_{1}, \cdots , a_{N})$ , we have $ B\cap C_{t}=\phi$ and $q\not\in B$ . In view of
Lemma in [8], p. 50, it suffices to show the existence of a pair $(r, \delta)$ with
$0<r,$ $\delta<1$ such that any holomorphic map $f:D_{1}$ $:=\{|z|<1\}\rightarrow X_{t}$ with $f(O)$

$\in B_{r}$ $:=$ $\{(z_{1}, \cdots , z_{N});\sum_{i=1}^{N}|z_{i}-a_{i}|^{2}<r^{2}\}$ satisfies the condition $f(\{|z|<\delta\})\subset B$ .
Assume the contrary. As in the proof of Proposition2 in [8], p. 51, we
can take a holomorphic map $f_{\nu}$ of $D_{1}$ into $X_{t}$ with $f_{\nu}(0)\in B_{1/2}$ and $f_{\nu}(\{|z|$

$<1/\nu\})\not\subset B$ for any $\nu=1,2,$ $\cdots$ Obviously, $\{f_{\nu}\}$ has no subsequence which
satisfies the condition either (a) or (b) of Theorem 2.3. This is a contradic-
tion. Thus we have Theorem 3.2. $q$ . $e$ . $d$ .

By definition, a hyperbolic manifold is a complex manifold on which the
Kobayashi pseudo-distance is a true distance. As an immediate consequence,
we see

COROLLARY 3.3. The space $X_{t}-C_{t}$ is hyperbolic.
REMARK 3.4. For any $k\geqq N-t+1$ , the space $X_{t}$ is of type $MH_{k}$ in the

sense of A. Eisenman [3], p. 54. Indeed, for any k-dimensional real analytic
submanifold $N$ of $X_{t}$ and non-empty subdomain $N^{\prime}$ of $N,$ $N^{\prime}-N^{\prime}\cap C_{t}$ is also
of dimension $k$ because of Lemma 2.2. By Theorem 3.2, the k-dimensional
Hausdorff measure $d_{x_{l}}^{k}$ with respect to $d_{x_{t}}$ is a Borel measure on $N$ (cf.,
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[3], Propositions 1.24 and 1.28 etc.).
Now, we aPply Theorem 3.2 to the study of holomorphic automorphism

groups. Let $D$ be an arbitrary subdomain of the space $X_{1}$ , namely, $P_{N}(C)$

omitting $N+2$ hyperplanes in general position. By Aut $(D)$ , we denote the
space of all holomorphic automorphisms of $D$ with compact-open topology.
Let us consider the domain $D^{\prime}$

$:=Uf(D-C_{t})f^{-}=Aut(D)$ Obviously, $D-C_{t}\subset D^{\prime}\subset D$ .
LEMMA 3.5. The domain $D^{\prime}$ is $hyPerbolic$ and hence Aut $(D^{\prime})$ is a real Lie

grouP $\cdot$

PROOF. Take two distinct points $p$ and $q$ in $D^{\prime}$ . We may describe
$p=f_{0}(p_{0})$ with a suitable $p_{0}\in D-C_{t}$ and $f_{0}\in Aut(D)$ . By (3.1), we have

$d_{D^{\prime}}(p, q)\geqq d_{D}(f_{0}(p_{0}), f_{0}(f_{0}^{-1}(q)))=d_{D}(p_{0}, f_{0}^{-1}(q))$

$\geqq d_{x_{1}}(p_{0}, f_{0}^{-1}(q))$ .

On the other hand, since $p_{0}\neq f_{0}^{-1}(q)$ and $p_{0}\in D-C_{t}$ , we see $d_{X_{1}}(p_{0}, f_{0}^{-1}(q))>0$

by Theorem 3.2. So, $D^{\prime}$ is hyperbolic. The last assertion is a direct result
of S. Kobayashi [9], Theorem 6.2. $q$ . $e$ . $d$ .

THEOREM 3.6. For the above domains $D$ and $D^{\prime}$ , Aut $(D)$ is topOlOgically

isomorPhic with a closed subgroup of Aut $(D^{\prime})$ by the canonical restriction map
$\rho:f\in Aut(D)-*\rho(f):=f|D^{\prime}\in Aut(D^{\prime})$ .

PROOF. According to Lemma in [7], since $D$ is certainly K-complete and
$D-D^{\prime}$ is a thin analytic subset of $D,$

$\rho$ : Aut $(D)-\rangle$ Aut $(D^{\prime})$ is a homeomor-
phism onto a subgroup of Aut $(D^{\prime})$ and, moreover, the image of $\rho$ is closed
because Aut $(D)$ is complete (cf., the proof of Theorem 3 in [7]). $q$ . $e$ . $d$ .

COROLLARY 3.7. For any domain $D$ in $X_{1}$ , Aut $(D)$ is a real Lie group

REMARK 3.8. The space $X_{0}$ $:=P_{N}(C)-L)H_{i}\iota=0N$ defined by $N+1$ hyperplanes

$\{H_{i}\}$ in general position is biholomorphically isomorphic with $(C-\{0\})^{N}$ . As
is easily seen, Aut $(X_{0})$ is not a real Lie group if $N\geqq 2$ .

\S 4. A generalization of J. Dufresnoy’s theorem.

LEMMA 4.1. Consider polydiscs $D:=\{|z_{i}|<r_{i}, 1\leqq i\leqq n\}$ and $G:=\{|z_{\ell}|$

$<r_{i}^{\prime},$ $1\leqq i\leqq n$ } in $C^{n}$ , where $0<r_{l}^{\prime}\leqq r_{i}$ . If a sequence $\{f^{(\nu)}\}$ in Hol $(D, X_{t})$

converge $s$ compactly on $G$ to a map $g\in Ho1(G, X_{t})$ with $g(G)\not\subset C_{t}$ , then it con-
verge $s$ in Hol $(D, X_{t})$ .

