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§0. Introduction.

In our previous paper [1], we treated certain zeta-functions attached to
symmetric tensor representations of odd degrees of the group G =SL(2, R).
In the present paper, we deal with analogous functions connected with sym-
metric tensor representations of even degrees of the same group G.

Let M} be the “modified” symmetric tensor representation of even
degree vy =2 of G (Cf,, 1.3). Then M3¥(o), 0 G, leaves an indefinite symmetric
matrix S, invariant and so M¥(G) is contained in the orthogonal group 5,
of S,. Let K be the orthogonal subgroup of G (which is a maximal compact
subgroup of G) and R, be a maximal compact subgroup of @,, containing
M3¥(K). To determine K,, we take and fix a definite symmetric matrix P,
which is a “majorant” for S, (Cf., 1.2). Now 17,,:]?,,\5,, has a structure of
Riemannian symmetric space, called the representation space of 5, by Siegel
[3] Let H={z=C | Im 2> 0} be the usual upper half plane. Then H=K\G.
Using P, and M}, we can define an imbedding ¢, of H into g, (Cf., 1.3).

Let folw, ) be the Siegel’s theta-function defined on HxH, = (0, 9),
attached to our indefinite S,, where a is a rational vector such that 2S,a is
integral (Cf., 2.1 or 2.3). Let a, -, a, be a complete set of representatives
mod 1 of rational vectors a with integral 2S,a and f(w, ) be the vector with
components fao, ,fat. We denote with fu(v; w, 2) and f(v; w, z) the pull-back
of fulw, ) and F(w, ) to H by ¢,, respectively. Then fu(v; w, 2) is a non-
holomorphic function defined on HXH > (w, z). Let $.(v) be a fundamental
domain on H for the group I«(»)={c<SL2, Z) | M¥(o)a=a (mod 1)}. Then
fs, as a function of the second argument z, is invariant by I .(v) and so can
be viewed as a function on F.(v). Using the fact that ¢.(F.(v)), for integral
a, is contained in the so-called Siegel domain in A, (Proposition 4), we can
prove that the integral of fi., with the modified factor y~**“*V/8 on F.(v) with
respect to the invariant volume element of H is convergent (Theorem I)).
Though our integral does not give a direct analogy to Siegel-Eisenstein’s
formula, it is conjectured that in finding the true nature of the value of this
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integral, we could obtain some results analogous to that formula. Thus we
propose Problem 1. (Cf., Remark at the end of §2.)

In § 3, we define zeta-functions {.(v; w, s) by means of the modified Mellin
integral of fu(v; ®, 1y) and prove the convergence of the integral for suffi-
ciently large Re s (Theorem 2). Also we prove the functional equation satisfied
by {« and the analyticity of {. and determine poles and residues at the poles
(Theorem 3).

In §4, v being 2, we derive the infinite series expression for . (Theorem
4). Now for general even v, f(v; w, 2) satisfies the transformation formula,
which is the pull-back by the imbedding ¢, of the transformation formula
for F (Proposition 6). Let v be 2. As is seen in Theorem 4, {o(w, 5)=C(2; v, 5)
has the series expression by modified Bessel functions K %s( ). Therefore (a,

as a function of w, is to be called the ‘ Bessel theta-function”, which is

different from the usual “ exponential theta-function”. Now it is interesting
that
Cﬂo(w’ S)
Z(w, s) =
Cay(®, 5)

satisfies the same transformation formula as that for f(2; w, 2), where {a,, a,}
is a complete set of representatives mod 1 of rational vectors a with integral
2S,a (Theorem 5)”. Therefore the multiplicator in that formula is given as
the matrix A(s) with a usual type of Gaussian sums as coefficients (even for
our Bessel theta-functions!). (Cf., 2.1 and 4.3.) Thus we call Z(w, s) the zeta-
theta function. But our definition of zeta-function for general v =4 does not
yield “ zeta-theta ” function in our sense. It would be interesting to find a
definition of zeta-function having a certain transformation formula and to
determine the multiplicator in that formula by means of ‘“ Gaussian sums”.
(Problem 2.)

NOTATION. As usual, we denote by C, R, Q, Z the fields of complex
numbers, real numbers and rational numbers and the ring of rational integers.
We mean by {a,, a,, *--, a,» the diagonal matrix

a,
a,

an

For a symmetric matrix S of size n, the signature of S is (p, q), p+q=mn, if

1) As an application of Theorems 4, 5, we can prove a formula of Ramanujan
concerning {(s) for the case s=3,5. Cf., our paper “On Ramanujan’s formula for
values of Riemann zeta-function at positive odd integers” to appear in Acta Arith-
metica.
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S is transformed to the matrix
<+1, *tt oy +17 '——1; *tty ~1>'
\__/ \-__/
? q

For a vector or a matrix x of size n, we use Siegel’s notation S[x]="‘xSx.
For a ring R, we mean by M(n, R) the total matrix ring of size n with
coefficients in R. Numbers c,, ¢,, -+ mean some positive constants.

§1. Imbedding of H into A..

