Structure of rings satisfying certain polynomial identities

By Mohan S. PUTCHA and Adil YAQUB

(Received May 4, 1971)

A well-known theorem of Jacobson [2] asserts that if R is an associative ring with the property that, for all x in R, there exists an integer m(x) > 1 such that $x^{m(x)} = x$, then R is isomorphic to a subdirect sum of fields. Our present object is to extend Jacobson's Theorem by determining the structure of a certain class of associative rings satisfying polynomial identities involving n elements x_1, \dots, x_n of R. In order to be able to state this generalization, we first define a word $w(x_1, \dots, x_n)$ in x_1, \dots, x_n to be a product in which each factor is x_i for some $i=1, \dots, n$. A polynomial $f(x_1, \dots, x_n)$ is, then, an expression of the form $c_1w_1(x_1, \dots, x_n) + \dots + c_mw_m(x_1, \dots, x_n)$, where the c_i are integers. The degree of x_i in the word $w(x_1, \dots, x_n)$ is the number of times x_i appears as a factor in $w(x_1, \dots, x_n)$. Suppose that $f(x_1, \dots, x_n) = c_1w_1(x_1, \dots, x_n) + \dots + c_mw_m(x_1, \dots, x_n)$ is a polynomial in x_1, \dots, x_n . The degree of x_i in $f(x_1, \dots, x_n)$ is the smallest value among the following: degree of x_i in $w_1(x_1, \dots, x_n)$, \dots , degree of x_i in $w_m(x_1, \dots, x_n)$. The following theorem is proved:

THEOREM 1. Suppose R is an associative ring and n is a fixed positive integer. Suppose that for all elements x_1, \dots, x_n of R, there exists a polynomial $f = f_{x_1,\dots,x_n}(x_1, \dots, x_n)$, depending on x_1, \dots, x_n , such that degree of each x_i in $f \ge 2$, and suppose

$$x_1 \cdots x_n = f_{x_1, \dots, x_n}(x_1, \dots, x_n)$$
.

Then R is isomorphic to a subdirect sum of fields and a nilpotent ring S satisfying $S^n = (0)$.

Observe that Theorem 1 generalizes Jacobson's Theorem quoted above (take n=1 and $f_{x_1}(x_1)=x_1^{m(x_1)}$).

In preparation for the proof of Theorem 1, we proceed to establish the following lemmas. But, first, we make the assumption that n > 1 throughout, since Theorem 1 is true for n = 1 (see proof of Lemma 3).

LEMMA 1. Suppose S is an associative subdirectly irreducible ring which does not have an identity. Suppose, moreover, that for all x_1, \dots, x_n in S, there exists a polynomial $f = f_{x_1, \dots, x_n}(x_1, \dots, x_n)$, depending on x_1, \dots, x_n such that

(1)
$$x_1 \cdots x_n = f_{x_1, \dots, x_n}(x_1, \dots, x_n); \text{ degree of each } x_i \text{ in } f \ge 2.$$

Then (i) S has no nonzero idempotent elements; (ii) S is a nil ring.

PROOF. First, we show that all the idempotents of S are in the center. Let $e^2 = e \in S$, and let $x \in S$. By (1), there exists a polynomial $f = f_{e,e,\cdots,e,ex-exe}(e,e,\cdots,e,ex-exe)$ such that

(2)
$$ee \cdots e(ex-exe) = f$$
; degree of each argument in $f \ge 2$.

Now, each word in the polynomial f involves e at least twice and involves ex-exe at least twice (as a factor). Thus each word of f involves $(ex-exe)^2 = 0$, or involves (ex-exe)e = 0, and hence f = 0. Therefore, by (2), ex = exe. A similar argument shows that xe = exe, and hence e is in the center. Next, we prove that e = 0. To this end, define A and B by

$$A = \{ex - x \mid x \in S\}, \quad B = \{ex \mid x \in S\}.$$

Since e is in the center of S, it is easily seen that both A and B are ideals in S, and, moreover, $A \cap B = (0)$. But, since S is subdirectly irreducible, the intersection of all *nonzero* ideals in S is nonzero, and hence A = (0) or B = (0). Now, the possibility A = (0) is ruled out since, by hypothesis, S does not have an identity. Therefore B = (0), and hence e = ee = 0. This proves (i).