For the proof, we need the following T. Nishino’s result [10], Lemma I.
THEOREM. Let $\{f_{\nu}(z)\}$ be a sequence of holomorphic functions on $D:=$

$\{|z_{i}|<r_{i}, 1\leqq i\leqq n\}$ which converges compactly on $\{|z_{1}|<r_{1}^{\prime}\}\cap D(0<r_{1}^{\prime}<r_{1})$

and, moreover, on $\{|z_{1}|<r_{1}\}$ as functions of $z_{1}$ for any fixed $z^{\prime}=(z_{2}, \cdots , z_{n})$

$(|z_{i}|<r_{i}, 2\leqq i\leqq n)$ . Then, it converge $s$ compactly on $D$ .



Families of holomorphic maps into the projective space 241

PROOF OF LEMMA 4.1. It suffices to prove Lemma 4.1 in the case that
$r_{1}^{\prime}<r_{1},$ $r_{2}^{\prime}=r_{2},$ $\cdots$ , $r_{n}^{\prime}=r_{n}$ . Indeed, if it is shown, $\{f^{(\nu)}\}$ converges compactly
on $\{|z_{1}|<r_{1}, |z_{i}|<r_{i}^{\prime}, 2\leqq i\leqq n\}$ and then by the same argument we see that
it converges compactly on $\{|z_{1}|<r_{1}, |z_{2}|<r_{2}, |z_{i}|<r_{i}^{\prime}, 3\leqq i\leqq n\}$ , hence, on
$\{|z_{i}|<r_{i}, |z_{j}|<\gamma_{j}^{\prime} , 1\leqq i\leqq 3,4\leqq j\leqq n\}$ and so on. Let $f^{(\nu)}=f_{0}^{(\nu)}$ : $f_{1}^{(\nu)}$ : $\cdots$ : $f_{N}^{(\nu)}$

and $g=g_{0}$ : $g_{1}$ : $\ldots$ : $g_{N}$ with holomorphic functions $f_{i}^{(\nu)}$ and $g_{i}$ , where we may
choose $f_{0}^{(\nu)}\equiv 1$ and $g_{0}\equiv 1$ . For any partition $J=(J_{1}, J_{k})$ of $I:=\{0,1,$ $\cdots$ ,
$N\}$ , we can take an index $s(J)$ with the property that

$g_{s(J)l}(z):=\sum_{iJ_{l}}\alpha_{s(J)}^{i}g_{i}(z)\not\equiv 0$

for any $l(1\leqq l\leqq k)$ . Because, if not, there is a map $x;\{1,2, \cdots , t\}\rightarrow\{1,2$ ,
, $k$ } with $g_{s,x(s)}(z)\equiv 0$ for any $s,$

$i$ . $e.,$ $g(G)\subset C_{J,\chi}$ . We denote anew all func-
tions $g_{s(J)1},$ $g_{s(J)2},$ $g_{s(J)k}$ constructed as above for each partition $J=(J_{1}$ ,

, $J_{k}$ ) of $I$ by $G_{1},$ $G_{2},$ $\cdots$ , $G_{\iota_{0}}$ . Let $D^{\prime}$ $:=\{z^{\prime}=(z_{2}, \cdots , z_{n});|z_{i}|<r_{i}, 2\leqq i\leqq n\}$ .
Consider a thin analytic set

$V:=\bigcup_{c=1}^{\ell_{0}}$ { $z^{\prime}\in D^{\prime}$ ; $G_{\iota}(z_{1},$ $z^{\prime})\equiv 0$ as a function of $z_{1}$ }

in $D^{\prime}$ .
Now, we take an arbitrary point $z^{\prime}$ in $D^{\prime}-V$ . APply Theorem 2.3 to

the sequence of maps

$h^{(\nu)}(z_{1}):=f_{0}^{(\nu)}(z_{1}, z^{\prime}):$ : $f_{N}^{(\nu)}(z_{1}, z^{\prime})$

of $\{|zJ|<r_{1}\}$ into $X_{t}$ . If $|z_{1}|<r_{1}^{\prime}$ , then $\lim_{\nu-}h^{(\nu)}(z_{1})=g(z_{1}, z^{\prime})$ by the assumption.

And, since $z^{\prime}\in D^{\prime}-V$, it holds $G_{\iota}(z_{1}, z^{\prime})\not\equiv O(1\leqq\iota\leqq\iota_{0})$ , which means $g(\{(z_{1}, z^{\prime})$ :
$|z_{1}|<r_{1}^{\prime}\})c[C_{t}$ . So, $\{h^{(\nu)}\}$ has no subsequence satisfying the condition (b) of
Theorem 2.3. In view of the condition (a) of Theorem 2.3, it has a sub-
sequence converging to some $g$ in Hol $(\{|z_{1}|<r_{1}\}, P_{N}(C))$ . Moreover, by the
same reason, any subsequence of $\{h^{(\nu)}\}$ has a convergent subsequence, whose
limit $g^{*}$ is necessarily equal to $g$ by the fact that $g^{*}(z_{1})=g(z_{1}, z^{\prime})=g(z_{1})$ on
$\{|z_{1}|<r_{1}^{\prime}\}$ and by the theorem of identity. Then, as is easily seen, $\{h^{(\nu)}\}$

itself converges to $g$ in Hol $(\{|z_{1}|<r_{1}\}, P_{N}(C))$ . In conclusion, each $\{f_{i}^{(\nu)}(z_{1}, z^{\prime})\}$