1.1. Tensor representation. ‘
Let M, be the symmetric tensor representation of G =SL(2, R) of degree
v; namely for o G, M,(0o) is defined by

[«(;)] =m(5)"

( ) =4u”, u’" v, -, uv*, v¥) u,veC.

where

M,(o) belongs to SL(v+1, R). It is known that M,(c) leaves the following
matrix invariant;

—(1)
25, = ()

()

Hereafter we assume throughout that v is even. Therefore S, is a symmetric
matrix of size v+41;
1

-
(%)
)

LEMMA 1. Let S, be the symmetric matrix in (1). Then the signature of
S, is (v+2)/2, v/2) for y=0 (mod 4) and (v/2, (v+2)/2) for v=2 (mod 4).

@ 2S,
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PROOF. It is easy to see that the signature of S, is ((¥+2)/2, v/2) or
(v/2, (v+2)/2) if the entry at the center of S, is positive or negative, respec-
tively. It is the (v/2+41)-th entry on the subdiagonal of S, and the entries
of S, have alternate signs with the positive right top. Therefore, the entry
at the center is positive if v/2+1—1 is even and negative if v/2+1—1 is odd.

More explicitly, if we define the matrix A, =(a};) by

a=(2(;2))F  izv/2t1,

Afv41—iht = (_1)v+1(2(ii1 ))-% 1#v/2+1,
and

v VY -%

rnnn=(,1p)

v/2+1, v/2+1 l)/2 ’
then we have

2S.[A,]=<(+1, -, +1, £1, —1, -+, —1>.

Here at the center, +1 stands for y=0 (mod 4) and —1 for v=2 (mod 4).
1.2. Positive matrices P,.

Let K be the group {( €%° 0, —sin 0y, R}, which is a maximal compact
sin 8, cosé

subgroup of G. Let G be the orthogonal group of S,. We shall determine
a maximal compact subgroup R, of G containing M, (K). For this purpose,
we take a positive definite matrix P, satisfying the following conditions (P,
is a majorant matrix for S, in the sense of Hermite);

(i) SYLPI=S.,

(ii) ‘P,=P,

(iii) P,[M(k)]= P, for any k< K.
For such P,, we put
2 R,={seG,| PL5]=P}.

Then K, will be a maximal compact subgroup of 5,, containing M, (K) (Cf.

Siegel [3].

Now we define P, by

@3) 2P, =(1, (1), (5) . (L)1) Gize v+D).

Then it is obvious that P, satisfies (i), (ii). To prove that P, satisfies (iii),
we need the following
LEMMA 2. Put

7, = - (size v/2).

(—1)2- 1
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For ke K, we put

P p Q
€)) M, (k)= (‘r u )
R & S

with P,Q, R, Se M(v/2, R) and column vectors p,q,t,8 of size v/2. Then we
have
R:ijjv; S:(—l)’)/z-l.ljvpju,

tq = (—1)”2 ‘r]‘v » 8= "—]yp .

Conversely, if P,Q, R, S, ¥, q,1,8 are given by these formulas, the matrix in the
right hand side of (&) is contained in My(K). _

The proof goes in the same way as in the proof of Lemma 3.3 of Kata-
yama [17].

PROPOSITION 1. The P,, defined in (3), satisfies (iii); namely P, M, (k)]=P,
holds for any k€ K.

PrOOF. Put

Jv
fy=( (—1)»* ) (size v+1).
v

Then we have

P,=],5,=S,]., ‘I,=J, and J'=],.
Also,
Judv= (=L = (=1 and j, = (=D,

We have S,[M,(k)]=S, for any 2= K. Hence
"MR)P, .M k) ],= P, ,
"M (R)S, L LM(R) .= S, . .
Thus for the proof, it is sufficient to prove
Q) M.(k)=J.M.(R) ] .

But (x¥) can be seen by the straight-forward calculation by Lemma 2.
1.3. Imbedding ¢,.
We define
M¥(o)y=1,M(0)I, for oG
with
1

I, = .S (size v+1).

Then we have
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SI[L1=S,, S;[L1=S,
S, [M¥o)]=S, for oG
and M¥(R)= M, (k) for ke K.

Since M¥ satisfies (i), (ii), (iii) with the same P,, S, as for M,, we can take
the same maximal compact subgroup R, for M¥ as for M, M3¥(K) is
contained in K,. Therefore M¥* induces the imbedding ¢, of H=K\G into
ﬁ,z]?,,\é,,; namely

4 0(2) ="M¥()P,M¥(7)

1
y? 0
for z=x+iy=*'7(t) H with 7= < 1 1 )E G. Note that by the proper-
x/yz  1/y2
ties of S, mentioned above, S, =S;![¢.(2)] holds for any z< H.
We shall prove the following

PROPOSITION 2.
K, N M¥G)= M3(K).
PROOF. It is sufficient to prove the above for M, instead of M}.

R, N M (G)D M, K) is obvious. For & = K, " M,(G), there exists o6 €G such
that 6 = M, (o). Put

P » @
M (o)= ( by u tq )
R 8 S

and check the conditions for M,,(a)e]?,,. Then we see that M,(o) satisfies
the conditions of Lemma 2. Hence by the converse part of the Lemma, we
have o€ K.

