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§1. Introduction.

Let I=(—o0,0] and dB={B({)—B(s),t,s= 1} be a Wiener random mea-
sure. Given functions a(t, x, v), 8(¢, x, v) and y(t, x, v) on IXR'XR', we con-
sider the stochastic differential equation

(1.1.2) dX SO0 = a(t, X&), U, X S2))dt
+ B, XOO®), U, XO10)dB(t), s<t=0,
X(s,a)(s> =a,

(LLb)  UCs, )= EfX“™(0) exp | "1, XOO(2), Ule, XOo()de, sel,

for a given data f on R!. The stochastic differential equations of this kind
were considered in the investigation of the Cauchy problems for degenerate
quasilinear parabolic equations, since, if U(s, a) is smooth enough, then it
satisfies a backward quasilinear diffusion equation (for example, see [I).

The purpose of this note is to show the existence of a global solution of
(1.1) under some smooth conditions of «, 8, y and f. Concerning the same
stochastic differential equation of d-space variables,

(1.1.a) AX 6D = 3 a,(t, XSO0, Ut, X SO@)dt
i=1

-+ i“ Bii(t, X920, U, XO2(t)NdB;, s=t=0, i1=1,..-d
j—1
X&9()=a, aes R?
(1.1.bY U(s, @) = E f(X®(0)) exp f e, X0, U, XO(N)de, sel

H. Tanaka proved the existence and uniqueness of local solution of (1.1),
under the assumption of boundedness and the Lipschitz condition of a;, B
y and f. As to the global solution of (L.1), N.I. Freidlin [2] showed the
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following result: Assume that (i) B;; does not depend on wu, (ii) there exists
the system of bounded functions ¢,(t, x, u), =1, --- d, such that

Zd) ABij(tr X)QD_,-(Z‘, X, u) - ai(t’ X, u) ’ 1= 1: e d
j=1

(iii) f is bounded and continuous and (iv) Bi;(¢, %), a;(t, x, w), ¢,(¢, x, u) are
bounded, continuous and satisfy the Lipschitz condition in x and u. Then
there exists a global solution of (1. 1)’ and U is unique. In the case of d=1,
namely in the stochastic differential equation (1, 1), we can remove the as-
sumption (i) and get the following theorem.

THEOREM. Let B, 7 and f be bounded functions, which satisfy the following
conditions :

| BCt, x, w—B(s, ¥, )| = W(lt—=sD+W(x—y D+ W(u—v])

L7t x, W—7(s, ¥, V)| = W(|t—s|)+ M| x—y|*+M|u—v|
and

| F)—f(N| < M|x—y]?,

where M and § are positive constants and W is a continuous function with
W(0)=0. Moreover, suppose that B is non-negative and there exists a bounded
function @(t, x, w) such that

a(t, x, uy= @, x, w)B{, x, u)

and
l¢(t’ X, u)—¢(s, Y, 'U)l :—<_— W(l t—s|)+]\7[]x——y|'5——l—]\_4|u——v|

where M and & are positive constants and W is a continuous functions with
W(0)=0. Then we have a solution of (L.1).

A pair of a function U on IXR' and a system of stochastic processes
(X&), s<t<0}, s, ac R on a probability space, is called a solution of
1.1) if it satisfies (1.1) and B (X)) B« ,(dB)¥ is independent of B .,(dB)
for each t=[s, 0.

In §2, we prepare some preliminary facts and construct approximate
solutions, using the Cauchy’s polygonal method as It6-Nisio and Skorokhod
[5] We estimate, in §3, the dependence of approximate solutions on the
initial position (s, @¢). In §4, we show that the system of our approximate
solutions is totally bounded in Prohorov topology and find a global solu-
tion in §5.

In conclusion, the author wish to express her sincerely thanks to Pro-
fessor H. Tanaka for his valuable suggestions.

1) B,n(€) denotes the least Borel algebra for which {(¢) is measurable for each
r<[s, t]. BV B, denotes the least Borel algebra that contains $; and B,.
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§ 2. Preliminaries.