$(1\leqq i\leqq N)$ converges compactly in $\{|z_{1}|<r_{1}\}$ as a sequence of holomorphic
functions of $z_{1}$ for any arbitrarily fixed $z^{\prime}$ in $D^{\prime}-V$ . Then, by the above
Theorem, it converges compactly on $\{|z_{1}|<r_{1}\}\times(D^{\prime}-V)$ as functions of $n$

complex variables. Moreover, we can easily conclude that $\{f^{(\nu)}\}$ converges
in Hol $(D, P_{N}(C))$ by the maximum principle. On the other hand, we know
that the limit of any convergent subsequence of nowhere zero holomorphic
functions vanishes identically or vanishes nowhere. This concludes that the
image of the limit of $\{f^{(\nu)}\}$ is included in $X_{l}$ . Thus we have Lemma 4.1.

$q$ . $e$ . $d$ .
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THEOREM 4.2. Let $M$ be a complex manifold and $\{f^{(\nu)}\}$ be a sequence in
Hol $(M, X_{t})$ such that there are some comPact sets $K$ in $M$ and $L$ in $X_{t}-C_{t}$

with $ f^{(\nu)}(K)\cap L\neq\phi$ , where $C_{t}$ is the critical set for $X_{t}$ . Then $\{f^{(\nu)}\}$ has a
subsequence which converges in Hol $(M, X_{l})$ .

PROOF. By the assumption, we can find a sequence $\{p_{\mu}\}$ in $M$ and a
subsequence $\{f^{(\nu_{\mu})}\}$ of $\{f^{(\nu)}\}$ such that $\lim p_{\mu}=p_{0}\in M$ and $\lim f^{(\nu_{\mu})}(p_{\mu})=q_{0}$

$\mu-$ $\mu\rightarrow\infty$

$\in X_{t}-C_{t}$ exist. Take the unit ball $B$ with center at $p_{0}$ with respect to a
system of local coordinates in a neighborhood of $p_{0}$ and an open neighborhood
$U$ of $q_{0}$ with $U\Subset X_{t}-C_{t}$ . Let $\delta:=\min_{q\in\partial U}d_{x_{t}}(q, q_{0}),$

$W:=\{p\in B;d_{B}(p, p_{0})<\delta/2\}$

and $V$ be the connected component of the set $\{q\in X_{t} ; d_{x_{t}}(q, q_{0})<\delta\}$ with
$q_{0}\in V$, where $\partial U$ denotes the boundary of $U$ . We have then $p_{\mu}\in W,$ $f^{(\nu_{\mu})}(p_{\mu})$

$\in V$ and $d_{x_{t}}(f^{(\nu)}\mu(p_{\mu}), q_{0})<\delta/2$ for sufficiently large $\mu$ . So, for any $p\in W$,

$d_{x_{t}}(f^{(\nu_{\mu})}(p), q_{0})\leqq d_{x_{t}}(f^{(\nu)}\mu(p), f^{(\nu_{\mu})}(p_{\mu}))+d_{X_{l}}(f^{(\nu)}\mu(p_{\mu}), q_{0})$

$\leqq d_{B}(p, p_{\mu})+d_{x_{t}}(f^{(\nu)}\mu(p_{\mu}), q_{0})$

$<\frac{\delta}{2}+\frac{\delta}{2}=\delta$ .

This shows that $f^{(\nu_{\mu})}(W)\subset\{q\in X_{t} ; d_{x_{t}}(q, q_{0})<\delta\}$ . Since $ f^{(\nu)}\mu(W)\cap V\neq\phi$ and
$f^{(\nu)}\mu(W)$ is connected, we obtain $f^{(\nu)}\mu(W)\subset V$ . On the other hand, we may
consider $V$ as a bounded domain in $C^{N}=P_{N}(C)-H_{0}$ . We can choose a
subsequence $\{f^{(\nu_{\lambda)}}\}$ of $\{f^{(\nu_{\mu})}\}$ converging compactly on $W$. Obviously,
$g:=\lim_{\lambda\rightarrow\infty}(f^{(\nu\lambda)}|W)$ satisfies the conditions $g(W)\subset X_{t}$ and $g(W)\not\subset C_{t}$ . Now,

let us consider the set $11l^{\prime}$ of all points $p$ in $M$ such that $\{f^{(\nu\lambda)}\}$ converges
on some neighborhood $W_{p}$ of $p$ to a map $g_{p}$ in Hol $(W_{p}, X_{t})$ with $g_{p}(W_{p})\subset X_{t}$

and $g_{p}(W_{p})\not\subset C_{t}$ . As was shown in the above, $M^{\prime}$ is not empty. Moreover,
Lemma 4.1 implies that $M^{\prime}$ is open and closed in $M$. It follows that $M^{\prime}=M$

because $M$ is connected, whence we have Theorem 4.2 by the usual diagonal
argument. $q$ . $e$ . $d$ .

