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§0. Introduction.

0-1. In [HP], Y. Ihara proved that the Hecke polynomials H?(u) of the
elliptic modular group SL(2, Z) can be expressed by the congruence zeta
functions of some algebraic varieties. There, he used some properties of
imaginary quadratic fields and elliptic curves defined over finite fields. But
in the preface of [HP], he stated that more intrinsic proof and generalization
to higher level cases would be obtained by using the group

I'y,=PL*(2, ZP)y={x= GL(2, Z?) | det x = p-power}/+p-powers,

where Z® = Gp‘”ZC Q. We shall carry out this program in this paper.
n=0

0-2. Let p be a prime number, I = PSL(2, Z‘») and 4 be its subgroup
of finite index. We shall define the Hecke polynomial of 4 and study it in
this paper. We shall treat only subgroups of PSL(2, Z‘?), which is a subgroup
of PL*(2, Z») of index 2. This restriction simplifies the calculations and
notations to a fair degree. Moreover, this restriction makes no difference if
we are interested only in the absolute values of the zeros of the Hecke poly-
nomials (cf. § 1, Remark 2). But, of course, we can obtain similar results in
the general case.

In the first section, we define the Hecke operators T,(4, m) which act on
the space of the cusp forms of weight k2 (=24, -..) with respect to the
Fuchsian group 4°=4NPSL2,7Z). If 4=PSLZ, Z®), then our operators
coincide with the well-known Hecke operators Ti(p?™) which were studied by
Hecke. We prove a recursion formula of T,(4, m) and consequently obtain
the following equality ;

mio:]l .,p}ms* T4, m)= {l_p2(7c-1>p—81}/{[__(Tk(A, 1)__pk—1[)p—s+p2(k~1)[p~23} )

where I denotes the identity operator. So, we define the Hecke polynomial by

H(4'; uy=det {I—(T(4, 1)—p**Du-+p**PIu*},
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where u is an indeterminate. Then we obtain the following expression from
the recursion formula of T,(4, m) and the self-adjointness of Ty (4, m);

log Hy(d; )= — 3 tr U(d, m) .,

where
Ui(d, my= T4, m)—p* T (d, m—1).

In the next section, we define the infinite set P(4)\U P.(4) of “prime
divisors ” of the group 4, as in [CMP7]. This is, up to minor differences, the
set of J-conjugacy classes of all A-fixed points on the upper half plane
9={ze C|Im(2) >0}. Then we define the zeta functions Z¥(d4;u) (k=2,4,
6, ---) of the group 4 by

log ZE(4 ; u)

m N Dl

=2 [ > (some quantity which depends only on P, &, m)]~ —te
m=1%PEP(4)UP(d) m

If £=2, then this zeta function coincides, up to minor factors, with the zeta

function which was defined in [CMP]. In general case, we can make the

calculations simple and clear by using these zeta functions. We prove
Hd; wy=Z8(4; u) (equal up to correcting terms).

We call this equation as the first equality. This equality can be proved by
calculating the traces of U,(4, m), using the Eichler-Selberg trace formula and
some thorems in [CMP] which tell what and how many 4°-conjugacy classes
are contained in a 4-conjugacy class P={z},€ P(4)\J P(4).

In the last section, we quote a theorem from [CMP] which we call
CM. This theorem CM tells that there is a finite separable algebraic
extension L over the rational functional field K= F ,(j) such that the de-
composition law of the prime divisors of K in L can be written by means of
the “ decomposition law ” of the /'-conjugacy classes into 4-conjugacy classes.
Let £ be the universal domain of characteristic p. Let E; (j e £—{0, 12}})
be the elliptic curve defined by the Tate’s equation;

36 1

YZAXYZ= X0y X2~ or Z° In PYQ).

