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§1. Introduction.

In this paper we are concerned with approximation of the solution to
the Cauchy initial value problem

1.1 0w )+ A(u(t), u(0)=x.

The basic tool of this investigation is a theorem by Crandall and Liggett
which provides conditions sufficient for the existence of the infinite

product, u(t)= limﬁ(l+(t/n)A(it/n))‘1x. A product of the foregoing type is
n—00 =1

often referred to as a product integral. It is not always possible to obtain
a solution to [1.1), however, it may be possible to associate a product integral
with a Cauchy problem. As we shall see, solutions to given Cauchy problems.
may often be represented by product integrals. Our main result concerns
the convergence of product integrals associated with a class of approximate
Cauchy problems. Several authors have studied questions of this nature
(e.g., see Oharu [15], Miyadera [13], [14], [15], Brezis and Pazy [1], [2], [3]
and Mermin [10], [1I], and Crandall and Pazy [5)).

The author is grateful for the opportunity to see preprints of the fore-
mentioned manuscripts of Brezis and Pazy, and Crandall and Liggett. Appre-
ciation is due G.F. Webb for suggesting the problems considered and for
his invaluable criticisms. The author also wishes to thank the referee whose
suggestions strengthened Theorems and Bl

§2. Preliminaries.

Throughout this paper X will be a real Banach space. It is often useful
to consider “multivalued” operators. Cauchy problems associated with these
operators assume the form 0 € u/(t)+ A(t)u(t). We shall refer to “multivalued”
operators as subsets of XX X. The term operator will be exclusively reserved
for operators in the usual sense.

If S is a set, let |S|=inf {|x]||x= S}. A subset of XX X is said to be
accretive if for each 1=0 and [x;, v.]€ A4, i=1,2, we have |[(x,+y,)—
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(x,+2y,)| = |lx;—x.].  This definition is equivalent to the statement that
(¥y1—¥,, /)=0 for some f< F(x,—x,) where F is the duality map from X to
X*. If A(?) is an accretive set, it is easily seen that J;(t)=({I+21A(#)! is
a function having domain D,(t)= R(I+2A(t)). Clearly if x,y < Dy(t), | J.{)x—
LOyl=llx—yll. If xe Dyt) define Ay()x= 2" I—J(D)x.
The following are well-known facts concerning an accretive set A(f).
VAY) [:Dx—x =2l Ax|  for x& D) N D(AQ)).
Axe ADL(Dx, | ABDLDOx| S ADx]  for x& Dy(@).
| A= AWx|  for x& DN DAD).
| SO x— (x| S 1A= A1 |A@Dx|  for x& Dy () N D) N D(A®)) .

If {T,} is any collection of functions on X we introduce our product
notation as follows:

2.2) T Tox=T,x

i=j

k+1 k
ILT;x =T, (11 T;x)
i=j 1=

k
NTx=x if k<j.
1=J

We now introduce some conditions which will be used throughout the
paper.

DEFINITION 2.3. Let {A(t): t=[0, T]} be a family of accretive subsets
of Xx X, then {A(t)} is said to satisfy condition R provided that the follow-
ing are true:

(i) D(A(®)) is independent of t.
(ii) RU+2A()) 2 D(AWQ)) for A=0 and t=[0, T].

(iii) [ADx|=|A(m)x|+t—7| L(|Ix])A4| A(z)x|) for
t, 7 [0, T] and x < D(AQ))).
(iv) [T+H2AW) x—I+2A(D) x| = 2[t—7| L(| %[+ [ A(z)x])
for t, 7€ [0, T] and x< D(A(0)).
Here L:[0, c0)—[0, o0) is an increasing function.
DEFINITION 24. Let {A(1): t[0, T} be a family of accretive operators,
then {A(f)} is said to satisfy condition C provided that the following are
true:

(1) D(A()) is independent of ¢.
(ii) RU42A({) 2 D(A(0)) for 2=0 and t< [0, T1.
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(iii) [A@x— AW x| =t—7| L(|xIDA+[ A(0)xl), ¢, = [0, T]
and x & D(A(0)).

Here L is the same as in Condition K.

It is not difficult to see that condition C implies condition R in the case
of accretive operators. Condition R was introduced by Crandall and Liggett
in and condition C was essentially introduced by Kato in [10]. The next
theorem is due to Crandall and Liggett [4].