\S 5. Families of holomorphic maps into $X_{t}$ .
There are some applications of Theorem 4.2 to the study of families of

holomorphic maps into $X_{t}$ .
THEOREM 5.1. Let $M$ be a complex manifold and $r\geqq N-t+1$ . Then,

Ho1 $(M, X_{t}):=$ { $f\in Ho1(M,$ $X_{t});f$ is of rank $\geqq r$ somewhere}

is a locally comPact subset of Hol $(M, X_{t})$ , where the rank of $f$ means the rank

of the Jacobian matrix of $f$.
PROOF. Take an arbitrary $f_{0}\in Ho1^{r}(M, X_{t})$ . By Lemma 2.2, there is a
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point $p$ in $M$ such that $f_{0}(p)\not\in C_{t}$ and $f_{0}$ is of rank $\geqq r$ at $p$ . We make use
of the Jacobian matrix of $f$ at $p$ with respect to arbitrarily fixed local
coordinates in a neighborhood of $p$ and fixed global coordinates on $X_{t}$ . For
an open neighborhood $V$ of $f_{0}(p)$ with $V\Subset X_{t}-C_{l}$ and a real number $\delta>0$ ,

$\mathfrak{U}_{\delta}$ be the set of all maps $f\in Ho1^{\tau}(M, X_{t})$ satisfying the conditions that $f(p)$

$\in V$ and the Jacobian matrix of $f$ at $P$ has a minor of order $r$ with the
absolute value $>\delta$ . Clearly, $\mathfrak{U}_{\delta}$ is an open subset of Ho1 $(M, X_{t})$ . By the
assumption, at least one minor of order $r$ of the Jacobian matrix of $f_{0}$ at $p$

has the absolute value $>\delta_{0}(>0)$ . Then, $U_{\delta_{0}}$ is a neighborhood of $f_{0}$ . More-
over, any sequence $\{f^{(\nu)}\}$ in $U_{\delta_{0}}$ satisfies the assumption of Theorem 4.2 and
hence has a subsequence $\{f^{(v)}\mu\}$ converging in Hol $(M, X_{t})$ . The limit of
$\{f^{(\nu_{\mu}})\}$ is obviously contained in Ho1 $(M, X_{t})$ . This shows that $\mathfrak{U}_{\delta_{0}}$ is relatively
compact in Hol $(M, X_{t})$ . $q$ . $e$ . $d$ .

$T\mathbb{R}e$ following theorem is in a sense considered as a generalization of
the classical Schottky’s theorem (cf., [2], p. 23).

THEOREM 5.2. Let $M$ be a complex manifold, $K$ an arbitrarily given com-
pact set, $p_{0}$ a point in $K$ and $q_{0}$ a point in $X_{t}-C_{t}$ . Then, there is a compact
set $L$ in $X_{t}-C_{t}$ such that any holomorphic map $f$ of $M$ into $X_{t}$ with $f(P_{0})=q_{0}$

satisfies the condition $f(K)\subset L$ .
PROOF. If the conclusion is not valid, we can find compact subsets

$L_{\nu}(\nu=1, 2, )$ of $X_{t}-C_{t}$ with $L.\subset L_{\nu+1}^{\Phi}$ and $X_{t}=\bigcup_{\nu}$ L. such that there is a
holomorphic map $f^{(\nu)}$ of $M$ into $X_{t}$ with $f^{(\nu)}(p_{0})=q_{0}$ and $f^{(\nu)}(K)L\tau_{\nu}$ , where
$L_{\nu}^{Q}$ denotes the interior of $L_{\nu}$ . The sequence $\{f^{(\nu)}\}$ has no convergent sub-
sequence though it satisPes the assumption of Theorem 4.2, which is absurd.
We have therefore Theorem 5.2. $q$ . $e$ . $d$ .

Before we state another application of Theorem 4.2, we give some com-
ments to the results in the previous paper [5].

As in \S 2, we consider a partition $J=$ $(J_{1}, \cdots , J_{k})(k\geqq 2)$ of $I:=\{0,1, \cdots , N\}$

and a map $x;\{1,2, \cdots , t\}\rightarrow\{1,2, \cdots , k\}$ . Using homogeneous coordinates
$w_{0}$ : $\cdots$ : $w_{N}$ on $P_{N}(C)$ with the property $(*)$ , we define this time the set

$E_{J,\chi}$
$:=\{w_{0} :... : w_{N}\in P_{N}(C);\sum_{\iota\in J_{l}}\alpha_{s}^{i}w_{i}=0,1\leqq l\leqq k, l\neq\chi(s), 1\leqq s\leqq t\}$

in $P_{N}(C)$ . Obviously, $\bigcup_{J.\chi}E_{J,\chi}\subset UC_{J,\chi}J,\chi$

We can prove the following improvement of Theorem $B$ in [5].

THEOREM 5.3. Every holomorphic map $f$ of $C^{n}$ into $X_{t}$ satisfies one of the
following conditions (a) and (b):

(a) $f$ is of constant,
(b) $f(C^{n})\subset E_{J,\chi}$ for some suitable $J$ and $\chi$ .
Moreover, in the case (b), $f(C^{n})$ is included in a linear subvariety of dimen-

sion $k-1$ if $J$ is a partitiOn of I into $k$ subclasses.
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This is easily proved by Lemma 5 in [5] and the same argument as in
the proof of Theorem $B$ in it.

REMARK 5.4. If we have the case (b) in Theorem 5.3, the number $k$ is
always $\leqq[N/(t+1)]$ (cf., [5], \S 7).

We have also the similar improvement of Theorem A in [5].

THEOREM 5.5. Every holomorphic map of a comPlex manifold $M$ excluding
a regular thin analytic subset $S$ into $X_{t}$ satisfies one of the conditions:

(a) $f$ can be extended to a holomorphic map of $M$ into $P_{N}(C)$ .
(b) $f(M-S)\subset E_{J,\chi}$ for some suitable $J$ and $\chi$ .
REMARK 5.6. If we have the case (b) in Theorem 5.5, as was shown in

the proof of Theorem A in [5], $f(M-S)$ is included in a linear subvariety
of dimension $N-(k-1)t\leqq N-t$ because $k\geqq 2$ . So, $f$ is of rank $\leqq N-t$ every-
where, which shows Theorem A in [5].