First we list two simple propositions without proof. We call a process
{9(t, w), t=[s, 0]}, on a probability space 2(4, P) a non-anticipating Brownian
functional if

(i) n(, w) is (t, w)-measurable
and

(i) 7x(, -) is B, (dB)-measurable for each e [s, 0].

ProrosITION 1. Let {n(t, w), t=[s, 0]} be a bounded® non-anticipating
Brownian functional and & a B (dB)-measurable function. If a non-anticip-

ating Brownian functional {Z(t), s<t=<0}, with IOEZZ(t)dl‘<oo, satisfies the
stochastic integral equation, S
t
2 =&+ n()2()dB),
then

Z(ty=¢ exp (| :7](1')053(2')— 3 }f(r)dr)
and

E|ZBO|=E|§].

PROPOSITION 2. Suppose that a bounded continuous function g(t, x, u) on
IX R'X R satisfies the following conditions:
8@ x, wW)—g(s, y, V'S Wil i=sD+Wi(lx—y D+ W|u—v]) =12
where W, is a continuous function with W,(0)=0. Define g, by

gn(t, x, w) = (& * No)(t, x, u)

e

> rn -2+ @-w)?
= [ e T gy vdydy.

Then we have

G

—

) &t x, W= sup  [g(, x, W)
t=I,xr,ucR}

(D) &l x W—guls, ¥, V| = Wi([t—sD+Du(|x—y |+ [u—2|)

i) g X W—guls, ¥, V] = Wi([i—sD+W(|x—3])+ Ws(lu—v]|)
Av) g, x, wW—ga(s, ¥, V= Wil t—sD+Wi(lx—y D+ Wi(lu—v])
) 2.(, x, u) converges to g(t, x, u) for each (t, x, u).

In order to construct an approximate solution, we define 3,, r,, ¢,, a, and
Ja by

2) We mean the existence of a constant M such that, for any t=(s, 0], |5(, o) |
< M for almost all @.
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1
‘377,:([3* n)_l— n’ rn:r*l\,ﬂ! ¢n:¢*Nn1

A= B,Pn and fn=f*N,» respectively.
By virtue of and the assumption of [Theorem, we may assume

that there exist a constant L and a continuous functions 8 with (0)=0 such

that, putting ¢ = min (5, 9),

(21) 1§nl§L: Eza,ﬁ,r,Sﬁ,f, 7/1‘:1:2""

2.2 10 X, W) —Ea(s, ¥, V)P Z0P(Jt—=s)+07(|x—y ) +07(Ju—v])
SZQ’y‘B; pzl,zy 71:1,2,"'

(23) !‘Sn(ty X, 1'L)_~§n(sr Y, 7)) I ? g 6p(l t—SD_l'_L | x——.}’lap+L|u-v] P ’
E:T,QS, p:1:2! n:112;"'

and

@249 [ wO—faP= Llx—y|°?,  p=1,2, n=12, .

We define an approximation solution U, and X,*%, for ~—7;1 <s<t=0, as

follows

(2.5) U, @)= fa(@).

2.6) Xpo@=a+ [ aye, X3o), Udle, X0 (@)ds

+§ Bule, X0, Une, X0 @)dB()

By the Lipschitz condition of f,, «a, and 8,, X$® is determined uniquely as
the continuous non-anticipating Brownian functional. Moreover,

EIXFoO—X3P0) = a—b| “er E|X 9 (2)— X $9(c) | *dr

with a constant ). Hence we have

2.7 E| X3P~ XD < |a—b| e,
After we have defined U,(s, @) and X0 for se[— %, F17) e
k-1 k
define them for se[— n -—~-n> by
(s + 1 ,a) 0 (s ! ,a)
(2.8) Un(s, ) =Ef, (X, 7" (O0) expf“_l ralt, Xy 777 )de,
NS :g(ﬂ;m)z

D fuw={ VhoeT ST f(dy.
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and
@9 XgoW=a+] aye, XgO)det [ Bu(e, Xp®)dBe),  tels 01,

where 7,(z, X§?) = r.(z, X&2(z), Up(z, X$?(z))) and similar to «, and 3,. The
following lemma shows the Lipschitz condition of the coefficients in [(2.9), so
that we can determine U,(s, ¢) and X®® for every s and a € R.