Let U, r=0,1,2,...) be the fibre variety defined by
U= U  JXE;jX - XE;C2XP*)X -+ XPD).
} —_— S

jeQ—10,12° —_—
r copies 7 copies

This is a fibre variety over £—{0,12°} which is a model of K= F (/). Let
V. be the pull back of U, by the covering map = to the model V, of L which
is the complement of z~'({0, 12°}) in the complete non-singular model of L.
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Then V, is a fibre variety over V, defined over the finitefield F ,. Then,
since we can determine the characteristic roots of the Frobenius endomorphism
of E; (j algebraic over F ;) in terms of I, we can calculate the number of
the algebraic points of V, whose projections on the base curve V, lie on a
fixed algebraic point of ¥V, On the other hand, we can calculate the number
of algebraic points on V, by means of CM. Consequently, we have

k—2
ZHU; W=T1ZUL, Ak_sr; W) (equal up to correcting terms),
r=0

where Z(L, A,_,,,; ) are rational functions of u which can be expressed by
the congruence zeta functions Z{(4; u) of the algebraic varieties V, over the
finite field F,.. We call this equation as the second equality.

Now, from the first and the second equality, we obtain an expression of
the Hecke polynomial by means of the congruence zeta functions of algebraic
varieties ;

kf,
H(d4; wy= IIZZ;’(L, Ap_gyrs W) (equal up to correcting terms).
r=0

This is a generalization of the main result in [HP] and of [CMP], Vol. 1, p.
192, Corollary up to minor differences.

Finally, I want to express my gratitude to Professor Y. lhara who gave
me this problem and gave us a lecture about the Congruence Monodromy
Problems at University of Tokyo.

§1. Hecke polynomials.

1-1. Structure of the Hecke ring R(4° 4). To prove self-adjointness and
recursion formula of Hecke operators, we shall study the structure of Hecke
rings. Let Z, Q, R, C be respectively the ring of rational integers, the field
of rational numbers, the field of real numbers, and the field of complex num-

bers. For any prime number p, we denote by Z“”:@p‘"Z, Z, and @,
n=0

respectively the p-complementary-localization of Z, the p-completion of Z, and
the p-completion of Q. Let ['= PSL(2, Z‘®) be the modular group over Z®
and 4 be a subgroup of I of finite index [[': 4] < . We can regard 4 as
a dense subgroup of the topological group PSL(2, R) or the topological group
G=PSL(2, Q,) by the natural imbedding.

Now, for any integer [=0, we write

) a=4nu O)u,

where U= PSL(Z, Z,). Since 4= OA‘ (disjoint union), we can define the length
(=0
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of an element & of 4 and the length of a double coset 4°04° by [(0)=1 if
de 4' and by 1(4°%4°) =1 if 4°04°= 4" respectively.
PRrROPOSITION 1. We have bijective maps

2 4\4 > U\G
W W
4% — Ud,
@) AN\4/4° = U\G/U
w U]

4°%4° —— UodU,

and a natural isomorphism between two Hecke rings

@) R4, 4) = KU, G)
) U
4°54° — UU.

Proor. We note that 4, U are a dense subgroup of G, an open compact
subgroup of G respectively, and that 4°=4 U. Hence, taking the p-adic
closure, we have (4°)=Ud and (4°%4% = USU. Let Ug (resp. UgU) be any
element of U\G (resp. U\G/U). Since Ug (resp. UgU) is open in G and 4 is
dense in G, we can take an element ¢ € 4 which is contained in Ug (resp. UgU).
Then we have Ud=Ug (resp. UéU =UgU) and thus proved the surjectivity
of (2) (resp. the surjectivity of (3)). The injectivity of (2) is trivial. For the
injectivity of (3), let UoU =Uo¢’U with 0,0’ 4. Then we have ¢’ =u,0u,
with u,, u, = U. Let ¢ be an element of 4° which is sufficiently close to u,.
Since U is open, we may assume that ¢,= 0 '¢;'0’ belongs to U. Therefore
we have 6’ =¢,0¢, with ¢, ¢, € 4°. Consequently we have 4°64°= 4°0’4° and
proved the injectivity of (3).