Now, we give a generalization of the classical Landau’s theorem.
THEOREM 5.7. For any given $\delta>0$ and Point $q$ in $X_{t}-C_{t}$ , there exists a

real number $R(0<R<+\infty)$ depending only on $\delta$ and $q$ with the following
property:

If $\rho>R$ , then there is no holomorphic map $ f(z):=1:f_{1}(z):\cdots$ : $f_{N}(z)$ of a
disc $\{|z|<\rho\}$ in $C$ into $X_{t}$ such that $f(O)=q$ and

$|f_{1}^{\prime}(0)|^{2}+$ $+|f_{N}^{\prime}(0)|^{2}\geqq\delta^{2}$

PROOF. Assume the contrary. We can find a sequence $\{R_{v}\}$ of real
numbers with $ R_{1}<R_{2}<\ldots$ and $\lim_{\nu\rightarrow\infty}R_{\nu}=\infty$ such that there is a holomorphic

map $f^{(\nu)}$ of $D_{\nu}$ $:=\{|z|<R_{\nu}\}$ into $X_{t}$ with $f^{(\nu)}(0)=q$ and

$|f_{1}^{(\nu)\prime}(0)|^{2}+$ $+|f_{N}^{(\nu)\prime}(0)|^{2}\geqq\delta^{2}$

for each $\nu$ . As is easily seen by Theorem 4.2 and the diagonal argument,
we can choose a subsequence $\{f^{(\nu_{\mu})}\}$ of $\{f^{(\nu)}\}$ with the property that for any
$\mu$ the sequence

$ f^{(\nu)}\mu f^{(\nu+1)}\mu f^{(\nu+2)}\mu\ldots$

converges in Hol $(D_{\mu}, X_{t})$ . Then, $\{f^{(\nu)}\mu\}$ may be considered to converge to
a holomorphic map $f:C\rightarrow X_{t}$ . Obviously, $f(O)=q\not\in E_{J,\chi}$ for any $J$ and $\chi$ and
$f$ is not of constant. This contradicts Theorem 5.3. We have therefore
Theorem 5.7. $q$ . $e$ . $d$ .

\S 6. Holomorphic automorphisms of $X_{1}$ .
The purpose of this section is to study holomorphic automorphisms of

the space $X_{1}$ , namely, $P_{N}(C)$ minus $N+2$ hyperplanes in general position. We
shall prove
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THEOREM 6.1. Every holomorphic automorphjsm of $X_{1}$ is given by a linear
automorphism of $P_{N}(C)$ . Moreover, Aut $(X_{1})$ is isomorphic with the symmetric
group $S_{N+2}$ on $N+2$ elements.

For the proof, we need the following lemma on polynomials of $N$ vari-
ables $z_{1},$ $\cdots$ , $z_{N}$ .

LEMMA 6.2. If $k\leqq N+1$ and

(1) $\sum_{\ell=1}^{k}a_{i}z_{1}^{\iota_{i1}}\cdots z_{N}^{\iota_{iN}}(1+z_{1}+\cdots+z_{N})^{l_{lN+1}}=0$ ,

then we have

(2) $\sum_{i=1}^{k}a_{i}z_{1}^{\iota_{i1}}\cdots a_{N}^{\iota_{i_{N}}}z_{N+1}^{l_{iN+1}}=0$

for another new variable $z_{N+1}$ .
PROOF. The proof is given by double induction on $N$ and $k$ . If $k=1$ ,

Lemma 6.2 is evident for any $N$. In the case of $k=2$ and $N=1$ , from the
identity

$a_{1}z_{1}^{l_{11}}(1+z_{1})^{l_{12}}+a_{2}z_{1}^{l_{21}}(1+z_{1})^{l_{22}}=0$ ,

we conclude easily $a_{1}=-a_{2},$ $l_{11}=l_{21}$ and $l_{12}=l_{22}$ . So, Lemma 6.2 is valid in
the case of $N=1$ . For our purpose, it suffices to prove Lemma 6.2 under
the assumption that it is true for polynomials of $\leqq N-1$ variables and poly-
nomials of $N$ variables with $\leqq k-1$ terms, where $2\leqq N$ and $2\leqq k\leqq N+1_{-}$

Here, it may be assumed that $l_{iN+1}=0$ for some $i$ and $l_{jN+1}>0$ for some $j_{\sim}$

For, if not, consider the polynomial whose terms are constructed by the
division of a common factor in (1). Changing indices, we may assume that
$l_{iN+1}=0(1\leqq i\leqq r)$ and $l_{iN+1}>0(r+1\leqq i\leqq k)$ . In (1), putting $z_{N}=-(1+z_{1}+$

$+z_{N-1})$ , we obtain

$\sum_{\iota=1}^{r}a_{i}z_{1}^{l_{\ell 1}}\cdots z_{N-1}^{\iota_{iN-1}}(-(1+z_{1}+\cdots+z_{N- 1}))^{l_{iN}}=0$ .

It follows from the induction assumption that

$\sum_{i=1}^{r}a_{i}z_{1}^{li1}\cdots z_{N-1}^{\iota_{iN-1}}z_{N}^{l_{lN}}=0$ .

Then, by (1), we have also

$\sum_{\ell=r_{T}1}^{k}a_{i}z_{1^{i1}}^{l}\cdots z_{N}^{\iota_{tN}}(1+z_{1}+\cdots+z_{N})^{l_{iN+1}}=0$ .