LemMa 21, If, for —ﬁ <s<1=<0,

! Un(s: a)""Un(S: b)| = Kld—bl

and
EIXZ3o0)—-X$PM)|* < Kla—b|?,
then there exists a constant K’, (may depends on n) such that, for —rk—{n_l <s
<t=0, '
|Un(s, )—Un(s, B < K'|a—b|
and

Bl X=X ®)* < K'|a—b|*.

Proor. Recalling the definition of U,, we have

IU”(S—”}l{" a)—-Un<s——~71i , b)'

< E|fu(X$0O)—Fo(X $PO) | exp [ Fole, X@)de
+EIfuX 20O (exp [ 74z, X0)dz)

s |1—exp [ (7.6, X$P)—p,(z, X$))de|
< D, BE| X§0(0)— X $0(0)]
+Le~3L85 OE] 7‘71(7'-! X(s,a))_rn(r’ X(S,b)) | dT

by virtue of the inequality, |e*—1|=¢°|x| if [x]|=<c¢. By the assumption of
Lemma 2.1, 7,(r, x) satisfies the Lipschitz condition to x. So, we have the
former half of Lemma. Repeating the similar evaluation as (2.7), we com-
plete the proof of Lemma 2.1.

Taking (2.5) into account, we can choose a constant Q =Q(n, T') so that

2.10) |Un(s, )—U,(s, )| =Qla—b|, s<[T,0].

In order to evaluate, in § 3, the continuity of U,(s, a) we define an auxi-
liary martingale process Y &%, as follows
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Y #0(t) = o+ [ Bule, Y $2)dBE) .
Put Z,()=Y $o(H—Y $P() and

_ Balr, Y3 —Ba(z, Y 2¥)
Na(T) = YSa()—Y @9(7) .

So, 7, is a bounded non-anticipating Brownian functional and
t
Zo() = a—b+ j (D)Zn(2)dB() -

Thus, by [Proposition 1, we have E|Z,()]=|a—b|. Hence concerning the de-
pendence of Y *® on the starting point a, we obtain
LEMMA 2.2

E|Y $90)—Y @' < a—bl",
le©,1], —co<s=t£0, n=1,2,--.
As to the dependence of Y $% on the starting time s, we have
@11) E|Y §20)—Y $9®|=E| [ .z, Y #9)dB()|.
The method of proof of is almost the same as that of
Namely, we have

ZBH =Y o) —-Y o)

— j':’ﬁn(fy Y;f’“»dB(T)—l—j:/ ‘Bn(z-’ nga«))__ﬁn(z-’ Y;is’,a))dB(z_> .
So,
Z(t) = j:"gn(r, Y #0)dB(e)+ [ ‘ L) 2(2)dB(z)

where

_ Bz, Y3 =Bz, Y ")
()= Y&a(2)—Y & (7) T

Therefore, by we get (2.11). Consequently, by [2.1), we have

LEMMA 2.3.

ElYSoO-YpoMI'sLlis'—s|¥?, 1€0,1], aeRl, n=1,2, ---.

§ 3. Continuity of U,(s, a).

In this paragraph, we use the following proposition [5, Chap. 4].
PROPOSITION 3. Suppose that X, is the continuous solution of the stochastic
differential equation,
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X=c+] ;axr, X()de+ ;b@,aX(r»dB(r) , T=t=0,i=12,

the coefficients of which satisfy the following conditions,
(1) a,t, x) and b(t, x) are bounded continuous in (t%x)
(ii) there exists a constant M such that

|E¢ 0—E@ NI=M|x—y|, §=a,a,b
(iii) inf b(t, x) > 0.

