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Introduction.

Let M be a Riemannian manifold which admits a linear transformation
f of its tangent bundle T(M). Then, the tangent bundle T(M) of a hyper-
surface M of M naturally admits a linear transformation f induced from
that of the tangent bundle of the ambient space.

On the other hand, on any hypersurface of a Riemannian manifold there
is the linear transformation H of its tangent bundle which is defined by the
second fundamental tensor.

It seems to be an interesting problem to consider relations between some
linear algebraic conditions of these two transformations and properties of
the hypersurface.

In this direction one of the authors started to study the case where the
ambient space is an even-dimensional Euclidean space [4] and thereafter
Yamaguchi [7], Yano and the present authors [3, 5] studied the case
where the ambient manifold is an odd-dimensional sphere and these trans-
formations are commutative or anti-commutative.

However, until recently there was no known linear transformation of the
tangent bundle of an even-dimensional sphere except in dimensions 2 and 6.
Recently two of the present authors and Yano [1, 2] found a linear trans-
formation of the tangent bundle of certain even-dimensional manifolds includ-
ing an even-dimensional sphere.

In this paper, using this linear transformation, we study a hypersurface
of an even-dimensional sphere for which this transformation commutes with
the transformation H.

§1. Hypersurface of an even-dimensional sphere.

Let S?" be an even-dimensional sphere of radius 1. Then on S?* there
exist a (1, 1)-tensor field f, two vector fields U, V, two 1-forms u, v and a
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function A satisfying the following conditions [1, 2]:

1.1) FiX=—-X+aX)T+5(X)V,
(1.2) a(fX)=w(X), fU=-av,
(1.3) W(fX)=—2am(X), fV=2aU,
14 aU)=o(V)=1-2%,

(1.5) W(U)y=a(V)=0,

where X is a vector field on S?~.
The Riemannian metric § of S?" satisfies

(1.6) 30, XN=uX), &V, X)=u8X),
(1.7) (X, fY)=3(X, ¥)—a(X)u(¥)—o(X)a(¥),
for any vector fields X and ¥. In this case
aX, V)=8(fX,7)

is a 2-form, that is, f is a skew-symmetric linear transformation of the tan-
gent bundle of S*".

In general, the set (f, U, V, @, 7, 4, §) satisfying (1.1)~(1.7) is said to be
an (f, g, @, 0, 2)-structure. Moreover, it is known on S?* that the (f, g, %, 7, 2)-
structure satisfies the following relations [1, 8]:

(1.8) Fz/T)=—8X, V)V+5(V)X,
(1.9) Vz0=-1X,

(1.10) FzV=r=xX,

(1.11) Xri=u(X),

where 73; denotes the operator of the covariant differentiation with respect
to &.

Let M be a hypersurface of S** and B the differential of the imbedding
i of M into S

Applying f to BX and to the unit normal vector N to M, we obtain two
vector fields 7BX and FN which can be represented as a sum of their tan-
gential and normal parts. Thus we write

(1.12) FBX= BfX+w(X)N,
(1.13) FN=—BW.

Then f defines a linear transformation of the tangent bundle of M, w
and W define respectively a 1-form and a vector field on M. Moreover, we
see easily that
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g(W, X)=w(X),

where g is the induced Riemannian metric on M.
The vector fields U and V can be decomposed as

(1.14) U=BU+aN,
(1.15) V=BV+8N,

where;U, V are vector fields and «, 8 are functions on M. Now we define
two l-forms on M by

(1.16) w(X)=u(BX),
(1.17) v(X)=0(BX).
Then we can easily see that

gU, X)=u(X), gV, X)=uv(x).
Furthermore we have
(1.18) #N)=g(U, N)=§(BU+aN, N)=«a,
(1.19) #(N)=5(V, N)=g(BV+8N, N)=§.

We denote by V y the operator of covariant differentiation with respect
to the induced Riemannian connection of M. Then the Gauss and Weingarten
equations are given by

(1.20) VexBY =BV yY-+-h(X, Y)N,

(L.21) VsxN=—BHX,

where £ is the second fundamental tensor of the hypersurface and satisfies
WX, Y)=g(HX, Y)=g(X, HY)=h(Y, X).

The equations of Gauss, Mainardi-Codazzi are respectively given by

(1.22) R(X,Y)Z=g(Y, Z)X—g(X, Z)Y+h(Y, Z)X—h(X, 2)Y,

(1.23) VY —-FV,H)X=0,

since the ambient manifold S?" is a manifold of constant curvature 1. From

(1.23) we have easily
(1.24) Vytr H= 2} Ve h)E;, Y)=3% g((Vg,H)E, Y),

where E; (i=1, -+, 2n—1) is an orthonormal frame of T(M).
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§2. Some formulas.

