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A well-known theorem of Jacobson [2] asserts that if R is an associative
ring with the property that, for all x in R, there exists an integer m(x)>1
such that x™*®=x, then R is isomorphic to a subdirect sum of fields. Our
present object is to extend Jacobson’s Theorem by determining the structure
of a certain class of associative rings satisfying polynomial identities involv-

ing n elements x,, ---, x, of R. In order to be able to state this generaliza-
tion, we first define a word w(x,, ---, x,) in x,, ---, x, to be a product in which
each factor is x; for some i=1, ---, n. A polynomial f(x,, ---, x,) is, then, an
expression of the form c,w,(x, --+, Xp)+ -+ +Cnwn(x,, -+, X,), Where the ¢; are
integers. The degree of x; in the word w(x,, ---, x,) is the number of times
x; appears as a factor in w(x,, ---, X,). Suppose that f(x, -+, Xn) = c;w,(xq, ***,
Xp)+ oo FCpWalxy -+, x,) is a polynomial in x, ---, x,. The degree of x; in
f(xy, -+, x,) is the smallest value among the following: degree of x; in w,(x,,
-ee, Xp), -+, degree of x; in w,(x;, -+, x,). The following theorem is proved:

THEOREM 1. Suppose R is an associative ring and n is a fixed positive
integer. Suppose that for all elements x,, ---, x, of R, there exists a polynomial
= forpmzn(X1y -+ 5 Xn), depending on x,, ---, X,, such that degree of each x; in f
=2, and suppose

Xym Xp :fxl,---,wn<x1y Tty xn) .

Then R is isomorphic to a subdirect sum of fields and a nilpotent ring S satis-
fying S™=(0).

Observe that Theorem 1 generalizes Jacobson’s Theorem quoted above
(take n=1 and f,,(x,) = x,™*?),

In preparation for the proof of Theorem 1, we proceed to establish the
following lemmas. But, first, we make the assumption that n>1 throughout,
since Theorem 1 is true for n=1 (see proof of Lemma 3).

LEMMA 1. Suppose S is an associative subdirectly irreducible ring which
does not have an identity. Suppose, moreover, that for all x,, -+, x, in S, there
exists a polynomial f= fy msn(Xy, -+, Xn), depending on x,, -, x, Such that

(¢H) Xyt Xn = formmen(X1 0+ s Xn); degree of each x; in f=2.
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Then (i) S has no nonzero idempotent elements; (ii) S is a nil ring.

PROOF. First, we show that all the idempotents of S are in the center.
Lete?=e= S, and let x S. By (1), there exists a polynomial f= fe ... c,ex-eze(€
e, ---, e, ex—exe) such that

2 ee --- e(ex—exe) = f; degree of each argument in f=2.

Now, each word in the polynomial f involves e at least twice and involves
ex—exe at least twice (as a factor). Thus each word of f involves (ex—exe)®
=0, or involves (ex—exe)e=0, and hence f=0. Therefore, by (2), ex=-exe.
A similar argument shows that xe =exe, and hence ¢ is in the center. Next,
we prove that e=0. To this end, define A and B by

A={ex—x|xe S}, B={ex|xe S}.

Since ¢ is in the center of S, it is easily seen that both A and B are ideals
in S, and, moreover, A B=(0). But, since S is subdirectly irreducible, the
intersection of all nonzero ideals in S is nonzero, and hence A=(0) or B =(0).
Now, the possibility A =(0) is ruled out since, by hypothesis, S does not have
an identity. Therefore B=(0), and hence e=e¢e=0. This proves (i).

To prove (ii), let x= S and set x;,= -+ =x,=x in (1), we get

(3) x"=x%"f(x) for some polynomial f(x) with integer coefficients.

Hence ¢ = x™f(x) is idempotent, and therefore by (i), x*f(x) =0. Thus, by (3),
we obtain

C)) x*=0  for all x in S,

and the lemma is proved.
LEMMA 2. Under all the hypotheses of Lemma 1, we have S™ = (0).
PROOF. Let x=S. Then by (4), x®=0, and hence there exists a smallest

positive integer m such that

(5) xmS*1=(0), Srix™=(0), m minimal.

We now assume that m >1 and obtain a contradiction. First, observe that
if N=n, then by replacing x, by x,X,4, - xy in (1), where x,, ---, xy € S, we
obtain a polynomial g = gu,.,zx(X1, -+, Xy) such that

(6) Xy Xy = Zzy, (X1 -0y Xy); degree of each x; in g=2;

i=1 -, N (Nzn).