Let I' be the elliptic modular group. Let % be the standard fundamental
domain in H for I'; namely

§={zs€H| —4 SRez< 3, |z2|>1 for Rez>0 and |z|=1 for Rez=0} .

Following Siegel [3], we consider two types of domains in the space of
positive definite symmetric matrices of size n (so-called Siegel domains);

1. For a given positive constant g, we define R*(ux) to be the set of all
& =(s;) such that

1) &>0,

2) 51/S Sa/Ssy vty Snoi/Sa < Y,

) —p<2u/si<p (RLID),

4) 5,5, - 5,/det & < ynpu,
with a constant y, depending only on n.
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2. We write &=3[D] with

1 . dkl .
D= .. (upper-triangular),
0
=ty by, >, ta).

For a given constant yg, we define R**(u) to be the set of all ©=I[D] such
that

) T>0,

2) 22 7RELLINS Y} M

) —p<du<p (A=k<IZn).
Siegel proved the following Lemmas ([3].

LEMMA 3. For ©=(sy) € R*(y), put S,=_sy, >+, Sp». Then there exists
1> 0 such that

S,[x]/p =Sx] = 1.S,[x]
holds for any real vector ¥ of size n.
LEMMA 4. 1) For a given pu>0, there exists p,>0 such that
R*¥*(p) C R*(p0) -
2) For a given p>0, there exists p,>0 such that

R*(p) C R**(po) -

Taking n=wv-1 in our case, we consider R*(y), R**(#) and so we denote
them by R¥(uw), R¥*(y), respectively.

PROPOSITION 4. Put F*(cy, cp)={z€H |Imz>c¢, —c, <Rez<c,}. Then
there exists p >0, independent of z & F*(c,, ¢,), such that

¢»(%*(Cl’ c)) R:‘(F‘) .

PROOF. To prove our Proposition, it is sufficient, by Lemma 4, to see
that there exists ¢ > 0 such that

QD”(Z) = Rf*(ﬂ) fOI' zE %*(Clv C2) .

1
2 0
1 ), we have

Y
For z=x+4iy="z(i), with z-:( 1
y="z(i) 1y}

x/y

1
2

M¥(z)=LM()],

=, ), )

1
2

S ()

L
2
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1
2

‘Then

is diagonal and

o=u(, )

is triangular with 1 on the diagonal. We have

23::<y—v’ (;)yz_v’ o (v’;Z)’ o (vil)yu-z’ yv>.

Hence if we put
i:<t1y tZr Tty tv+1>y
then

= (2 )9, k=1, v,

=2 DI

Since ¥ > ¢;, by the assumption z € §F*(c,, ¢,), we have

5) tk/tk+1<63:((kil>/(z>>cl_2-

If we put ®=(d,,), then every coefficient d;; is some power of x up to constant
factor. By the assumption z € §*(c,, ¢,), —¢, < x<c,. Hence

and

(6) — < du<cy

with some positive constant ¢,. By (5), (6), Proposition follows.
COROLLARY. There exists >0 such that

Pu(B) C R*(p) .

§2. Theta-functions.

2.1. Siegel’s theta-functions.

We shall quote some results of Siegel from [3], [4) Let © be a half
integral indefinite symmetric matrix of signature (p, ¢) and of size n. Let H
be the usual upper half plane and H the representation space of the orthogonal
group of &;
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H={9>0 | [p]=6}.

Put R=£664+ipH with w=£&+ipe H. Let a,--,a, be a complete set of
representatives modulo 1 of rational vectors a with integral 2&a. For every
a;, Siegel defined the theta-series by

fj(wy D) :faj(w, )
= En exp riR[m-q;]).

Put
f((D) :.f(w, @) = t(fo(“’, ‘g))y Tty ft(w: ‘9)) .

Then Siegel proved the following transformation formula;
M Cotdyrcatdy o) =Ao)f@, o=( 5)er,

where the radical in the left-hand side of (7) means that of the principal
branch and A(o) is the unitary matrix defined as follows:
(i) The case c = 0.

@ A(o)=eD "% c| 2" (o)),

) D=|det 28],

(10) e=exp((g—p)/4-m1),

(11) Aa(0) =, .2, &xp @ri/c){a@[g+a]—2'6&(g+a)+dS[b]} .

(ii) The case ¢=0.
1 a=b (mod 1)

12 A(0) = (es,00 €xp 2riabS[a])), Cap =
0 otherwise.

Also he proved that
129 G(oa’, w) =G(0o, d'(w))G(a’, w)
holds with G(o, w) = (cw+d)**(cd+d)¥?A(0o).
We define
[e= {5 integral | ©[6]=6, da=a (mod 1)}.

Then s is of finite index in the unit group I’ of ©. For é< I',, we have
Folw, ) = fa(w, $L5]). Therefore f: can be viewed as a function on a funda-

mental domain &, of s on A Siegel considered the integral
13 V| folw, D)d
(3) [5 o D

and proved that the integral, as a function of w, is essentially equal to the
Eisenstein series of w (n=4). In the above, V, is the volume of &, with
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respect to the invariant measure dv.

2.2. Theta-series attached to ¢,.

Coming back to our case, we take ©&=3S, and §=¢,(2). Also we consider
the representation space ﬁ,,z]?,,\&, as H in 2.1. Note that for ccI', M¥Go)
belongs to the unit group I°, of S,.