(t, @)

Then, for any bounded continuous functional g on C[T, 0],
0 1o,
Eg(X)=Eg(X) exp ([ oz, X,()dB@)~ 5 § ¢, Xiehdr),

where ¢(z, x) = (a,(r, X)—a,(z, x))/b(z, x).
Applying this proposition to U,(s, a), we can express U,(s, a) in the fol-
lowing form,

Un<3— 711 , a): Ef (Y §(0) exp (Lorn(f, Y &@)dr

+f "0u(e, ¥ 9)dB— % forp‘i(r, Y (r@)dr) .
s 8

Putting
K@, 9={oute, YomraB— 3 [ i, vz,
Ji=Elexp J(a, )—exp Jb, )] exp [ (e, Y )dz,
L=Elexp | 1z, Y §9)dr—exp [ 7a(z, Y §¥)dz |exp Jb, 9
and

o= B 50 O) £, (Y 00 exp ([ 7ale, ¥ i)+, 9)

we can see
(31 |U(5= @)= Ua(s— 3+ )| S LU+

In the sequent calculation, K;(s) denotes a suitably chosen constant, which is
increasing when s tends to —oo and does not depend on a, b and n. Using
Holder’s inequality, we have

(3.2 Jis e "(Eexp4Ja, )H(E|L—exp (Jb, )—J(a, ).

Put A={w; |J(b, s)—J(a, s)|>1} and let X he the indicator function of A.
By virtue of the inequality: |e*—1|<e|x| for |x|=1, we can see
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E[1—exp (J(b, s)—J(a, sH|*"
< eE|J(b, s)—Ja, 9)|"*+E|1—exp (J(b, $)—J(a, $))|"*X
< e(E| J(b, s)—J(a, )| +(E{1—exp (J(b, $)—J(a, sH|DV*EX*
= K.(sS)E|J, s)—J@a, 9I*)**

because, for any bounded non-anticipating Brownian functional £ and %, we
can easily see

Eexp(| :E(T)dB(z')—l— { :77(1')(11)
= Eexp ([ 6@aB@— 5 [ @@det 5[ 180+ 29 d)

=exp(— 5 sup (|€%c, )| +2|7(z, w)])) .
Hence, taking into account,3we have
0 1/2
(33) L= KO([ Elpue, Yo)—ou(z, Y ) %d7)

L 2
Putting V,(c)=sup —i-U—’zﬁfl’?’%yggz(;zuy)Jr—», we can see that V,(c) is finite,
TFY

recalling Lemma and the boundedness of U,. On the otherfhand
|0a(z, X, W—@ulr, ¥, V| S 2L x—Y|° ADP+L|u—v|

=2L(Jx—y|NPADHLiu—v| .
So,

lon(z, Y ) —@,(z, Y EDN P Y §9(0) =Y §0(2) | 'V (BL*+2L2V (7))
and, by virtue of

(34 5= K@la—bee(f 1 vi@yar)”
Using the same technique, we have
(35) 1= K@la—b ([ 14V, )de)
and
(36 Jo S EIFY 2 O)— oY §0 O]9 (E exp 2 (b, )"

é K5(3> I a__b I 1/2/\0 .
Therefore, by [3.1), we get

4) cAd=min (c, d).
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U.(s— 1+ 0)—Un(s— L, b)rg KG(T))a—b\1A25(1+js°Vn(z)dr)

T<s<0, g,bs R, n=1,2,--.
This implies,

Va(s=3) S ED+EMD] Vo@de

Hence, we have

3.7 Vi) EK(T)e ¥ < K(T) T=s=0,n=L2,--.
As to the dependence of U,(s, a) on the starting time s, we can prove
(3.8) Via, TYSK(T) asR,n=1,2 -
- ’ __ 2
where V,(a, T)= sup rr»wl(%%g?@l——. In order to obtain we
T=s<8' =0 -

devide |U,(s’, a)—U,(s, a)| into three parts J,, J, and J,, like [3.1), and car.y
out the same technique, using instead of

By (3.7) and [3.8), we have

LEMMA 3.1. For T=<0, there exists a constant D(T) such that

| Un(s, @)—Un(s’, )| = D(T)(| a—b|*N | s—s' | V1177
s,8’[7,0], a,be R, n=1,2, ...