Now, since U is an open compact subgroup of G, we can define the Hecke
ring ®R(U, G). Therefore, the bijectivities of (2) and (3) show that we can
define the Hecke ring R(4°, 4). Let o,= 44, 7,=4°4°, p,=4°74°, 0 =UaU,
r=UBU and p=UyU (a, B, 7y = 4). Then we see easily from the bijectivities
of (2) and (3) that the structure constants u(og,- z,; p,) and p(e -z ; p) are equal.
Therefore the map (4) induces an injective homomorphism. Now, by the sur-
jectivity of (3), this map is surjective. Therefore we have proved that the
map (4) is an isomorphism. Q.E.D.

COROLLARY 1. [[7: 4°7=[1": 4] < co.

COROLLARY 2. We have a natural isomorphism

) R, 4 = U, T
U W
reer® —— sl
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which preserves the lengths of double cosets.

COROLLARY 3. R(4° 4) is a commutative ring with one double coset 4°64°
of length I. We denote such a coset by o(4, ).

Proor. The commutativity of ®R(U, G) is well-known. Therefore, Prop-
osition 1 shows the commutativity of R(4° 4). The second part is clear from
the bijectivity of (3) and the theory of elementary divisors. Q.E.D.

COROLLARY 4. 4° contains just p?-+p?-* right A°cosets and p*+p%-1 left
A%-cosets.

Proor. Corresponding results about U and G are well-known. Therefore,

by the bijectivities of (2) and (3), we have Corollary 4. Q. E.D.
1-2. Representations of the Hecke ring R(4° 4) on the spaces of cusp
Jforms.

Now we shall define the Hecke operators and the Hecke polynomials, and
prove self-adjointness and recursion formula. Since /= PSL(2,Z) and [[":
A4%] < oo, 4° is a Fuchsian group of the first kind. Let &(4) (=246, ---)
be the space of the cusp forms of weight 2 with respect to the Fuchsian
group 4°. For any integer m =0, we define an element of R(4° 4) by

m

(6) z(d, m>:l§0pm : O(Ay l) s
and a Hecke operator T'(m)= T)(4, m) acting on S,(4) by
™ &) > 0 — p s S (I X dyre e,

where ¢, = (?‘ Z’) e M,(Z) runs over all the representatives 4°; of the left

A4°-cosets contained in (4, m).

REMARK 1. T (I', m) coincides with the well-known Hecke operator T,(»*™)
which was studied by Hecke.

ProrosiTION 2. T(m)= T4, m) are self-adjoint operators and have the
following recursion formula;

® Tm+1)=(TQ)—p* DT (m)—p2*-PT(m—1) (m=1).
PrOOF. The first part is an immediate consequence of the invariance of
double cosets by the adjoint map

® (@ YLDy

¢
This invariance follows from the bijectivity of (3) and the theory of ele-
mentary divisors for PSL(Z, Q,).
For the second part, Corollary 2 of Proposition 1 shows that we may
assume 4=1/". Now, in this case, we can prove the second assertion by using
the well-known recursion formula
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(10) Ti(p™) = TiD) ™) —p** TH(p™ ) . Q.E.D.

Now we obtain from the recursion formula

an L

m:lgﬁm
So, we define the Hecke polynomial by
12) H(u) = Hy(d ; w)=det {I-(T(4, D)—p*Du+p** > Iu’},

T(m) = (1= p**p=* [ {T—(T)— P D)p~*+ p*-DIp >} .

where I denotes the identity operator and u denotes a variable.
REMARK 2. Let 4=1"=PSL2,Z®). Let HP(u)=det {I—Ty(p)u+p**Iu?}
be the usual Hecke polynomial attached to the elliptic modular group SL(2, Z).

N
Let HP(w)=TI(1—B;u)(1—Bju). Then our Hecke polynomial can be written as
j=1
H; w)y= ﬁ(l—ﬁg.u)(1~ ). In particular, our Hecke polynomial H,(/", u)
i=1

determines the absolute values of the roots of H{P(u)=0.
PROPOSITION 3. For any natural number m, put

13) U(m) = U4, m)= T4, m)—p**T(4, m—1).

Then we have a following expression of Hecke polynomial;
(14) log Hy(d; u)= — f_}ltr UL, my 2

Proor. By Corollary 3 of Proposition 1 and by Proposition 2, we can
diagonise T(m) (m=0) at the same time. Let a; (1 <j< N=dim &,(4)) be
the eigenvalues of 7(1) and put

(15) 1—(a;—p* Hu+p**y? = (1—o;u)1—afu) .

