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A well-known theorem of Jacobson [2] asserts that if $R$ is an associative
ring with the property that, for all $x$ in $R$ , there exists an integer $m(x)>1$

such that $x^{m(x)}=x$ , then $R$ is isomorphic to a subdirect sum of fields. Our
present object is to extend Jacobson’s Theorem by determining the structure
of a certain class of associative rings satisfying polynomial identities involv-
ing $n$ elements $x_{1}$ , $\cdot$ .. , $x_{n}$ of $R$ . In order to be able to state this generaliza-
tion, we first define a word $w(x_{1}$ , $\cdot$ .. , $x_{n})$ in $x_{1}$ , $\cdot$ .. , $x_{n}$ to be a product in which
each factor is $x_{i}$ for some $i=1$ , $\cdot$ .. , $n$ . A polynomial $f(x_{1}$ , $\cdot$ .. , $x_{n})$ is, then, an
expression of the form $c_{1}w_{1}(x_{1}$ , $\cdot$ .. , $x_{n})+\cdots+c_{m}w_{m}(x_{1}$ , $\cdot$ .. , $x_{n})$ , where the $c_{i}$ are
integers. The degree of $x_{i}$ in the word $w(x_{1}, \cdots , x_{n})$ is the number of times
$x_{i}$ appears as a factor in $w(x_{1}$ , $\cdot$ .. , $x_{n})$ . Suppose that $f(x_{1}$ , $\cdot$

., , $x_{n})=c_{1}w_{1}(x_{1}$ , ,
$x_{n})+$ $+c_{m}w_{m}(x_{1}, x_{n})$ is a polynomial in $x_{1},$ $x_{n}$ . The degree of $x_{i}$ in
$f(x_{1}$ , $\cdot$ .. , $x_{n})$ is the smallest value among the following: degree of $x_{i}$ in $w_{1}(x_{1}$ ,
... , $x_{n}$), $\cdots$ degree of $x_{i}$ in $w_{m}(x_{1}, \cdots , x_{n})$ . The following theorem is proved:

THEOREM 1. Suppose $R$ is an associative ring and $n$ is a fixed positive
integer. Suppose that for all elements $x_{1},$ $\cdots$ , $x_{n}$ of $R$ , there exists a polynomial
$f=f_{x1,\ldots,x_{n}}(x_{1}, \cdots x_{n})$ , depending on $x_{1}$ , $\cdot$ .. , $x_{n}$ , such that degree of each $x_{i}$ in $f$

$\geqq 2$ , and suppose
$x_{1}\cdots x_{n}=f_{x1,\ldots,x_{n}}(x_{1}, x_{n})$ .

Then $R$ is isomorphic to a subdirect sum of fields and a nilpotent ring $S$ satis-
fying $S^{n}=(0)$ .

Observe that Theorem 1 generalizes Jacobson’s Theorem quoted above
(take $n=1$ and $f_{x_{1}}(x_{1})=x_{1}^{m(x_{1})}$).

In preparation for the proof of Theorem 1, we proceed to establish the
following lemmas. But, first, we make the assumption that $n>1$ throughout,
since Theorem 1 is true for $n=1$ (see proof of Lemma 3).

LEMMA 1. Suppose $S$ is an associative subdirectly irreducible ring which
does not have an identity. Suppose, moreover, that for all $x_{1},$ $\cdots$ , $x_{n}$ in $S$, there
exists a polynomial $f=f_{x_{1}-,x_{n}}\rangle(x_{1}, x_{n})$ , depending on $x_{1},$ $\cdots$ , $x_{n}$ such that

(1) $x_{1}\cdots x_{n}=f_{x_{1},\sim_{J}x_{n}}(x_{1}, x_{n})$ ; degree of each $x_{i}$ in $f\geqq 2$ .
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Then (i) $S$ has no nonzero idempotent elements; (ii) $S$ is a nil ring.
PROOF. First, we show that all the idempotents of $S$ are in the center.