Let a, -, a;, be a complete set of representatives modulo 1 of rational
vectors a of size v+1 with integral 2S,a. Put

R, (2)=R,(w, 2)=§S,+1n¢.(2)
with (0, 2)€ HXH, w =§&+1in, z=x+1y. We define
(14) fiv; 0, )=fo,(v; 0, 2)= 3 exp2riR(w, 2)[m+a;]

mezvtl
and

f; 0, 2)="folv; o, 2), -, [ilv; 0 2).
Define
I'\Wy={ocel'| M¥o)a=a (mod 1)} .

That o belongs to I'«(v) gives congruence conditions to the entries of o, hence
I'y(v) is of finite index in I'.
PROPOSITION 5.

fiv; o, 2)=fov; o, ta(2)) holds for o< (y).

PROOF. z can be written as z=":z(1) with

y% 0
il WA )
Then we have
pu(to(2) = p.(fa*z (i)
= P,LM¥(z)JIM¥(0)] = o.(2)[M$(0)] .

Now M¥(o) is unimodular and M#*(o)a=a (mod 1) by the definition. From
these, Proposition follows.
The signature of S, is given by Lemma 1. Therefore ¢, defined in (10),
is given as follows;
1
et v=2 (mod 4)
(15) eE= 1
e t™  y=0 (mod 4).

The determinant D defined in (9) is given by

a6 e 25,1=(5)'(4)  (yan) (ha) -
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Now let A4,(¢) be the unitary matrix defined by (8), for our S,, a.
Then by (7), we have the following transformation formula for our f;

PROPOSITION 6. For a=<g Z) el’, we take c>0 or ¢c=0, d=1. Then
(i) If v=2 (mod 4),

(cotd) ¥ (ca+d) TP Ay ; o), 2) = 4,0) f; , 2),
() If v=0 (mod 4),

Ccotd) TP +dy V7 f(u; 0(w), D)= AL0) f(u; @, 2).

2.3. “ Modified” integrals.

Let F(v) be the fundamental domain of I'«(v) on H as the space of z.
It is known that dv(z)=dxdy/y* is an invariant volume element. Since
fov; o, 2), as a function of z, is I'.(v)-invariant, it can be viewed as a function
on F(v). Then an analogue to Siegel’s integral would have the form:

(16%) fulv; w, 2)dv(z).
Ta(v)

Here we should multiply the integrand by some additional factor so that the
integral converges.
THEOREM 1. (i) If a is integral,

Oy )= fuly; , 2)y™ridu(z) ®

is convergent.
(ii) If a is not integral,

Dy ; w)= jg (y)fa(V ; W, 2)y D4y (2)

is convergent.
We call the above integrals the modified integrals.
PROOF. First consider the case (ii). If we put
F:UFQ(V)O']C
k

and

"0(E) =T »

then we have

%A(V) - \l.c} %k .
Therefore we have
o =2 fil; 0, Dyerrdu(e)
Ba(w) [

2) §=8,(), if a is integral.
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=2 [ S 0, ‘a.()Im ‘o, (@) du(o,w)).
k
‘Take a rational vector b such that b= M} (o,)a (mod 1), then by definition
flv; o, fo(w)) = f,(v; o, w).

For ‘ok=<: Z) and w = x+1iy, we have Im ‘o (w)=y/|cw+d|% Hence it is

sufficient to prove that
R
167) f gf (v o, w)|cw+d| v Z)y's”‘”“” Sdxdy/y*

is convergent. Now
lcew+d|?=(cx+d)*+cy?
and x is bounded. Since o, is finite in number, (cx+d)? is bounded, too, and
we have
[cw+d|® < [+ c?y?

with some positive /. Therefore the absolute value of the integral (16”) can
be majorized by

L} | /6w 5 @, w)[(I+cy?) @Dy~ x dy/y®.

To show the convergence of this integral, it is sufficient to prove the conver-
gence of the integral, in which the factor (I+c%y*)¥“*»/® is replaced by the
maximal power of ¥ in the expansion of it (note that v(v+2)/8<= Z); namely
we have only to prove the convergence of

J 1505 @, wlyernridzdy/yt.

Now we shall prove the convergence of this integral, which will imply the
proof of case (i).

Here, we recall the theta-inversion formula. Let © be a complex sym-
metric matrix of size n with positive definite real part. Taking a complex
vector u, we consider the series

Znexp (—nS[m+ul).

meZ

Then it is well-known that the following formula, called the theta-inversion
formula, holds;

an g‘.;znexp (—nS[m+4-u]) = (det @)_% E_S‘_z,n exp (— xS [m]42xitmuy) ,

where the radical in the right hand side means that of the positive-for-real-
positive branch.
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Let us come back to our case. From definition, we have

[ foly; o, w)| = %‘exp (—27p o, (W)[m-+b]).

By the corollary to [Proposition 4 we have ¢,(w)< R¥(y¢). Therefore, by
there exists a positive constant ¢; such that

o (w)[m+5] = 50, (W) [m-+5] .