THEOREM 25. Let {A({): t<[0,T]} be a family of accretive subsets of

[t/enl
XX X satisfying Condition R. Then u(t)=lim tﬂ' (I+e,A(ie,)) *x exists for

n—oo i=1
x< D(AQ0)), e, 1 0 such that ¢, <T/n and 0t < T.
In the course of proving one needs to establish the follow-
ing lemma :

LEMMA 2.6. Let {A(t): te [0, T]} satisfy condition R. If xe D(A0)),
then there is a constant B(x) such that:

{

1) I I +enAGen)  x— x| < le, B(x).

t=1

@ | I1 e, Alie,)) 2] = B(x).

l
3 1AW II (I+e,A(le,)) x| = B(x) whenever 0 <1< [1/e,],
i=1
t,us[0,T] and ¢, is sufficiently small.
Let ¢,/ 0 be a sequence such that ¢, <7T/n and let x= D(A(0)). We

define a sequence of step functions

@7) (=TI (I+e, Aie,))'x  for 1[0, T]
=1

and a sequence of piecewise linear functions,
un(]en)—P—(l/sn)(l‘—]en)[un((]+1>8n)'—'un(]en)]

(2.8) v(t) = if je, <t <(j+De,.
uy(t) if e [T/e d=t=T.

These functions originated with Mermin [10] and are used by Brezis and
Pazy in [1].

LEMMA 2.9. Let {A(t): te[0,T]} satisfy condition R. If we choose ¢,
small enough and v,(t) and u,(t) are as above, then there exists a B(x) such
that:

(1) |ldv,()/dt| £ B(x)  for a.e. t<[0,T1.
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@) Nva@O—uDl =e.B(x)  for t[0, T

Here B(x) is the constant of Lemma 2.5.
PRrROOF. Clearly v,(f) is differentiable for all but a finite number of points.

I J.p(ie)a]=— Ac((+Den) I Jep(ie)x. Thus by Lemma 26, |dv,(t)/dt|<B(x).
To establish the second assertion, observe that [|v,()—u,()| = Ju((J+1De,)—
el = | T Lol TT (i) < eal AQG+Den) 1T Llien)x] < €,B().  Thus
lim u,(t) = lim v,(t).

DEFINITION 2.10. By a strong solution to the Cauchy problem (1.1) we
mean a function u(f) Lipschitz continuous in ¢ such that u(0)=x, u/(¢) exists
a.e.on [0, 7] and 0 e w'()+Au(t) a.e. t0,T] (for accretive operators
du(t)/dt+ AWu(t) =0).

We have the following representation theorem for strong solutions u(?).
This result is an extension of Brezis and Pazy [1] to the time dependent
case.

THEOREM 2.11. Let {A(t): t= [0, T} be a family of accretive sets satisfy-
ing condition R and let x = D(A(0)). If the Cauchy problem has a strong solu-
tion u(t) on [0, T] then the sequences u,(t) and v,(t) converge uniformly to u(t)
for te [0, T].

PROOF. Suppose that K is the Lipschitz constant for u(f) on [0, T.
Then it is easily seen that |du(t)/dt|=K for a.e. t[0,T]. Let M(x)=
max {K, B(x)} where B(x) is obtained from Lemma 2.9.

From the definition of u,(f) we see that e;'[u,(f)—u,(t—e,)]= — A.([t/enlen)

Tt/enl—1

T1 Julie)x. Thus defining ()= A ([t/eslen) 11 Jenliex= Auy(Ct/exJen)n

({t—e,) we have,

(2.12) &' Lun(D)—u,(t—e,) 1+, =0.

In order for (2.12) to hold for all t [0, T, it is convenient to define u,(f)
for 1<0 as u,(t)=x+e,y where y € A0)x. Let y(t)= —du(t)/dt € A(t)u(t) for
a.e. 1[0, T]. Extend u(?) as x for t<0.

Now we observe that

du(®)/dt—

(2.13) ' u(t)'—:<t—‘5n)

n

€n €n

+ya(O)—2(t) ”

gll‘sl,,—u"(t)+y"(t>"(‘elju(t)+y(t)>"—H un(t—en)s—u(t—sn)

n
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2 Lty + A tuatt—en)— (Lut-y) | Halenl=l=en)
- “Asn(t)un(t—sn)—Asn([t/enjen)un(t— en)”

>“_—un(l‘)+AEn(z‘)un(z‘ e)— (-El;u(n +y(t)>“__H Un(t—eg)—ult—e,)

n

—0(e,) .