Let $e^{2}=e\in S$, and let $x\in S$. By (1), there exists a polynomial $f=f_{e,e,\cdots,e,ex- exe}(e$ ,
$e,$ $\cdots$ $e$ , ex–exe) such that

(2) $ee\cdots e(ex-exe)=f$ ; degree of each argument in $f\geqq 2$ .
Now, each word in the polynomial $f$ involves $e$ at least twice and involves
$ex-exe$ at least twice (as a factor). Thus each word of $f$ involves ($ex-$ exe)2
$=0$ , or involves $(ex-exe)e=0$ , and hence $f=0$ . Therefore, by (2), $ex=exe$ .
A similar argument shows that $xe=exe$ , and hence $e$ is in the center. Next,
we prove that $e=0$ . To this end, define $A$ and $B$ by

$A=\{ex-x|x\in S\}$ , $B=\{ex|x\in S\}$ .
Since $e$ is in the center of $S$, it is easily seen that both $A$ and $B$ are ideals
in $S$, and, moreover, $A\cap B=(O)$ . But, since $S$ is subdirectly irreducible, the
intersection of all nonzero ideals in $S$ is nonzero, and hence $A=(0)$ or $B=(0)$ .
Now, the possibility $A=(O)$ is ruled out since, by hypothesis, $S$ does not $hav\epsilon$

an identity. Therefore $B=(O)$ , and hence $e=ee=0$ . This proves (i).

To prove (ii), let $x\in S$ and set $x_{1}=\ldots=x_{n}=x$ in (1), we get

(3) $x^{n}=x^{2n}f(x)$ for some polynomial $f(x)$ with integer coefficients.

Hence $e=x^{n}f(x)$ is idempotent, and therefore by (i), $x^{n}f(x)=0$ . Thus, by (3),

we obtain

(4) $x^{n}=0$ for all $x$ in $S$ ,

and the lemma is proved.
LEMMA 2. Under all the hypotheses of Lemma 1, we have $S^{n}=(0)$ .
PROOF. Let $x\in S$. Then by (4), $x^{n}=0$ , and hence there exists a smallest

positive integer $m$ such that

(5) $x^{m}S^{n- 1}=(0)$ , $S^{n-1}x^{m}=(0)$ , $m$ minimal.

We now assume that $m>1$ and obtain a contradiction. First, observe that
if $N\geqq n$ , then by replacing $x_{n}$ by $x_{n}x_{n\prec\cdot 1}\cdots x_{N}$ in (1), where $x_{1},$ $\cdots$ , $x_{N}\in S$, we
obtain a polynomial $g=g_{x_{1},\cdots,x_{N}}(x_{1}, x_{N})$ such that

(6) $x_{1}\cdots x_{N}=g_{x_{1},\cdots,x_{N}}(x_{1}, x_{N})$ ; degree of each $x_{i}$ in $g\geqq 2$ ;

$i=1,$ $\cdots$ $N$ $(N\geqq n)$ .
Now, suppose $r_{1},$ $r_{2mn-(m- 1)}\in S$, and define

$x_{1}=x^{m- 1}r_{1},$ $\cdots$ $x_{2mn-(m-1)}=x^{m-1}r_{2mn-(m-1)}$ ;
(7)

$x_{2mn-m+2}=...$ $=x_{2mn}=x$ .
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Then, by (6) and (7), we get (taking $N=2mn$)

(8) $(x^{m- 1}r_{1})\cdots(x^{m- 1}r_{2mn-(m- 1)})x^{m- 1}=g_{x1,\cdots,x_{2mn}}(x_{1}, x_{2mn})$ ,

where $x$
’ appears as a factor in each word $w=w(x_{1}$ , $\cdot$ .. , $x_{2mn})$ of $g$ at least