Since $k-r<k$ , we get by the induction hypothesis on $k$

$\sum_{i=\tau+1}^{k}a_{i}z_{1}^{\iota_{i1}}\cdots z_{N}^{\iota_{iN}}z_{N+1}^{\iota_{iN+1}}=0$

and hence the identity (2). $q$ . $e$ . $d_{-}$
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PROOF OF THEOREM 6.1. According to Theorem 6 in [5], every holomor-
phic automorphism $f$ of $X_{1}$ can be extended to a bimeromorphic map of
$P_{N}(C)$ onto itself. As is well-known, every meromorphic function on $P_{N}(C)$

is rational. Therefore, using the inhomogeneous coordinates $z_{1}=w_{1}/w_{0},$ $\cdots$

$z_{N}=w_{N}/w_{0}$ and $u_{1}=v_{1}/v_{0},$ $\cdots$ , $u_{N}=v_{N}/v_{0}$ for homogeneous coordinates $w_{0}$ : $w_{1}$ :
: $w_{N}$ and $v_{0}$ : $v_{1}$ : $\cdots$ : $v_{N}$ on $P_{N}(C)$ with the property $(*)$ , we can write $f=$

$(f_{1}, \cdots f_{N})$ with rational functions $u_{i}=f_{i}(z)=P_{i}(z)/Q_{i}(z)(1\leqq i\leqq N)$ , where
$P_{i}(z)$ and $Q_{i}(z)$ are mutually prime polynomials in $z_{1},$

$\cdots$ , $z_{N}$ . Then, any prime
factor of each $P_{i}$ or $Q_{i}$ is necessarily a constant multiple of the polynomial
$z_{1},$ $z_{2},$ $z_{N}$ or $1+z_{1}+\cdots+z_{N}$ . Indeed, if not, we can find easily a point
$a=$ $(a_{1}, \cdots , a_{N})$ in $X_{1}$ with $f(a)\not\in X_{1}$ . Accordingly, we can write

(3) $u_{i}=f_{i}(z)=a_{i}z_{1}^{l}1\ldots z_{N}^{l_{iN}}(1+z_{1}+\cdots+z_{N})^{l_{iN+1}}(1\leqq i\leqq N)$ ,

where $l_{ij}$ are not necessarily non-negative integers. Moreover, since a
Tational function $1+f_{1}(z)+$ $+f_{N}(z)$ has non-zero finite values everywhere
$\ell onX_{1}$ , we can write also

(4) $1+u_{1}+$ $\cdot$ $..+u_{N}=a_{N+1}z_{1}^{\iota_{N+11}}\cdots z_{N}^{l_{N+1N}}(1+z_{1}+ \cdot.. +z_{N})^{l_{N+1N+1}}$ .
The same argument can be applicable to the inverse map $g:=f^{-1}$ of $f$. It
can be written $g=$ $(g_{1}, \cdots , g_{N})$ with the rational functions

(5) $z_{j}=g_{j}(u)=b_{j}u_{1}^{m_{j1}}\cdots u_{N}^{m_{jN}}(1+u_{1}+\cdots+u_{N})^{m_{jN+1}}$ $(1\leqq j\leqq N)$ ,

and moreover we have

(6) $1+z_{1}+$ $\cdot$ . . $+z_{N}=b_{N+1}u_{1}^{m_{N+11}}$ ... $u_{N}^{m_{N+1N}}(1+u_{1}+ \cdot.. +u_{N})^{m_{N+1N+1}}$ .
Substituting (3) and (4) into (5) and (6), we get

$z_{j}=c_{j}z_{1}^{n_{j1}}\cdots z_{N}^{n_{jN}}(1+z_{1}+ +z_{N})^{n_{jN+1}}$ $(1\leqq j\leqq N)$

(7)
$1+z_{1}+\cdots+z_{N}=c_{N+1}z_{1}^{n_{N+11}}\cdots z_{N}^{n_{N+1N}}(1+z_{1}+ +z_{N})^{n_{N+1N+1}}$ ,

where $c_{j}=b_{j}a_{1}^{m_{j1}}\cdots a_{N+1}^{m_{jN+1}}(1\leqq i\leqq N+1)$ and $n_{ji}=\sum_{k=1}^{N\neq 1}m_{jk}l_{ki}(1\leqq i, i\leqq N+1)$ ,

$\wedge 1$ . $e.$ , the matrix $(n_{ji})$ is the product of the matrices $(m_{jk})$ and $(l_{kj})$ . In (7),
by transposing factors with negative powers into the left side of the equa-
tions and by observing the coefficients of each term in their expansions, we
see $c_{j}=1$ and $n_{ji}=\delta_{ji}$ , where $\delta_{ji}=1$ if $i=j$ and $=0$ if $i\neq j$ . In particular,

$\ell a_{i}\neq 0,$ $b_{j}\neq 0$ and det $(l_{ij})=\det(m_{ij})=\pm 1$ . On the other hand, putting $l_{0j}^{\prime}=$

$-\min\{0, l_{1j}, l_{2j}, \cdots , l_{N+1j}\},$ $l_{ij}^{\prime}:=l_{ij}+l_{0j}^{\prime}(\geqq 0),$ $a_{0}^{\prime}=1,$ $a_{i}^{\prime}=a_{i}(1\leqq i\leqq N)$ and
$:a_{N+1}^{\prime}=-a_{N+1}$ , we get by (3) and (4)