To prove (ii), let $x \in S$ and set $x_1 = \cdots = x_n = x$ in (1), we get

(3)
$$x^n = x^{2n} f(x)$$
 for some polynomial $f(x)$ with integer coefficients.

Hence $e = x^n f(x)$ is idempotent, and therefore by (i), $x^n f(x) = 0$. Thus, by (3), we obtain

$$(4) x^n = 0 for all x in S,$$

and the lemma is proved.

LEMMA 2. Under all the hypotheses of Lemma 1, we have $S^n = (0)$.

PROOF. Let $x \in S$. Then by (4), $x^n = 0$, and hence there exists a smallest positive integer m such that

(5)
$$x^m S^{n-1} = (0), \quad S^{n-1} x^m = (0), \quad m \text{ minimal.}$$

We now assume that m>1 and obtain a contradiction. First, observe that if $N \ge n$, then by replacing x_n by $x_n x_{n+1} \cdots x_N$ in (1), where $x_1, \cdots, x_N \in S$, we obtain a polynomial $g = g_{x_1, \cdots, x_N}(x_1, \cdots, x_N)$ such that

(6)
$$x_1 \cdots x_N = g_{x_1,\dots,x_N}(x_1, \dots, x_N)$$
; degree of each x_i in $g \ge 2$;

$$i=1, \dots, N \qquad (N \geq n)$$
.

Now, suppose $r_1, \dots, r_{2mn-(m-1)} \in S$, and define

(7)
$$x_1 = x^{m-1}r_1, \dots, x_{2mn-(m-1)} = x^{m-1}r_{2mn-(m-1)};$$
$$x_{2mn-m+2} = \dots = x_{2mn} = x.$$

Then, by (6) and (7), we get (taking N=2mn)

(8)
$$(x^{m-1}r_1)\cdots(x^{m-1}r_{2mn-(m-1)})x^{m-1}=g_{x_1,\cdots,x_{2mn}}(x_1,\cdots,x_{2mn}),$$

where "x" appears as a factor in each word $w = w(x_1, \dots, x_{2mn})$ of g at least $2(m-1) \ge m$, since $m \ge 2$. (This follows since each of $x_{2mn-m+2}, \dots, x_{2mn}$ appears at least twice in w.) Now, if all of these x's appear together in w, then w involves x^m . On the other hand, if some two of these x's are separated in the word w, then w involves the product $x(x^{m-1}r_j)x$, and hence again w involves x^m . Thus w has one of the forms

(9)
$$w = x^m w_1$$
, or $w = w_2 x^m$, or $w = w_3 x^m w_4$.

Hence, by (5), (6), (7), (8), and by a consideration of degrees, we conclude that the word $w = w(x_1, \dots, x_{2mn})$ satisfies the following:

(10)
$$w \in x^m S^{n-1}$$
, or $w \in S^{n-1} x^m$, or $w \in S^{n-1} x^m S$, or $w \in S x^m S^{n-1}$.

Hence, by (5) and (10), w=0 for every word w in g. Therefore, g=0, and hence by (8),

(11)
$$(x^{m-1}S)^l x^{m-1} = (0) \qquad (l = 2mn - m + 1).$$

Now, returning to (1), an easy induction (which we omit) shows that, for all x_1, \dots, x_n in S, there exists a polynomial $h = h_{x_1, \dots, x_n}(x_1, \dots, x_n)$ such that

(12)
$$x_1 \cdots x_n = h_{x_1, \dots, x_n}(x_1, \dots, x_n); \text{ degree of each } x_i \text{ in } h \ge l+3.$$

Let $x_1 = x^{m-1}$, $x_2 = r_1$, ..., $x_n = r_{n-1}$ in (12), we get

(13)
$$x^{m-1}r_1 \cdots r_{n-1} = h(x^{m-1}, r_1, \cdots, r_{n-1});$$
 degree of each argument in $h \ge l+3$.

Now, let w be any word in the polynomial h in (13). Then, either w involves $x^{m-1}x^{m-1}$ and hence w involves x^m —in which case w=0 by above argument, or w has the form

$$(14) w = \cdots x^{m-1} \cdots x^{m-1} \cdots x^{m-1} \cdots$$

Since, by (13), x^{m-1} appears at least l+3 times in (14), we easily see that

$$(15) w \in S \lceil (x^{m-1}S)^l x^{m-1} \rceil S.$$

Hence, by (15) and (11), w=0 for every word w in the polynomial h in (13), and (13) thus reduces to

$$x^{m-1}r_1\cdots r_{n-1}=0$$
, for all $r_1,\cdots,r_{n-1}\in S$.