We apply 7 to both sides of [1.I2). Then by virtue of (1.1), and
{1.13) we get

—BX+a(BX)U+3(BX)V = Bf: X+w(fX)N—w(X)BW .
Substituting [(1.14), [1.15), [1.16) and [L.I7) into the last equation, we have

—BX+u(X)(BU+aN)+v(X)BV+BN)=Bf* X+w(fX)N—w(X)BW,

from which we obtain

2.1) fEX= - X+ u(X) U+ v(X)V4+w(XOW
and

@2) w(fX)= au(X)+Bu(X),

that is,

(2.2) fW=—aU-BV,

because of (1.6).
Applying f to both sides of [1.I3), we find

—N+a(N)T+5(N)V = —BfW—w(W)N,
from which we have that
—N+a(BU+aN)+p(BV+BN)=—BfW—w(W)N.
Thus we get
{2.3) wW)=g(W, W)=1—a*—p*.

Now write (1.2) and (1.3) in the following way

FO=F(BU+aN)=—ABV+EN),

fV=ABV+BN)=ABU+aN),
which imply that

BfU+w(U)N—aBW = —ABV—218N
and

BfV4+w(V)N—BBW = 2BU+2AaN .
That is, we have

{2.4) fU=—=2V+aW,
(2.5) fV=2U+pW,
(2.6) wU)=uW)=g(U, W)=—28,
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(2.7) w(Vy=v(W)=g(W, V)=2«a.
Substituting [(1.14), into (1.4), (1.5), we find
(2.8) wU)=gU,U)=1—a’—2%,
(2.9) u(V)=g(V,V)=1-§-2",
(2.10) w(V)=vU)=g(U, V)= —aB.

Now we calculate the length of the vectors fW, fU and fV.
gUW, fW)=g(—alU—BV, —aU—BV)
=a’g(U, U)+2a8g(U, V)+pg(V, V).
Substituting [2.8), [2.9), [2.10) into the last equation, we get
(2.11) gUW, fW)=(a’+B*)(1—a’—p*—2%).

Similarly we have

g(fU, fU)=(a*+2)1—a’—p*—2%),

(2.12)
g(fV, fV)=F+2)1—a*— =29,

We also have
g(fU, V)= —-l—a*—p'=2%), g(fU W)=a(l—a’—p—=2%),
(2.13) gfV,U)=21—a*=p"=2", g(fV, W)=pl—a*—p—27),
gUw,U)=—all—a*=p*=29), g(fW, V)= —p(l—a’—B"—2%).

Next, differentiating covariantly and making use of (1.8), and
(1.21), we find that

—Z(BY, BX)V+#(BX)BY+7(BV y X+h(X, Y)N)
= B (fX)+h(FX, VIN+ Y(w(X)N—w(X)BHY ,

from which we have

(2.14) FyHX=—g(X, V)V+u(X)Y—h(X, Y WH+w(X)HY
and
(2.15) Fyw)X=—pg(X, Y)—h(fX, V),

by virtue of and (1.15).
Differentiating covariantly and making use of (1.9), we have

—ABX =BV yU+h(X, U N+(Xa) N—aBHX .
That is,

(2.16) VU= —aX+aHX,
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(2.17) Xa=—h(X,U)=—u(HX).
Similarly from we have

(2.18) VeV=fX+BHX,

(2.19) XB=w(X)—v(HX)=w(X)—h(V, X),
and from

(2.20) X2=u(X).

§ 3. Hypersurfaces satisfying Hf = fH.

In the following discussion we assume that the hypersurface M satisfies
the condition

3.1 Hf=fH.

This means that

(3.2) g(HX, fY)+g(HY, fX)=0.
Thus putting X=U, Y=U, we have

(3.3) g(HU, fU)=0.
Similarly we have

(3.4) g(HV, fV)=0,

(3.5) g(HW, fW)=0.
Using [(3.2), we can also prove

(3.6) gHV, fW)+g(HW, fV)=0,
(3.7 gHW, fU)+g(HU, fW)=0,
(3.8) g(HU, fV)+g(HV, fU)=0.