As a special case of Lemma 3.1, we remark the following Lemma, which
will be useful in §5.

LEMMA 3.2. There exists a constant D'(T, t) such that
EltZ X$o) =t X $"P)| < D'(T, t)(|a—b|*N0 4 | s—s7| /*A/%)
s,s’e[T,t], a,beR, n=1,2,--.

§4. Totally boundedness.

First we review the topology of stochastic processes, introduced by Pro-
horov [3] Let S be a separable complete metric space with the metric p,
and #(S) the topological Borel field on S. Given two probability measures
Uy Mt On S(B(S)), the Prohorov distance L(y,, p,) is defined as follows. Let
€;, be the infimum of ¢ such that, for any closed subset F of S

ta(F) = pa(UF) +e

where U.(F) is the e-neighborhood of F. Define ¢,, by switching g, and g,
in the definition of ¢, and set

L({lp {te) = MaAX (€19, &5y) -
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With this metric L the set of all probability measures on S(#8(S)) is a separ-
able complete metric space.

A mapping X(w) from a probability space (8, P) into S is called an S-
valued random variable, if it is measurable in the sence that X-'(B) € & for
every Be #(S). The probability law g, of X is defined as the probability
measure on S(4(S)), i.e.,

o B) = P(X™(B)) .

The Prohorov metric between two S-valued random variables X,, X, (whether
or not they are defined on the same probability space) is defined as the
Prohorov distance between p,, and g, and is denoted by L(X,, X,). We
recall the following two theorems.

THEOREM (Skorokhod). If X,, n=1,2, --- is an L-Cauchy sequence, then
we can construct a sequence Y, n=12,--- and Y on the Lebesgue interval
[0, 1] such that

I

L(X,, Y,)=0
and
P(Y, Y)—-0=1.

By the Lebesgue interval we mean, of course, the probability space 2(8, P)
where $ consists of the Lebesgue measurable subsets of [0,1] and P is

Lebesgue measure on [0, 17.
A family of X,, n=1, 2, --- is called totally L-bounded, if every infinite

sequence {X,,} has an L-Cauchy subsequence.

THEOREM (Prohorov). In order, for X,, n=1, 2, ---, to be totally L-bounded,
it is necessary and sufficient that, for every ¢ >0, there exists a compact subset
K of S such that

PX,eK)>1—e, forn=1,2, ..

In order to construct a solution of (1.1), we are concerned with the metric
space C[s, 0], associated with the usual metric p;; ps(f, g = sup |f()—g(®)].
te(s,0]

In the case, we have the following useful criterion for the totally L-bounded-

ness.
PROPOSITION 4. &,, n=1, 2, --- is totally L-bounded, if there exists a posi-

tive constant ¢ such that, for n=1, 2, ---,

E&(s)=c
and
E|&. (=& = clt—1']*.
Let (s;,a,) t=1, 2, --- be a dense set of /X R'. We denote by D, the direct
product space C[s;, 01X C[s;, 0] which is also a separable complete metric
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space with the metric p,(f, &= 0,,(/f1, 81) +05,(fo £2), [= (1, 1), 8=(81 8-
Appealing to the above proposition 4, we can easily see that the family of

approximate solution X ¢, n=1, 2, --- is totally L-bounded, by the bounded-
ness of a, and B,. Therefore we have

LEMMA 4.1. The family of D;-valued random variables (X §v*, By;) n=1,
2, -+, where By(t)= B{)—B(s), t<[s, 0], is totally L-bounded.

We are concerned with the separable complete metric space S= D, XD, X ---

with the metric p(/, g)zé}1 21,,,1:?_”.7;)(7{,27};52;)  F=(Fu for ) 8=(G0 Gor -

By Lemma 4.1, we have, for ¢ >0, a compact subset K; of D, such that
P(XSoo0, By e K)>1— s, n=1,2 .