The right-most inequality of (2.13) follows from the definition of A.(f)
together with part (iv) of condition K.

Observing that Hun(t)—]sn(t)un(t_‘ En) “: “ ]en([t/en:len)un(t_8n)_]en(t)un(t'—5n) U
= i L(llua(t—en) |+ | A(Du,(t—e,)|) we obtain,

(218 Idu(t)/di— @) —u(t—s,)/e]
2 | L L0t — e+ AunOuatt—e— (-Lutr+50)|

z”—j;/sna)un(t—en)—{;u(t)“—” tn(t—e) =1l —cs)

En

U (l—en) u(t— €n)
€n

o)

\—O(en)

| @) || wltme)=ut=e) | o)

The second inequality of (2.14) follows from the accretiveness of A(f)
and the facts that A.,(Hu,(t—e,) € AW J.,(Hu,(t—e,) and that y(t) € ABu(?).

We now refer the reader to Brezis and Pazy [I]. In this paper they
establish the theorem for time invariant A. Their methods are readily
extendable and we shall not reproduce them in detail. The left and right-
most side of inequality (2.14) are integrated on (0, ) where ¢,<0<T and
integration techniques are applied to deduce that u,(f) and v,(f) converge to

u(t) in L¥0, T; X). This together with the fact that — t lu(t)—v,(H] = 2M(x)

yield the uniform convergence of v,(f) to u(t) for t= [0, T]. Hence u,(t) con-
verges to u(t) for te [0 T1.

Since u(t)—hm H (I+s A(ie,)) 'x holds for any ¢, 0 we have u(t)=

n—oo 1=1

lim H (I+4(t/n) AGit/n)) *x.

n—0

§3. Main results—approximation methods.

The first result of this section deals with the approximations of the
evolution operator U(t)leimfI(I—l-(t/n) A(it/n))"'x where {A(?)} is a time
n—oo 1
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dependent family of accretive sets.

THEOREM 3.1. For each integer k let {A ): t[0,T]} be a family of
accretive subsets of XX X satisfying condition R with L independent of k. Let
{A(t): te[0, T} also be an accretive subset satisfying R. Then if we denote

Uy (t)x= lim _InII(H—(t/n)A,C(it/n))‘lx for xe DALY

n—oo i=

and

Utx=lim tlz{ (I+(t/n) AGt/n)*x  for xe D(AQ)),

we have lim U,)x=U(t)x for x< D(A0) uniformly for t=[0,T] provided
that the f:;;lc;wing are true:

(L D(AL0)) 2 D(A0))

2) ’lcl_g (I+2A4,()) x= I+ AAMD)) x m for 2=0, x& D(A0)) and t<[0,T].

PROOF. The basic idea of the proof is simple. We prove the following:
if x=D(AQ), then for each >0 U JO)x=lim Ux®)J:(0)x. Then U(t)x

= %Cim Uy(H)x uniformly on [0, T] follows from the facts that U() and U(#)

are contractions and that || J;(0)x—x]|—0 as 2—0. For simplicity we denote
J0x=x;. Since (A 0)xe A,(0)x; and (Ap,(0)x— A;0)x we see that
ggzgl A0)x;| < oo,

To show that U,(f)x; converges uniformly to U(f)x; we need to show
that: 1In_I1 (I+(t/n) Ay(it/n))"'x; converges uniformly to U,(f)x; independently of
k; and that ;H;([—{— (t/n)A(it/n))"*x; converges to ilill(l-{—(t/n)A(it/n))‘lxz uniformly
with respect tot=[0, T]. Then we will be able to choose n so that |U()x;—
iI:Il (I+(t/n) AGit/n)'x;)l < e/3 and || U (H)x,— :I_Il([‘|'(l'/7l) A (it/n))*x; < e/3; and

we can choose K so that 2 > K implies that Hf[ (I+(t/n)Ak(it/n))'lxz—ﬂl([+(t/n)
A(it/n)) 'x;] < e/3. It then becomes immec{izz;te that if &> K andi‘e [0, 77
then |U(Dx;— U (D) x| = || U(l‘)xz_ilill I+ /n) AGt/n))  xall+ H;I:Il (I4-(t/n) AGGt /n)) " x;
— IZI1 (I (t/m) Ag(it/m)~ x|+ | U () 3, — iI:II(I—}—(t/n)Ak(it/n))“lxl |<e. Thus the

theorem will be established by the sequence of lemmas below. We make the
further notational simplification of replacing x; by =x.