Therefore, $x^{m-1}S^{n-1}=(0)$. A similar argument shows that $S^{n-1}x^{m-1}=(0)$. Hence, we have

(16)
$$x^{m-1}S^{n-1} = (0), \quad S^{n-1}x^{m-1} = (0).$$

This, however, contradicts the minimality of m (see (5)). This contradiction proves that m=1, and hence by (5), we have

$$xS^{n-1} = S^{n-1}x = (0)$$
, for all $x \in S$.

Therefore, $S^n = (0)$, and the lemma is proved.

LEMMA 3. Suppose S is an associative subdirectly irreducible ring with identity 1 (1 \neq 0). Suppose, moreover, that for all x_1, \dots, x_n in S, there exists a polynomial $f = f_{x_1,\dots,x_n}(x_1, \dots, x_n)$, depending on x_1, \dots, x_n such that

(17)
$$x_1 \cdots x_n = f_{x_1, \dots, x_n}(x_1, \dots, x_n); \text{ degree of each } x_i \text{ in } f \ge 2.$$

Then S is a field of prime characteristic p, and, moreover, for every x in S, there exists a positive integer k(x) such that $x^{p^{k(x)}} = x$.

PROOF. Let $x \in S$. In (17), set $x_1 = x$, $x_i = 1$ for each $i \neq 1$. We get

(18)
$$x = x^2 p_x(x)$$
; $p_x(x)$ is a polynomial (with integer coefficients).

Now, by a well-known theorem of Herstein [1], equation (18) implies that S is commutative. Moreover, it is easy to see that, in view of (18), S has no nonzero nilpotent elements. Hence [3; p. 130] S is a field. Again, on account of (18), the prime field of S must be GF(p), p prime. Hence, by (18) again, every element x in S is algebraic over GF(p), and therefore the subfield F_x of S generated by x is finite. Thus, as is well-known, $x^{p^{k(x)}} = x$ for some positive integer k(x), and the lemma is proved.

We are now in a position to prove Theorem 1.

PROOF OF THEOREM 1. It is well-known [3; p. 129] that the ground ring R is isomorphic to a subdirect sum of subdirectly irreducible rings S_i , $i \in \Gamma$. Moreover, each such ring S_i , being a homomorphic image of R, inherits all the hypotheses imposed on the ring R (in Theorem 1). Hence, by Lemmas 2, 3, we have that each S_i is either a field with the properties described in Lemma 3, or S_i satisfies $S_i^n = (0)$. Now, it is easily seen that we can collect all the nilpotent rings S_i together and thus obtain a nilpotent ring S satisfying the conclusion of Theorem 1. This proves the theorem.

We conclude with the following

REMARK. The following two examples show that the restrictions on the degrees in Theorem 1 and Lemmas 1, 2 cannot be weakened.

EXAMPLES. Let R_1 , R_2 be given by

$$R_1 = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \middle| 0, 1 \in GF(2) \right\},$$

$$R_2 = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \middle| 0, 1 \in GF(2) \right\}.$$

It is easy to check that, for all x, y in R_1 ,

$$xy = x^m y^n + x^q y + (xy)^n$$
, for all positive integers m , n , q .

However, the subdirectly irreducible ring R_1 does not satisfy the conclusions of any of Theorem 1, Lemma 1, or Lemma 2. Similarly, we have, for all x, y in R_2 ,

$$xy = x^m y^n + xy^q + (xy)^m$$
, for all positive integers m , n , q .

Again, the subdirectly irreducible ring R_2 does not satisfy the conclusions of any of Theorem 1, Lemma 1, or Lemma 2.

University of California Santa Barbara, California 93106

References

- [1] I.N. Herstein, The structure of a certain class of rings, Amer. J. Math., 75 (1953), 864-871.
- [2] N. Jacobson, Structure theory for algebraic algebras of bounded degree, Ann. of Math., 46 (1947), 695-707.
- [3] N.H. McCoy, Rings and ideals, Carus Monographs, M.A.A. Publications, No. 8, 1948.