(8) $\sum_{i=0}^{N+1}a_{i}^{\prime}z_{1}^{\iota_{\acute{i}1}}\cdots z_{N}^{\iota_{\acute{i}N}}(1+z_{1}+\cdots+z_{N})^{l_{\acute{i}N+1}}=0$ ,

$\rightarrow where$ for each $j(1\leqq j\leqq N+1)$ there is at least one index $i$ with $l_{ij}^{\prime}=0$ .
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Let $\{0,1, \cdots , N+1\}=I_{1}\cup\cdots\cup I_{\kappa_{0}}$ ( $I_{\kappa}\neq\phi,$ $ I_{\kappa}\cap I_{\kappa^{\prime}}=\phi$ if $\kappa\neq\kappa^{\prime}$ ) be a parti-
tion with the property that for any $\kappa$

$\sum_{i_{\tau}I_{K}}a_{t}^{\prime}z_{1}^{\iota_{\acute{i}1}}\cdots z_{n}^{l_{\acute{i}N}}(1+z_{1}+\cdots+z_{N})^{\iota_{\acute{i}N+1}}=0$ ,

where we choose it so that the number $\kappa_{0}$ of classes is as large as possible.
Clearly, $\# I_{\kappa}\geqq 2$ for any $\kappa(1\leqq\kappa\leqq\kappa_{0})$ . After a suitable change of indices, it
may be assumed that $I_{1}=\{0,1, \cdots , k\}(k\geqq 1)$ . Assume that $k\leqq N$. By Lemma
6.2,

$\sum_{i=0}^{k}a_{t}^{\prime}z_{1}^{l_{\acute{i}1}}$ ... $z_{N}^{\iota_{\acute{l}N}}(1+z_{1}+ \cdot..+z_{N})^{\iota_{\acute{i}N+1}}=0$

implies

$\sum_{i=0}^{k}a_{i}^{\prime}z_{1}^{\iota_{\acute{i}1}}\cdots z_{N}^{\iota_{\acute{i}N}}z_{N+1}^{\iota_{\acute{i}N+1}}=0$ .

In this situation, we have $l_{0f}^{\prime}=l_{1f}^{\prime}=\ldots=l_{kj}^{\prime}(1\leqq j\leqq N+1)$ . Indeed, $e$ . $g.$ , if
$l_{01}^{\prime}=l_{11}^{\prime}=\ldots=l_{k^{\prime}1}^{\prime}$ and $l_{i1}^{\prime}\neq l_{01}^{\prime}$ for any $i$ with $k^{\prime}+1\leqq i\leqq k(k^{\prime}\leqq k-1)$ , we see
easily

$\sum_{i=0}^{k^{\prime}}a_{i}^{\prime}z_{1}^{\iota_{\acute{i}1}}\cdots z_{N+1}^{\iota_{\acute{i}N+1}}=0$ and $\sum_{i=k^{\prime}+1}^{k}a_{i}^{\prime}z_{1}^{\iota_{\acute{i}1}}\cdots z_{N+1}^{\iota_{\acute{i}N+1}}=0$ ,

which contradicts the property of $\kappa_{0}$ . Now, it holds that

$\left|\begin{array}{llll}1 & l_{01}^{\prime} & \cdots & l_{0N+1}^{\prime}\\1 & l_{11}^{\prime} & \cdots & l_{iN+1}^{\prime}\\\cdots & \cdots & \cdots & \cdots\\ 1 & l_{N+11}^{\prime} & \cdots & l_{N+1N+1}^{\prime}\end{array}\right|$

(11)

$=\left|\begin{array}{llll}1 & l_{01}^{\prime} & \cdots & l_{0N+1}^{\prime}\\0 & l_{11} & \cdots & l_{1N+1}\\\cdots & \cdots & \cdots & \cdots\\ 0 & l_{N+11} & \cdots & l_{N+1N+1}\end{array}\right|=\det(l_{ij})=\pm 1$ .

On the other hand, this is equal to zero because at least two rows are equal
to each other. This is a contradiction. We conclude $k=N+1$ or $\kappa_{0}=1$ .

In (8), after a suitable change of indices, let $l_{iN+1}^{\prime}=0(0\leqq i\leqq r)$ and $l_{iN+1}^{\prime}$

$\neq 0(r+1\leqq j\leqq N+1)$ . If $r\leqq N-1$ , substituting $z_{N}=-(1+z_{1}+ +z_{N-1})$ in (8),

we obtain

$\sum_{i=0}^{r}a_{i}^{\prime}z_{1}^{\iota_{\acute{i}1}}\cdots z_{N-1}^{l_{\acute{i}N-1}}(-(1+z_{1}+\cdots+z_{N-1}))^{\iota_{iN}^{\prime}}=0$

and hence by Lemma 6.2 the identity

$\sum_{i=0}^{r}a_{i}^{\prime}z_{1}^{l_{\acute{i}1}}\cdots z_{N}^{l_{\acute{i}N}}=0$ ,
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which contradicts the above shown fact $\kappa_{0}=1$ . Therefore, there is at most
one index $i$ with $l_{iN+1}^{\prime}>0$ . By a suitable non-singular linear transformation
of variables, it can be similarly proved that for any $j(1\leqq i\leqq N+1)$ there is
at most one index $i$ with $l_{ij}^{\prime}>0$ . Moreover, in this situation we have at most
one index $j$ with $l_{ij}^{\prime}>0$ for any $i$ . Indeed, if not, two distinct rows of the
matrix (11) are equal to $(1, 0, \cdots , 0)$ and then det $(l_{ij})=0$ . In conclusion, we
have a subset $\{i_{1}, i_{2}, \cdots , i_{N+1}\}$ ( $i_{l}\neq i_{m}$ if $l\neq m$ ) of $\{0,1, \cdots , N+1\}$ such that
any $l_{tj}^{\prime}$ is equal to zero except $l_{i_{1}1}^{f},$ $l_{i_{2}2}^{\prime},$ $\cdots$ , $l_{t_{N+1}N+1}^{\prime}$ . Then det $(l_{ij})=l_{i_{1}1}^{\prime}l_{\iota_{22}}^{\prime}\cdots$