LEMMA 3.2. Under the conditions of the theovem there exists a constant
B'(x) such for n, ke Z*:

SO liI I+ /) At/m) x—x| =/m)B'(x), 0=l=n.
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{
@ NILA+@/m) At/ = B'(x),  0=l=n.

(3) | Ap(u) ﬁ (I4(t/n) A (it/n) x| < B'(x), 0i<n, uesl0,T].
PROOF. Assertion (2) follows immediately from (1). To establish (1) we
{
observe that [T (I-+(t/n) A,(it/m)"— x| = 3 | TECI-+(¢/n) Au(jt/m) 3= LI+ (t/m)

A (Jt/ n))“XHéé‘_.l (t/m)| Ax(it/n)x| éé (t/m)(L( 2N+ Ax0)x])). The last term of
the preceding inequality is bounded because sxllcplAk(O)xl < oo, To verify (3)

choose L’Z=sup {L(Hf[(H—(t/n) A Gt/n)x])}. We now apply an estimate
k 1
4
originating with J. Mermin to obtain IAk(lt/n)IlI(H-(t/n) At n) x| =

4e¥'(2L'+| Ax(0)x]). We can now utilize part (iii) of condition R to insure

that | A,(u) TT (I+-(t/n) Ay(it/n))~'x| is bounded independent of k.
i=1
LEMMA 3.3. Under the hypotheses of the theorem lim ﬁ (I4-(t/n) Ag(it/n))*x
k—oo 1
= 1 (I+(t/n) AGit/n))*x uniformly with t < [0, T].
1

PrOOF. The pointwise convergence will follow by induction if we can
verify the case j=2. Observe that

I IT (U (¢/m) AyGit/m)) 1f1<1+<t/n> Ait/n)) x|
= 1 TL (- 8/m) AgCit/ ) (T 2/ ) A2t /) (T4 (e m) At )]
(/) A2 /) () AG ) 5= T+ () AGt )]
< (TGt /) At /) x— (I (1 m) At /)

1T+ Ax2t/n)) U (t/n) At /)~ x— lfI (I4-@/n) AGt/n)~ x| .

Both of the final terms of the above inequality converge to zero by assump-
tion (2) of the theorem.
The uniform convergence will be established if we can demonstrate the

equicontinuity of fi(t)= I?I(I—}—(t/n)Ak(it/n))‘lx.
I fe®)—F(D)=] 17:1 (I+(t/n) Ax(it/n)) " x— 1111[ (I+(z/n) AGiz/n)) x|

<1 T U+ (/) AyGit/ )= TL A+ (/) Adie /)]
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10+ E/m) AT U+ (e /) Az )

— (I (t/m) A T+ (/) AGiz /) 5]

I+ /M) AL TLU+ (e /) Aliz )2 =1 UG /m) Alie /)l
<1V T+ (/) Autit/ )= TE(U(2/n) Atz /m) 21

+ ¢/l t=| LA TT (/) Atz /m) )

+ | A TL (- (2/m) Atz /) 11)

+1t/n—z/n| | A TL(+(e/m) Agliz/m) 51,

The second term of the right-most side of the above inequality follows
from Condition R and the third term follows from By continuing the
above process an additional (n—1) times we obtain the inequality,

| 51 (T Ge/m) Autit/m)) e T (I (e/m) Alie m)) ]
= 3 ¢/ t— DL TE I+ (/) Az /m) 1
1 Aytie/m) TE (/) Atz ) x1)

+(1/m)|t—z}] Ak(jf/n)jij (I+(z/m)Aliz/n)) x|}

<l|t—7|M, for some positive M.
The existence of the bound M follows by applications of Lemma 3.2.