Now, suppose 7, -+, Vomn-am-1 € S, and define

. am-1 . am-—1 .
X=X Yy ooty Xomn-m-1 — X Yemn-tm-1 s

)

Xomn-mi2 = *** = Xgmp — X .
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Then, by (6) and (7), we get (taking N=2mn)

€)) x™ ) o (X T emne =) X = Goyyzamal X Xomn) »
where “x” appears as a factor in each word w=w(x,, .-+, Xo;mn) of g at least
2(m—1) = m, since m = 2. (This follows since each of X,nz-mye ***» Xomn appears

at least twice in w.) Now, if all of these x’s appear together in w, then w
involves x™. On the other hand, if some two of these x’s are separated in
the word w, then w involves the product x(x™ 'r,)x, and hence again w in-
volves x™. Thus w has one of the forms

©) w=x"w,, or w=1w,x™, or w—=wsx™w,.

Hence, by (5), (6), (7), (8), and by a consideration of degrees, we conclude
that the word w:w(;cl, e+, Xymn) Satisfies the following:

10 we x™S*™1 or we S*'x™ or we S*'x™S, or we Sx™S"!.

Hence, by (5) and [(10), w=0 for every word w in g. Therefore, g=0, and
hence by (8),

an (x™18)x™ 1 =(0) ({=2mn—m+1).

Now, returning to (1), an easy induction (which we omit) shows that, for all

Xy, o+, X, in S, there exists a polynomial A= hy,,..z,(xy, --+, X,) such that

12) Xyt X =hgy,zn(Xy, -+, Xn); degree of each x; in h=[+3.

Let xlzxm—lr Xo ="y sy Xn="p_1 in [@]’ we get

13) Xy e v = h(x™ Y, 1y, oo, 7o) ; degree of each argument in A
=1+3.

Now, let w be any word in the polynomial z in (13). Then, either w involves
x™1x™"1 and hence w involves x™——in which case w =0 by above argument,
or w has the form

(14) w= ...xm‘l eee xm‘l oo xm“l..._
Since, by (13), x™! appears at least [+3 times in [I14), we easily see that
15) we S[(x™1S)xm™1]S.

Hence, by and [11), w=0 for every word w in the polynomial 4 in (13),
and (13) thus reduces to

x™ ey, =0, for all »,, -+, 7, ES.

Therefore, x™!S"'=(0). A similar argument shows that S™*'x™ !=(0).
Hence, we have

(16) x™ 1871 =(0), Sr-1xm-1—(0).
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This, however, contradicts the minimality of m (see (5)). This contradiction
proves that m =1, and hence by (5), we have

xS =85""1x=(0), for all x= S.

Therefore, S® =(0), and the lemma is proved.

LEMMA 3. Suppose S is an associative subdirectly irreducible ring with
wdentity 1 (1+0). Suppose, moreover, that for all x,, ---, x, in S, there exists a
polynomial f= fp,..0n(Xy, -*+, X3), depending on x,, ---, x, such that

an Xy ot Xn = far,zn(Xy =0y X); degree of each x; in f=2.

Then S is a field of prime characteristic p, and, moreover, for every x in S,

there exists a positive integer k(x) such that x**® =zx.
PROOF. Let xS. In (17), set x,=x, x;=1 for each i+ 1. We get

(18 x=x%*,(x); p.(x) is a polynomial (with integer coefficients).

Now, by a well-known theorem of Herstein [1], equation (18) implies that S
is commutative. Moreover, it is easy to see that, in view of (18), S has no
nonzero nilpotent elements. Hence [3; p. 130] S is a field. Again, on account
of (18), the prime field of S must be GF(p), p prime. Hence, by (18) again,
every element x in S is algebraic over GF(p), and therefore the subfield F,
of S generated by x is finite. Thus, as is well-known, xP*® = x for some
positive integer k(x), and the lemma is proved.

We are now in a position to prove Theorem 1.

PrROOF OF THEOREM 1. It is well-known [3; p. 129] that the ground ring
R is isomorphic to a subdirect sum of subdirectly irreducible rings S;, i [
Moreover, each such ring S;, being a homomorphic image of R, inherits all
the hypotheses imposed on the ring R (in Theorem 1). Hence, by Lemmas
2, 3, we have that each S; is either a field with the properties described in
Lemma 3, or S; satisfies S;*=(0). Now, it is easily seen that we can collect
all the nilpotent rings S; together and thus obtain a nilpotent ring S satis-
fying the conclusion of Theorem 1. This proves the theorem.

We conclude with the following

REMARK. The following two examples show that the restrictions on the
degrees in Theorem 1 and Lemmas 1, 2 cannot be weakened.

EXAMPLES. Let R,, R, be given by

rR={G o G DG o G plor=cra}

R={G o G D G o G Dlorecra}

It is easy to check that, for all x, ¥y in R,,
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xy=x"y"+xY+(x)", for all positive integers m, n, q.

However, the subdirectly irreducible ring R, does not satisfy the conclusions
of any of Theorem 1, Lemma 1, or Lemma 2. Similarly, we have, for all x,
Y in R,,

xy = x"y"+ xyI+4(xy)™, for all positive integers m, n, q.

Again, the subdirectly irreducible ring R, does not satisfy the conclusions of
any of Theorem 1, Lemma 1, or Lemma 2.
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