We have
0 (W) = < y, ( 1{ )2x2y‘”+( 1]). >y—v+2’

v 24«—» v—1\2/v 24— V2 Y -y
(5) =9+ ) (D (5 ).
Note that in ¢,(w),, x appears with even powers. Now, x is bounded, hence
replacing x by 0, we get the following;

e m+61= (7, (7)o, ()0 ([ 24) 9% 9 )im+6]

For simplicity, we write m+56=">*(m,, m,, --- , m,). Then

15 @, w)| = ( 2 exp (—mey( p’/’z)mim))

my/2

. ;1:[21 > exp (—m;cﬁ(j. )mﬁy'”*”)

mj

I 3 exp <—7“705<v/; +j)m%/z+jyzf).

j=1my/a4 4

Applying the theta-inversion formula (17) to the second factor, we have

18 the second factor
-1, v/2 _1 /2 v-24 X
L O I (H ( v )) 2 ]IS exp LS A m;,) )
=1:J i=1my Cs’?( 1{)
J
Thus

|J w5 @, wyy-eordxdy/ye

= f% | folv; @, w)|y™*>Rdxdy/y*

<c, PPED N exp (——nncs(vl/)2>m?,,2)

y>e my/f2

-TI X exp <—(7f/057])(yv—2j/<; >>m3)

3) For the meaning of ¢,(w),, see [Lemma 3.
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TS exp (—mnes( g )Y i)y dy )y
19)  =cSexp (—mn(,),)mn)

TR exp (/e (| () mine 3 ) i)

Since "% > ¢,y, we have
WN=cf TS exp(—cmymi—cumymn.)dy/y*
~C1

-1
écufy\ IMAa+y 2)dy/y*,
~C1

because of

_1
2 exp (—cpym?) S ¢ (1+y 2).

m

Thus we have proved our Theorem.
In the course of the proof, we have seen that the integral is convergent
absolutely and uniformly on every compact subset of . Hence we can

change the order of j' and X

COROLLARY TO THE PROOF. (i) If a is integral,
f%fa(v ; @, 2) Yy~ TPdy(Z)
= Sexp 27i £S,[m+a] | LeXD (—2mp,(a)m-+a])y 2 dn(z)
n

(ii) If a is not integral, the analogue to the above holds when y v®+¥/8 jg
replaced by y 3+®8 and F by F(v).

Here we propose

PROBLEM 1. What is the nature of (v ; w)?

REMARK. (Concerning this problem) In general, let V be a vector space
and GCGL(V) an algebraic group defined over @. Let X be a character
of G, ¢ a Schwartz function on Vi and dg the Gz-invariant measure on Gg.
Then the integral

Jonog X®1" T olg-m)dg

is called the Tate integral, which often appears and is important in number
theory.

Let K be a maximal compact subgroup of G and X a character of Gg
with value 1 on K. Assume that ¢ is left-invariant by K. We take measures
dg, dg and dk on Gi, K\Gr and K so that the total volume of K is 1 and
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dg=dgdk. Then the above Tate integral is of the form

) DI 3 plamdg.

IK\GR/GZ

Now we consider Siegel’s case, where © is a half-integral indefinite sym-
metric matrix of size n, G is the orthogonal group of © and K \GR=17 is the
representation space of Gg. For w=§&+ipe H, {)eﬁ, we put R=£ES+199
and consider

mgznexp 2riR{m]
which stands for 3 ¢(gm) in (x).
nevz

Let G, be the unit group of © and & the fundamental domain of G; on

H X being a character of G with X=1 on K, the integral (*) will be of

the form
J @) 3 exp 2nifin]dp =0, 3).

When s=0, @(w, s) is nothing but the integral considered by Siegel. Con-
sequently the so-called Siegel formula can be viewed as an aspect for s=0,
at which the integrand is Gz-invariant, of the infinite series representation
of the zeta-function @(w, s) (by Siegel, @(w, s) has a meaning at least for s=0).

Coming back to our situation (for simplicity we take a=0), we consider

2 exp2riRy (o, "z(1))[m]

mceZy+l
with
R o, 'z(2)) = £S,+inp.(z(@),
1
, yz O
()
x/yz  1/y2
Put

yz
)=y for r:< L 1).
x/yz  1/yz
Then X is a character of the subgroup of G=SL(2, R) formed by elements
(Z 2_1). We extend X to X* on G so that
X*¥(kt)=X(7) for ke K.

A* is a character of G. Then the integral (*¥) will be of the form

OQy; w, S)=L}|X*(T)ls > XD 2riR (o, z(1))[m]dv,

mezZvt

where § is the fundamental domain for Gz;=1" on H and dv is the ['-invariant
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volume element on H. Our Theorem asserts that @(v; w, s) is convergent
absolutely and uniformly for Re s< —v(v+2)/8. Thus in our case, the infinite
series representation of the zeta-function @(v; w, s) would give the “ weak
Siegel formula”, and if @(v; w, s) can be continued analytically to the whole
s-plane and does not have a pole at s =0, we would have the “ exact formula”.

§3. Zeta-functions.