Next differentiating
Hf X=fHX

covariantly and making use of (2.14), we get
FPeHYfX—g(X, YYHV+v(X)HY —g(HX, YYHW-+w(X)H?*Y

=—g(HX, V)V+u(HX)Y —g(H*X, Y)W+wHX)HY +f(V yH) X,
or
gVyH)fX, Z)—g(X, Y)g(HV, Z)+v(X)g(HY, Z)

—g(HX, Y)g(HW, Z)+w(x)g(H*Y, Z)
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=—g(HX, Y)g(V, Z)+v(HX)g(Y, Z)
—g(H*X, Y)g(W, Z)+w(HX)g(HY, 2)+8(fV yH)X, Z).

Replacing Y and Z by an orthonormal frame E,; and making use of the sym-
metric property of VyH, we find

X (@(FX, (7 5, H)E)—g(X, E)g(HV, E)+u(X)g(HE, E,)
—8(HX, ENg(HW, E)+w(X)g(H*E;, E;)}
=2 {—8(HX, E)g(V, E)+v(HX)g(Ey, Ey)

—g(H*X, E)g(W, E)+w(HX)g(HE;, E)+g(fV g, H)X, E)} ,
from which

trV ;xH—g(HV, X)+v(X) tr H—g(HX, HW )+ w(X) tr H*
=—g(HX, V)+@Cn—Dv(HX)—g(H*X, W)+w(HX) tr H+tr fV xH
because of (1.24). Hence we get
{3.9) tr V sy H+v(X) tr H+w(x) tr H*=2n—1Dv(HX)+w(HX) tr H,

since f is skew-symmetric and V yH is symmetric.

§4. Determination of the hypersurfaces of constant mean
curvature which satisfy Hf = fH.

Now we assume that the hypersurface M is of constant mean curvature
and satisfies Hf=fH. Then by [(3.9), we have

{4.1) v(X) tr HHw(X) tr H*=2n—1)v(HX)+w(HX)tr H.

Replacing X in (4.1) by fW and making use of (2.13) and we find
(4.2) Bl—a*—p—2tr H=2n—1)g(HV, fW).

Replacing X in (4.1) by fV and making use of (2.13) and we find
4.3) Bl—a*—pB*—2%) tr H*=(tr H)g(HW, fV)
from which
(4.4) Bl—a®—F*—2%)tr H*=(tr H)g(HV, fW),
by

Combining (4.3) and (4.4), we have
(45) B(l—a*—p—2)(tr H*—(1/2n—1))(tr H)?)
=B(l—a®—p*—2%) tr (H—(1/2n—1))(tr H)I)*
= p(l—a®—B*—2%) tr {(H—(1/2n—1))(tr H)I)"(H—(1/2n—1)(tr H)I)} = 0.
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Thus we know that, at a point x, if f(1—a®—p*—2%) +#0, this point must be
an umbilical point. Now, let AM,; be a set of all umbilical points of M and
M,= M—M,. Furthermore we assume that the vector field V is not tangent
almost everywhere to M. Then M, is an open submanifold of M, and any
point of M, must satisfy 1—a®*—/*—2*=0. Hence, by means of and

(2.12), we get
(4.6) W=fU=fV=0.
Differentiating covariantly f/W =0, we have
Vi(FW)=V x(aU+BV)=(Xa)U+aV yU+(XBV+V x V=0,
which, together with [2.16) and [2.18), implies that
(Xa)U+a(— X+ a HX)+(XB)V+A(f X+ BHX)=0.

Transforming the last equation by f and taking account of [(4.6), we have

a(—Af X+afHX)+B(/ P X+BfHX)=0.
That is,

—adg(fX, Y)+a’g(fHX, Y)+Bg(f*X, Y)+B°2(fHX, YV)=0.

If we replace X and Y in the last equation by an orthonormal frame FE; and
sum over 1, then we get

—aldtr frattr (fH)+ptr f24-Btr (fH)= Btr f2=0,
since f is a skew-symmetric and H is a symmetric. Thus, in M, we have

X=u(X)U+v(X)V+w( X)W,
from which

2g(Ey, E)=2%1{g(U, 8(U, E)E)+8&(V, g(V, E)E)+g(W, (W, E)E,))

=g, U)+g(V, V)+g(W, W).
‘That is
2n—1=3-2a*+p+15)=1,

because of [(2.8), [2.9) and [2.10).

So, if the dimension of the hypersurface is greater than 1, this shows
that M= M,. Thus we obtain

THEOREM. Let M be a hypersurface with constant mean curvature of S*
(n>1). If M satisfies the condition Hf=fH and the vector field V is not
tangent almost everywhere to M, then each point of M is umbilical. Moreover,
if M is complete, then M is a great or a small sphere in S**.
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