Since the product set K, x K, X --- is also compact in S, we obtain

LEMMA 4.2. The family of S-valued random variables X, = (X, B;),
(X2 By, -), n=1,2, ---, is totally L-bounded.

Therefore, recalling Lemma 3.1, we can find a subsequence n,, so that
U,; converges uniformly on every compact subset of /X R' and an. converges
in Prohorov metric. By Skorokhod’s theorem, we can construct S-valued
random variables YV ;= (Y §v*0, B, ), (Y §>%?, B; ), =) j=1, 2, --- oo, on a cer-
tain probability space so that

(4:.1) L(Y], an):O’ j:]-) 2) M
and
%) P(o(Y, Y.)—0)=1.

Hence, B, 1=1, 2, --- satisfy the following consistency condition, with pro-
bability 1,
4.3) B ()—Bj,5,(8) = Bj,51 () —Bj,51,(8)

$; Vs =s<t=0.
So, we have the Wiener random measure dB; such that B;(0)—B;(s;) = B;,(),
s; =t=0, and (dBy, Y§vrer, Y§»e> ...y has the same probability law as (dB,

X§pav, X@2av, ...). On the other hand, by [4.2), we have also the Wiener
random measure dB, such that B ,(t) = Bu() —B(s;).

§5. Existence of solutions.

In this paragraph, we shall construct a solution of (1.1), making use of
Y. and dB, of §4.
Put U(s, @)= lim U,,(s, @) and we shall prove



Stochastic dijferential equations 289

LEMMA 5.1
(D) Bey,o(YE9)V B n(dB.) is independent of By,n(dB.) for every
te[sir O:I:

(i) Ulsi, ag) = EfY $079(0)) eXPJO 7(z, Y8u(c), U(z, Y 80°9(z)))dx,
(iii) with probability 1,

yeo=a+| a(z, Yoo, U, Y @)de

+[' B, Ye0u0(@), U, Y80m0@)dB.(), 5,510,

Proor. Q(si,t)(ngj’“i))\/ Bi-w,p(dB) is independent of B ,(dB), by the
definition of X{?*’. Therefore Be,,»n(Y $4*9)V Bc...s(dB;) is independent of
Ba,0n(dB;) and so (i) holds by [(4.2)

Recalling [Lemma 31, we have

l Unj(fi xj)'_U(T9 X) I é l Unj(f’ xj)_Un_,(T; X) I + l Unj(‘l.', X)‘—U<Z', X)l

= D(T)| x;—x|"*N+ Uy (7, )—Ul(z, 0)|.
So, with probability 1,

GAY) Up(z, Y §00(e)) = Uz, Y 3*0(2)),  si=7=0.
Therefore, with probability 1,
(5.2) €.z, Y $utd(r)) — &(z, YV Suto)» $;27=0,&=a,8 7.

Hence, by Lebesgue’s convergence theorem, we have
0
EF(Y gom2(0) exp | y(z, ¥ 809)dz
8
0
= lim B/, (Y §o20O) exp | 7, (z, ¥ jou0)dz
J 8q
. 1
= hjm U si—-ﬁ—j», ai) =U(sy, a;).

Since Y 85*? are continuous with probability 1, it is enough, for the proof
of (ii), to prove for each ¢ that

(i)’ Y gm0 = ait [ a(z, Y @0o0)de+ [ Bz, ¥ 59%90)dBu(z)

holds with probability 1. Again by Lebesgue’s convergence theorem and

(5.2), we have
14
(5.3) [ an e, Yooz — [ ate, Yooy

5 ale, x)=alzr, x(z), ulz, x(z))), etc.
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Put Ij:jt Bas(z, Y sue)dB,, j=1, 2, --- 0,” and let L;(4) be the approximate
84

sum of [; for a division 4; s;,=v,<v, < --- <y;=t On the other hand, re-
calling [Proposition 2 and [Lemma 3.1l we can choose a bounded and continuous
function § with #(0)=0, so that

!ﬁnj(f, Y}"*i,av)“ﬁnj(l‘, Y;.si,ai>)| < 0~(] T—tl)+5(‘ Y;Si,ﬂi)(r)“ygsi7ai)(t)I)
s;€[T,0], ac R, j=1,2, -, 0.