$l_{i_{N+1}N+1}^{\prime}=\pm 1$ . Since $l_{ij}^{\prime}\geqq 0$ , we get $l_{i_{1}1}^{\prime}=l_{i_{2}2}^{\prime}=\ldots=l_{i_{N+1}N+1}^{\prime}=1$ .
We put $l_{i0}^{\prime}=1$ if $l_{i1}^{\prime}=l_{i2}^{\prime}=\ldots=l_{iN+1}^{\prime}=0$ and $l_{l0}^{\prime}=0$ if $l_{ij}^{\prime}=1$ for some $i$

Then, rewriting the representation (4) of $f$ by homogeneous coordinates
$w_{0}$ : $w_{1}$ : $\ldots$ : $w_{N}$ and $v_{0}$ : $v_{1}$ ; $\ldots$ : $v_{N}$ , we have

(11) $v_{i}=a_{i}^{\prime}w_{0}^{\iota_{\acute{t}0}}w_{1}^{\iota_{\acute{l}1}}\cdots w_{N}^{l_{\acute{i}N}}(w_{0}+w_{1}+\cdots+w_{N})^{l_{iN+1}^{\mathfrak{d}}}$
$(0\leqq i\leqq N)$

and the identity

(12) $v_{0}+v_{1}+$ $\cdot$ .. $+v_{N}=a_{N+1}^{\prime\prime}w_{0}^{\iota_{\acute{N}+10}}w_{1}^{\iota_{\acute{N}+11}}$ ... $w_{N}^{\iota_{\acute{N}+1N}}(w_{0}+ \cdot.. +w_{N})^{l_{\acute{N}+1N+1}}$

where $a_{i}^{\prime}(0\leqq i\leqq N)$ and $a_{N+1}^{\prime\prime}$ are uniquely determined up to a non-zero con-
stant common factor by the identity (12) and $(l_{lj}^{\prime})(0\leqq i, j\leqq N+1)$ is a non-
singular matrix whose components are either 1 or $0$ . The formulas (11) and
(12) show that any given $f$ in Aut $(X_{1})$ is a linear automorphism of $P_{N}(C)$

which induces a permutation among the spaces $H_{0},$ $H_{1},$ $\cdots$ , $H_{N+1}$ . This com-
pletes the proof of Theorem 6.1. $q$ . $e$ . $d$ .

Department of Mathematics
Faculty of General Education
Nagoya University
Furo-cho, Chikusa-ku
Nagoya, Japan

References

[1] H. Cartan, Sur les syst\‘emes de fonctions holomorphes \‘a vari\’et\’es lin\’eaires lacu-
naires et leur applications, Ann. Sci. Ecole Norm. Sup., 45(1928), 255-346.

[2] J. Dufresnoy, Th\’eorie nouvelle des familles complexes normales; applications
\‘a l’\’etude des fonctions algebroides, Ann. Sci. Ecole Norm. Sup. (3) 61 (1944), 1-44.

[3] D. Eisenman, Intrinsic measure on complex manifolds and holomorphic map-
pings, Mem. Amer. Math. Soc., No. 96 (1970).

[4] H. Fujimoto, On holomorphic maps into a taut complex spaces, Nagoya Math.
J., 46 (1972), 49-61.

[5] H. Fujimoto, Extensions of the big Picard’s theorem, T\^ohoku Math. J., 24
(1972), 415-422.



Families of holomorphic maps into the projective sPace 249

[6] W. Kaup, Reelle Transformationsgruppen und invarianten Metriken auf kom.
plexen R\"aumen, Invent. Math., 3 (1967), 43-70.

[7] W. Kaup, Some remarks on the automorphism groups of complex spaces, Rice
Univ. Studies, 56 (1970), 181-186.

[8] P. Kiernan, On the relations between taut, tight and hyperbolic manifolds, Bull.
Amer. Math. Soc., 76 (1970), 49-51.

[9] S. Kobayashi, Invariant distances on complex manifolds and holomorphic map-
pings, J. Math. Soc. Japan, 19 (1967), 460-480.

[10] T. Nishino, Sur une propri\’et\’e des familles de fonctions analytiques de deux
variables complexes, J. Math. Kyoto Univ., 4 (1965), 255-282.

[11] H. Wu, Normal families of holomorphic mappings, Acta Math., 119 (1967),
193-233.

[12] H. Wu, The equidistribution theory of holomorphic curves, Ann. of Math.
Studies, Princeton, 1970.


	\S 1. Introduction.
	\S 2. Preliminaries.
	THEOREM 2.3 ...
	THEOREM 2.4 ...

	\S 3. The Kobayashi pseudo-distance ...
	THEOREM 3.2. ...
	THEOREM 3.6. ...

	\S 4. A generalization ...
	THEOREM. Let ...
	THEOREM 4.2. ...

	\S 5. Families of holomorphic ...
	THEOREM 5.1. ...
	THEOREM 5.2. ...
	THEOREM 5.3. ...
	THEOREM 5.5. ...
	THEOREM 5.7. ...

	\S 6. Holomorphic automorphisms ...
	THEOREM 6.1. ...

	References