3.1. [Definition. We put

Ko 213
m= My ’ a= av/2
J25 a;

with column vectors p; a; of size v/2 and
T,
- 1 v
Sy = 2 ¢ v/2)
‘T,,

with the matrix 7, of size v/2, where we define ¢,=1 or —1 according as
v=0 or 2 (mod 4). Then

Sum-+a] = 2ot adTulput ad+—3-eu( /) Mt a,)".

Further, putting
Y,

Pu(iy) = %y( vl/)2>
Y,

with matrices Y; of size v/2, we have

pui)m+a] =V Lot and+-5-(,)p ) munt 0+ VLt +au].

Let f.(v; w, z) be the function defined in We define

20) bv; )=_3 exp {(enit(,)y)—m1(,)5))0mntan)?)

my 252
and d(B), for a vector B of any size, by

1 if B is integral
=]

0 otherwise.
Then we have
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@D fulv; o, 1)

= exp {21 (2ptot-an) Tulpnta+—5-6( | g) )t @,y
-‘27[77<Y0|:ﬂ0+ ao] +”%“( vl;z )(mvlz+ av/2)2+ Yl[[al_}'al])}

=0.; ) daDda)+da) 2 exp(=2mY ol potac))

+o(ay) > exp(—2rpY,[u,+a,])

p1ta1F0

L, oXP (4 (potan)To (gt )

#otopF0, u1t+ay

—2mp(Yol ot a]+Y [t a D} ],
Applying the Theta-inversion formula (17) to
() =0d(ap)+ 2 exp(—2xpY [p+a,l)
2ot apF0

= 2 exp(—2npY [g+ayl),

HoE2ZV/2

we get

-1 .
(22) () =(det 27Y )" 2 X exp (—(x/27)Y 'L o]+ 27" procxs)

#0
with
D VN VY y
det @Yo =7"y" (1) (ja—1) -

We put

1, y\Li/p\1 Y 1
(23) a(p=nt (0)2<1)2 (y/2—1>2 .

On the basis of the above consideration, we give the following
DEFINITION (v: even)

L; w, )= J‘o“’{fa(y; w, iy)— 5(a1)0a(12:<7(;)))yv<»+2>/s }y*“dy .

Cuv; o, s) is called the zeta-function (=the zeta-theta function for the case
y=2) attached to a, M¥.

THEOREM 2. There exists g,>0 such that the integral of the {, is con-
vergent absolutely and uniformly for Re s > o,.

PrOOF. From (21), we have

7 0, )= KI5
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=0.; o) ded{d@+ =~}

+o@) = — ey ]

ayt+u1#0 apt+po#0, a1+ ¢ 70 cv(v)

=0.v; [ 5(a‘)i':;;+2)/8 2 exp (—(x/2)Y 5o +2mi’ procts)

#0

LY atdio
+5(a°)a1 %ﬁ&o +ao+#o=#0-a1+#1*° c.(n) ]
v(v42)/8 A
=0.00; @[ XOLTT 3 exp (—(n/2)Y P2 o)
+ (aO)al-i—%l:#O ag+poF0, a1+ p130 ]

Therefore, with Re s=o0, we have

<1005 )] [ {HEZTE 5 exp (—(/20) Y LDy

c.(7)
0. - Y1 1 1 a-ld
+oa) B exp(=2mpYiimtald+ = }yotdy
. . a(al)y»cwz)/s
=10dv; )|, {700 3 o Hoad) 3
+ 3 exp(=2rnYi[pta (T exp (—2mpY g+ a])—8(an)) } 37 dy.
a1+ F#0 Ho

Since it suffices to consider only the absolute values, we have

=105 )| [ { XG5 exp (/20 Y D)

v(v+2)/8

) i P (2Lt D B exp (— Y51 a]) pyo My
= N0 L[ {otan 3 exp (—, Yoltyo])
+ X exp (—2m7Y1[;a1+a1] 7 Yo [m])

ay+ )70
#0F0

+ 22 exp (—271'77Y1[;,¢1+alj)}yu(u—x-z)/s—g-a-ldy .

a1+ 10

We decompose this last integral as follows:

e 0L ([
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The matrices Y ! and Y, are diagonal and their entries are 3% y% ---, " up
to constant factors. Observing that

Y=yt =y  for 0<y=1
and
YVW=Zyrt= e =y for y=1,

1
we replace y*7% ---, ¥ by »” in the part f of and y*, «--, ¥* by »? in the
0
part f of in order to majorize (24) Then f so changed is convergent
1 : 1

1 1 o
for any s. As for f , We majorize f by f . Thus the convergence of the
V] 1] 0

1
part j is reduced to the ordinary case of defining zeta-function by Mellin
(]

transformation of theta-function attached to the positive definite quadratic
form.
3.2. Functional equations.
24}
For a= (am), we have
(241

a,
(25) ja= (%m) )

with

PROPOSITION 7.
Jlv; o, ) =Fuv; 0,1/9).

PROOF. If y is changed to y™! in f;(v;®, 1), Y, and Y, are changed
mutually. Then if we interchange a, and a;, and write y;, 1, instead of g,
¢, in the summation condition on m= 'y, m,p, ‘uy), we get fi(v; o, i/y).

THEOREM 3. (i) {, satisfies the following functional equation;

Glv; o, =Culv; o, —5).