Therefore, for ¢ >0, there exists a division 4 such that
(5‘4) Ele—Lj(A)‘2<6, ]:1’ 2,...’00.

On the other hand, Li(4) tends to L.(d4) with probability 1. So, I; tends to
I, in probability. Hence, taking into account, we have (iii)’.

In order to complete the proof of [Theorem, we shall evaluate the de-
pendence of X{® on the initial point (s, ) using Since «, and
B, are bounded, we have a positive d =d(e), for ¢ >0, such that

1 1 B
PUXEo0|>d)<e, lal< _, se[-a ,0], n=12, .

Since [t;x—t;‘ylgjf_:é’} for |x|, |¥|=d, we get
6.5) P X$o()—X VO] > 9

=PUX2M|>d)+PUXT2B]> d)
+P(I1 XgoO—t X$PO1> (5 )
2
=< 25_|_ l‘l‘d El f;ngf’a)(t)—l‘ng(s"b)(t)]

< et 14-a® D’( l , t>(|a~b]1/2/\‘7—[—|s—s’|1-’“/\‘”2)

€
S,S’E[—i,t], a,be R, n=1,2, -

Therefore, by [42), we have a positive hA=~h(e¢) such that, for |a;|, |a]
1 1
= P Siy Sk € [—’*8"”, t]: la;—ax| <h and |s;—sg| <h,

P(|Y (=Y om0 > &) <e,  j=1,2 -, 00.
So, when (s;, a;) tends to (s, @), Y §i*? convefges in probability. Setting

Y ¢o(t) =p— lim Y st j=12, ., 0,

6) Boo=f.

i
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we can see that

(5.6) .CB(S’t)(Y‘(;’a))\/@(_w,l)(dBj) is independent of ﬁ(t,o)(dBj)’
].:11 2: e, 00,

and

G.7) PAYS™O—YEw@ > <e, =12 00,

1 14 1 /
for |al, |D|= 0SS E[— . ,t], la—b| < h and |s—s’| < h.

Hence,
5.8) PY&2@O—=Y 5] > 3e)
S PY §O()—Y §ot0(t)| > o)+ P(|Y §o0()—Y S0 ()] > ¢)
+P(|Y §o:00()—Y &9()| > &) —0, as j—co.

On the other hand, (Y §{®, dB;) has the same probability law as (X{;”, dB),
since X&®(t)=p— lim X %2>, by [55). So, Y{#® are continuous and satisfy
si—8
aq;—a
the same stochastic1 differential equation as X{:®. Thus the family of Y{®,
j=1,2, . is totally L-bounded. Therefore, by [5.8), Y {* is itself an L-
Cauchy sequence, whose L-limit has the same probability as Y ®*. Hence
Y &% are continuous.
Since a(r, Y &*)=p—lim a(r, Y $»*?) and f(z, Y §*)=p—limfB(z, ¥ $¥?),

838 %4
a;—a ag—a

we have, for each ¢,

t t
(5.9) Jl a(z, Yéf,’“>)dr+j Bz, Y &*)dB.,

t t
— Lim j a(z, Y 50o9)dr -+ j Bz, Y $0e0)dB.,

S5
a;—a

by the boundedness of @ and B. Recalling Lemma 5.1, we have, with pro-
bability 1,

Yoo =a+ [ at, Y $2)det [ fz, Y&)dB., for every te[s, 01,
by virtue of the continuity of Y &®.
As to U(s, a), we get
0
UGs, )= lim Us,, a)) = lim Ef(Y ssm0@) exp | 1z, ¥ $0o0)dz

$5—8
a;—a a;—a

0
= Ef(Y &$2(0)) exp j r(t, Y &9)dr .

This completes the proof of [Theoreml
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