$2(m-1)\geqq m$ , since $m\geqq 2$ . (This follows since each of $x_{2mn- m\neg\cdot 2},$ $x_{2mn}$ appears
at least twice in $w.$) Now, if all of these $x’ s$ appear together in $w$ , then $w$

involves $x^{m}$ . On the other hand, if some two of these $x’ s$ are separated in
the word $w$ , then $w$ involves the product $x(x^{m-1}r_{j})x$ , and hence again $w$ in-
volves $x^{m}$ . Thus $w$ has one of the forms

(9) $w=x^{m}w_{1}$ , or $w=w_{2}x^{m}$ or $w=w_{3}x^{m}w_{4}$ .
Hence, by (5), (6), (7), (8), and by a consideration of degrees, we conclude
that the word $w=w(x_{1}, \cdots, x_{2mn})$ satisfies the following:

(10) $w\in x^{m}S^{n- 1}$ , or $w\in S^{n-1}x^{m}$ , or $w\in S^{n-1}x^{m}S$ , or $w\in Sx^{m}S^{n-1}$

Hence, by (5) and (10), $w=0$ for every word $w$ in $g$ . Therefore, $g=0$ , and
hence by (8),

(11) $(x^{m- 1}S)^{\iota}x^{m-1}=(0)$ $(1=2mn-m+1)$ .
Now, returning to (1), an easy induction (which we omit) shows that, for all
$x_{1}$ , $\cdot$ .. , $x_{n}$ in $S$ , there exists a polynomial $h=h_{x1,\cdots,x_{n}}(x_{1}$ , $\cdot$ . , $x_{n})$ such that

(12) $x_{1}\cdots x_{n}=h_{x1,\cdots,x_{n}}(x_{1}$ , $\cdot$ .. , $x_{n})$ ; degree of each $x_{i}$ in $h\geqq l+3$ .
Let $x_{1}=x^{m-1},$ $x_{2}=r_{1},$ $\cdots,$ $x_{n}=r_{n-1}$ in (12), we get

(13) $x^{m-1}r_{1}\cdots r_{n-1}=h(x^{m-1}, r_{1}, \cdot.. , r_{n-1})$ ; degree of each argument in $h$

$\geqq l+3$ .
Now, let $w$ be any word in the polynomial $h$ in (13). Then, either $w$ involves
$x^{m- 1}x^{m-1}$ and hence $w$ involves $x^{m}$–in which case $w=0$ by above argument,
or $w$ has the form

(14) $w=$ $ x^{m- 1}\cdots x^{m- 1}\cdots x^{m- 1}\cdots$ .
Since, by (13), $x^{m- 1}$ appears at least $l+3$ times in (14), we easily see that

(15) $w\in S[(x^{m-1}S)^{l}x^{m-1}]S$ .
Hence, by (15) and (11), $w=0$ for every word $w$ in the polynomial $h$ in (13),

and (13) thus reduces to

$x^{m-1}r_{1}\cdots r_{n-1}=0$ , for all $r_{1},$ $r_{n-1}\in S$ .
Therefore, $x^{m-1}S^{n-1}=(0)$ . A similar argument shows that $S^{n-1}x^{m-1}=(0)$ .
Hence, we have

(16) $x^{m-1}S^{n- 1}=(0)$ , $S^{n-1}x^{m-1}=(0)$ .
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This, however, contradicts the minimality of $m$ (see (5)). This contradiction
proves that $m=1$ , and hence by (5), we have

$xS^{n-1}=S^{n-1}x=(0)$ , for all $x\in S$ .
Therefore, $S^{n}=(0)$ , and the lemma is proved.