(i) &, can be continued analytically to the whole s-plane except for its
possible poles, which are at s=yv(+2)/8 and —v(v+2)/8 with the respective
residues given by

0(ag)b,(v; )
(1)

_ 00y ; @)
cu(7)

and

PrROOF. We can prove the Theorem by a well-known method. We have
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Loz o, 9=[ +f"

_ (! . S N a8—1 o(a)l.(v ; w) L urD/Bre-1 *©
26) = flvs 0, i)y rdy— ST [ Ly dy+{ "
In the above, we see that
_ ()b (v; w) 1
the second term = G ST F2)/8

and
the first integrand =f,(v; w, i/y)

by [Proposition 7. Therefore by

: jol{fj“(”; w, 1/¥)— 9(@0)0(v ; @) y—u<»+2>/a}ys-1dy

()
+ 5(“02?(.:;1; ; W) foly—v(v+2)/8+8—ldy_ 5(“12?(3%1 ; @) s+u(v1+2)/8 +J‘l°°
=Lm{fja(v ; @, 1Y)— 5(%2”0(07()))) ) y”(”””s}y""dy
+ 0(ay)0.(v; w) 1 _ 0(a)b,(v; ) 1
c(m) s—u(v+2)/8 ¢.(m) s+v(v+2)/8
[ i KO0 oy gy,

easily follows from the last formula.

§4. The case v =2. Zeta-theta functions.

In this section, we always assume v =2. Hence we omit y=2 from the
notation ; we write, for example, S,=3S, {,(v; w, s) = (w, s), - etc.

4.1. A review of

First we note that the complete set of representatives mod 1 of rational
vectors a with integral 2Sa are given by only two vectors; a,=*%0, 0, 0) and

0, = (0, —% 0).
Put

Jailw, 2) =f{o, 2),

Lo, )=Ciw, s),

0, (w) =0, w), -+ etc.
Consider now the function vector

Z(w, s) = (Eo(a), S)) .

1(0): S)
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Since we have ja; =a;, the following functional equations hold by [Theorem 3;

Cilw, 8)=Ci(w, —3) for 1=0,1
or
Z(w, s) = Z(w, —5).

1
In we see ¢, () =72. By the shape of a, a,, {; has always two poles
at s=1, —1 with residues

1 1
O w)/7*, —0(w)/n*
respectively. We have by
Oo@)= 3 exp(—2nifmi—2rnnmi)
me

@n = EZ exp (—2riwms3)
mie
_ orii AN
0,(w)= m1262 exp ( 2mw(m1 + 5 > ) .

Thus we have the following
THEOREM 3’ (Theorem 3 in the case v=2). (i) 2 satisfies the following
Sunctional equation ;
Z(w, s) = Z(w, —s).

(ii) 2(w, s) can be continued analytically to the whole s-plane, except for
two poles at s=1, —1. The residues at s=1, —1 are

e TAL -3 0,
7). 7 H(g)
respectively.

4.2. Series expansion.
We shall determine the infinite series expansion of ;. First, note that
for any non-zero real numbers a, b, we have

(28) ZI%IuKu(Zlabl): f Texo (- (a2t +-52) 1) ar

p. 85). K, is called the modified Bessel function.
We consider {,. Since

folw, )=0(w) X expCriémem,—nan(mi/y*-+m3iy*))
my,meEZ

B . .2 . 272\ 1
_ao(w){1+m2§0exp( mymiy)+ 3 exp (—mymi/y+ 3 }

and

OZEDZ exp (—zy*mi/n)

1+ ¥ exp (—rxpmi/y*) =—
moF0 7 m

7
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by (17), we have

@) Lo 9={ {flo,i

0@}y 'dy

= Bo(w){fo v, €XP (— miy’) y*idy

R T > exp (—7y'mi/7)y*dy

7]2 0 mo¥0

+f°° 2 eXP(—”U(mﬁ/yz—f—m%yz))y‘-ldy}.

0 mo¥0,ma£0
We can change the order of I and >. Then the first integral gives
- G %)
> | exp(—mymiy)yidy=—""-(s)

ma#oT 0 (mn)?
and the second

R L+ s+1
3 J exp (maymi/myyrdy= (1)L (557U +D),
where {(s) means the Riemann zeta-function. By we have
f:o exp (—zy(mi/y*+miy?)y*='dy
_ 1 °° 2 2 %3"‘1 d
—~—2—f0 exp (—an(mi/y+miy))y*  dy

_| L

i
2 K%, Q2rn|mem,|) .

Summing up the above, we get the series expansion of {,. Also we get the

series expansion of {, if we replace m, by m,4- %

THEOREM 4.
-5 —(s+1)
Lo, s>=oi(w>{ r(s) L)+ r(y6+n) ()= g(s+1)
(z 7)) 7)2
M,

+0(w) X exp2riémem,
moF0,maF0

»MY

1,
e &y, gl mom, ).
REMARK. (1) On the functional equation. Put

o) =a"2" I'(—5)X(s) .