LEMMA 3.4. The convergence of ﬁ([—}—(t/n)Ak(t))“‘x to u(t) is independent
of E. '

ProOOF. This lemma is based on the estimates of Crandall and Liggett
and we shall only outline its proof. If n>m and

= | TL U4t/ Aglit/ ) x— TT (I (/) Agtit/m) ]

we wish to show that lim {an,,} —0 independently of k. If ¢t<[0,T], 0=p
l

=l+n—m, 0=I=m, and a,,, = IT ([+(/n) Ax(it/n))  x— ﬁ(1+(t/m)Ak(it/M))‘1xll,
1 1

then al,pé(m/n)al—1,p—1+(n_m/n)al,p-1+”(I+(t/n)Ak(pt/n))_%DI_;[l([+(t/n)Ak(it/n))_lx
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*(I+(Z‘/n)z4k(l7f/m))‘1pll:ll I+ (@t/m) Ay (it/n)) x| = (/M) @yoy,p-r+ (M —n/n) Q1 p-s+

{t/n)(pt/n—It/m)M for some M >0. The induction techniques of Crandall and
Liggett yield,

m—n

amn 2 3 ()Y (Y VT 0 Grm) At oy 2=
B () (Y (IO ey Aty a1

P 2 2O 5Ol

“The first two terms on the right of the above inequality are bounded by a
multiple of #/+/m and the third term is bounded by a multiple of t*/+/m.

By establishing Lemma 4.4 we have completed the proof of the theorem.

REMARK. The author has recently learned that J. Goldstein in has
independently proved a theorem which is quite similar to [Theorem 3.1 His
methods are completely different and he has an additional requirement con-
cerning the A,(¢)’s. After submitting this paper the author received a pre-
print of by Crandall and Pazy. Parts of their paper are similar to this
paper.

The next theorem deals with the convergence of strong solutions to
approximate Cauchy problems.

THEOREM 3.5. For each integer k, let {A(): t[0,T]1} be a family of
«accretive sets satisfying condition R with L independent of k. Let uy(t) be a
solution to the approximate Cauchy problem 0 < up(D)+ Ax(t)uy(t)=0, ux(0)= x.
Let {A(t): t< [0, T]} also be a family of accretive sets satisfying R and sup-
Dbose that u(t) is the solution to the Cauchy problem 0 < u'(t)+ A{t)u(t), u(0)= x.
If {A()} and {A@)} in addition meet the requirements of Theorem 3.1, then
lim u () = u(¥) uniformly with respect to t< [0, T].

1Jg—00

PRrROOF. It is immediate that {A,(¢)} and {A(?)} may be assumed to satisfy
R with the same L. guarantees that each u.(f) and u(f) may
‘be represented as product integrals and hence yields the uni-
form convergence of u,(f) to u(t).

Our final result shows that under certain restrictions the convergence of
the approximate Cauchy problems guarantees the existence of the solution
to a particular Cauchy problem.

THEOREM 3.6. For each integer k, let {Ay(®): t<[0, T} be a family of
accretive operators satisfying condition C with L independent of k. Let u(t)
be a strong solution to the Cauchy problem u,(1)+ ADu(t)=0, u(0)=x. Let
{A@®): te [0, T]} be a family of accretive operators also satisfying C. Suppose
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the conditions of Theorem 3.1 are met and the following are true.

1) At): D(AL0)— X is continuous.

(2) D(A(b) is closed.

(3) If {xi} S D(AL0)) and x,— x < D(A0)) then A (t)x,— A(t)x. Then the
Cauchy problem w'(H)+ A(Ou(t)=0, u(0)=x has a strong solution.

ProOF. [Theorem 2.111 gives us the product integral representation of

the solutions u,(t)= limﬁ(I+(t/n)Ak(it/n))‘1x. The convergence of u,(f) to
n—co 1
w(t) = 1imﬁ([+(t/n)A(it/n))‘1x is a consequence of and u(t)e
n—oo 1

D(A(t)) because D(A(1)) is closed. | A,(Hu(t)] = liﬁrg]lAk(t)l':i(I—{—(t/n)Ak(it/n))“lxI}?

< M; the existence of M is guaranteed by [Lemma 3.2
Since A(t)u(?)= lim A,(H)ui(t) and |AQu@®)| =M a.e. t, A)u(t) is Bochner
k—co

integrable. If we apply the Lesbesque-Bochner Bounded Convergence Theo-

t
rem to the equation uk(t):u,c(O)—j. A(s)up(s)ds we obtain, u(t)=u(0)—
0

j:A(s)u(s)ds. Hence w/()+ A(t)u(t)=0 for a.e. te[0, T1.

Department of Mathematics
Vanderbilt University
Nashville, Tennessee 37235
U.S. A.
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