LEMMA 3. Suppose $S$ is an associative subdirectly irreducible ring with
identity 1 $(1\neq 0)$ . Suppose, moreover, that for all $x_{1},$ $x_{n}$ in $S$, there exists a
polynomial $f=f_{x_{1},\ldots,x_{n}}(x_{1}, \cdots , x_{n})$ , depending on $x_{1},$ $\cdots$ $x_{n}$ such that

(17) $x_{1}\cdots x_{n}=f_{x_{1},\ldots,x_{n}}(x_{1}, \cdots x_{n})$ ; degree of each $x_{t}$ in $f\geqq 2$ .
Then $S$ is a field of $pri$me characteristic $p$ , and, moreover, for every $x$ in $S$,

there exists a positive integer $k(x)$ such that $x^{p^{k(x)}}=x$ .
PROOF. Let $x\in S$. In (17), set $x_{1}=x,$ $x_{i}=1$ for each $i\neq 1$ . We get

(18) $x=x^{2}p_{x}(x)$ ; $p_{x}(x)$ is a polynomial (with integer coefficients).

Now, by a well-known theorem of Herstein [1], equation (18) implies that $S$

is commutative. Moreover, it is easy to see that, in view of (18), $S$ has no
nonzero nilpotent elements. Hence [3; p. 130] $S$ is a field. Again, on account
of (18), the prime field of $S$ must be $GF(p),$ $p$ prime. Hence, by (18) again,
every element $x$ in $S$ is algebraic over $GF(p)$ , and therefore the subfield $F_{x}$

of $S$ generated by $x$ is finite. Thus, as is well-known, $x^{p^{k(x)}}=x$ for some
positive integer $k(x)$ , and the lemma is proved.

We are now in a position to prove Theorem 1.
PROOF OF THEOREM 1. It is well-known [3; p. 129] that the ground ring

$R$ is isomorphic to a subdirect sum of subdirectly irreducible rings $S_{i},$ $ i\in\Gamma$ .
Moreover, each such ring $S_{i}$ , being a homomorphic image of $R$ , inherits all
the hypotheses imposed on the ring $R$ (in Theorem 1). Hence, by Lemmas
2, 3, we have that each $S_{i}$ is either a field with the properties described in
Lemma 3, or $S_{i}$ satisfies $S_{i}^{n}=(0)$ . Now, it is easily seen that we can collect
all the nilpotent rings $S_{t}$ together and thus obtain a nilpotent ring $S$ satis-
fying the conclusion Of Theorem 1. This proves the theorem.

We conclude with the following
REMARK. The following two examples show that the restrictions on the

degrees in Theorem 1 and Lemmas 1, 2 cannot be weakened.
EXAMPLES. Let $R_{1},$ $R_{2}$ be given by

$R_{1}=\{\left(\begin{array}{ll}0 & 0\\0 & 0\end{array}\right)$ , $\left(\begin{array}{ll}0 & 1\\0 & 1\end{array}\right)$ , $\left(\begin{array}{ll}1 & 0\\1 & 0\end{array}\right)$ , $\left(\begin{array}{ll}1 & 1\\1 & 1\end{array}\right)|0,1\in GF(2)\}$ ,

$R_{2}=\{\left(\begin{array}{ll}0 & 0\\0 & 0\end{array}\right)$ , $\left(\begin{array}{ll}0 & 0\\1 & 1\end{array}\right)$ , $\left(\begin{array}{ll}1 & 1\\0 & 0\end{array}\right)$ , $\left(\begin{array}{ll}1 & 1\\1 & 1\end{array}\right)|0,1\in GF(2)\}$ .
It is easy to check that, for all $x,$ $y$ in $R_{1}$ ,
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$xy=x^{m}y^{n}+x^{q}y+(xy)^{n}$ for all positive integers $m,$ $n,$ $q$ .
However, the subdirectly irreducible ring $R_{1}$ does not satisfy the conclusions
of any of Theorem 1, Lemma 1, or Lemma 2. Similarly, we have, for all $x$ ,
$y$ in $R_{2}$ ,

$xy=x^{m}y^{n}+xy^{q}+(xy)^{m}$ , for all positive integers $m,$ $n,$ $q$ .
Again, the subdirectly irreducible ring $R_{2}$ does not satisfy the conclusions of
any of Theorem 1, Lemma 1, or Lemma 2.
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