Then it is well-known that
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p(s)=@(l—s)
and

o(s+1)=¢(—s).
Hence if we put

_1, 1,
D(s)=17 2 p(s)+7? @(s+1)
= { }-part in Theorem 4,

then we have
@ D(s)=D(—s).
Thus the right-hand side of the formula in Theorem 4 can be written as

0.()(D(s)+¥(s)), where ¥(s)= f “ Y ..dy (Cf.the last term in (28).

0 myF0,maF0

Here, the integrand 3} ... is obviously invariant under ¥y —1/y and so ¥'(s)
myF=0, moF0

is invariant under s— —s. Hence, together with (), we have the functional
equation of {;(w, s) by the series expansion.

F(h e
1s
@n®
Since we have F(—%~)=\/E and Res{(s)=1, we get the residue 6, (®)/n? of
r(-5-+D)

1
2

(2) On residues and poles. The pole s=1 of {; comes from

L
{;at s=1. The pole s=—1 comes from <—:—Z—>2( ™ ¢(s+1) and

1 .
so we get the residue —6@,(w)/n? of { at s=—1. s=0 looks like

1
r(—s)
a pole of {; at first sight, but the residues of —————I;——C(s) and
(z7)?

r(-5(s+D)

2
1 N 1 1N = _
used Res I'(—5-s)=2 O=——5 I'(+)=+7 and Res {(s)=1.
4.3. Transformation formula.
Put

(—Z—)%(”” &(s+1) at s=0 cancel with each other. Here we

J— fo(w, Z)
7@, 9= (Fw )
We quoted Siegel’s results in § 2 and proved the transformation formula for
f(w, 2) in Proposition 6, In our case (v=2), it is of the following form;

(29) (cot+d) % (ca+d) f(0(w), 2) = A(0)f (@, 2)
for o———(? S)EF with ¢>0 or ¢=0 and d=1. In by (8)~(12), [(15),
(16), we have
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A(o) = (exp *}ni)z—% c g'(Zax,(a)) if ¢+#0,

(30) 1 0
= if =0 .
(O exp (— %—-xbi)) voe

In particular for 0‘:((1) —O>’ 022((1) }), takes the following form

o=t (o S D).

@D 1 0
A(a,) = .
(@) (0 exp (— -%—m’))

Now we shall prove that Z(w, s) satisfies the same transformation formula
as that for f(w, z). (Therefore we call Z(w, s) the zeta-theta function.) Since
o,, 0, generate I' and we know (12’), it is sufficient to prove that the trans-
formation formulas of Z(w, s) for o,, g, are given by with Thus
our job is to show the following:

(32) K1/, =2 (exp yri)o? &(] _])%w, ),
1 0

(33) Z(w+1, s)= Z(w, s).
(0 exp (——%—ni))

First we prove
LEMMA 5.

(i) O—1/w)=(-5i@)* O+,

@) O(—1/w)=(~5-i@)* Bo(w)—0y(@)).

PrOOF. By the theta-inversion formula (17), we have

% exp(—2ri(—1/@m)=(—iz)? 3 exp(——ywiami).

my<Z my-Z

Then
S exp (—-—%—m’&m?) = 3 Sexp(— Lria@m+ar)

amod2 m
= %} exp (—Zniam"’)—{—% exp (—2zi5(m+—é—)2) .

Hence (i) holds. The proof of (ii) will go in the same way.
Now
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@ sve9=(2 )
=G ) " e

The first integrand is equal to

2t (e Jmi)ota(} 1)(Jo D))

by [(29), [(30), [BI). The second integrand is equal to, by Lemma 5,

b (gt (1 D(32) 7 o bedetell (D)

Observing that Im (—1/w)=nw '@, we have

-1 1\ 1 /1 1>S°°{<fo(w, iy)) y (00((»))} -
—9272 = 2 - —_—
@9 =27% (expmio a(y 1)\ 1(Ferm 5 8@ ]
-—:2'% (exp %m’)w% a_)(fll _i)z(a), s).
Hence we have proved Next we shall prove By definition,

st (AR (e e

vZ
By [(29), (30, [B1), we see
Solow+1, 1y) 1 0 Solw, i)
(fl(w+1, 1y) ) B ( 0 exp (—-%ni)) ,(fl(w, iy)> '

Also by the definition of #;, we have

Ow+1)=0,w)
and

. 1 \2
0,(0+1)=Sexp —2ri(@+1)(m+—5-)

= (exp (———%ﬁti))ﬁl(w—}— D.

Therefore,

Z(w+1, )= ( ! 0 )z(a), s).

1 exp (———%—m’)

Finally we get the following
THEOREM 5. The zeta-theta function Z(w, s) satisfies the transformation

Sformula;
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(cot+d) ¥ (cat+d) B(0(), )= AD)Zw,5)  for a=(* Yer.

REMARK. We considered only the case v=2 in this section. For v=14,
we put
Ga(v; @, 5)
Z2v; o, S)=( : )
Co(v; @, 8)

with {,, in 3.1. It is hopeless to see whether this Z(v; o, s) satisfies the same
transformation formula as that of f(v; w, z). Hence we propose the following

PrOBLEM 2. Find the definition of zeta-function Z*(v; w, s) which will be
“theta” function of w at the same time and determine the transformation
formula for Z*(v; w, s) by means of ‘ Gaussian sums”.

Tsuda College, Tokyo
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