N
Then we have Hu)=TI(0—au)(l—aju). Hence we have
j=1

= J m m um
{0 —log Huy= % (e +ar) S

By the way, the recursion formula of T'(m) shows that the eigenvalues of
U(m) are a?+4-af™ (1<;j= N). Consequently we have proved the above propo-
sition. Q. E.D.

1-3. ExAMPLE. Let N be a natural number which is prime to p. We
define the principal congruence subgroup of I of the level N by

an ['(N)={y € PSL2, Z?)| y=1 (mod N)} .

We see clearly that I'(N) is of finite index in /" and that the Fuchsian group
attached to it is

(18) T(NY={y e PSL®, Z)| y =1 (mod N)} .



Hecke polynomials of modular groups 623

All our arguments in this paper may apply to this group.

REMARK 3. Mennicke has proved in[9] that any subgroup of finite index
of PSL(2, Z‘») contains some such group I'(N). Therefore our Fuchsian group
4° contains some ['(N)’. Consequently 4° must be a congruence subgroup of
PSL(2, Z).

§2. Zeta functions of the group 4.

2-1. Prime divisors of the group A and its zeta functions. We denote
by $ the upper half plane {z< C|Imz>0}. Then 4 operates on § by

(19) 455=(% ") 9oz Bl cp.

For any point ze€ ®, we put 4d,={0ed|dz=z}. If 4,+ {1} we call z a
d-fixed point. We say, z, 2’ € O are d-equivalent if there is an element o0& 4
such that dz=2z2’. We denote by {z}, the Ad-equivalence class containing z
and by @(4) and by Q(4) the set of all the d-equivalence classes of all the
4-fixed points on  with |4,|=oc0 and |4,| < co respectively.

We denote by the same letter i, the maps

(20) it @) — )
and‘
@1 it Q) — oM

which are induced by the natural injection 4G I = PSL(2, Z?). We say
d, 0’ €4 d-conjugate (resp. A°-conjugate) when there is an element » = 4 (resp.
y € 4° such that §=xd'np"

Let z be a 4-fixed point. Then it is known that 4, is isomorphic to either
a product of a finite cyclic group and an infinite cyclic group, or a finite
cyclic group according to {2}, P(4) or {z},= 0Q(4) respectively (cf. [CMP]
Vol. 1, p. 17 or [CMP], Vol. 2, p. 26). Let P={z},€ P(4)\JQ(4) and ep be
the order of the finite cyclic part. If P< P(4), let d, and ¢p be a generator
of the infinite cyclic part and a generator of the finite cyclic part respectively.
If P=0(4), let ¢p be a generator of the finite cyclic group. We know that
if Pe 2(4), then any eigenvalue pp of 0p is contained in Qp and the absolute
value of the p-order of pp does not depend on a special choice of J, and pp (cf.
[CMP], Vol. 1, Chap. 1, p. 18). Therefore we define the degree of 4-fixed
points P={z},e 2(4) by deg P=|ordp(pp)|]. Moreover for any element
P e 2(H\JO(L), we denote by {p one of the characteristic roots of ¢p. It is
a root of unity (cf. [CMP], Vol. 2, p. 25).

Now let @.(4)={P,1), ---, P{g,)} be the set of all 4-equivalence classes
of all the cuspidal points with respect to 4°. Clearly it is a finite set. Let
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co denote the only such equivalence class of /'. Let Fw:{(g I) e F} and

FEI,):{(%) ;) S F}. We write F:QAQD“TW where ¢ I' satisfies ¢p®(c0)
= P(1). Here we may assume ¢® < ]° because A\I'=4I". We write
dpyy = 0PI 0@ N 4 (resp. ABw =PI PeP " N 4) and call it the decom-
position group (resp. the innertia group) of P,(i). We denote the group index
Lo P D0 s Apywy/ A% w] by deg Pyi) = f(i) and call it the degree
of P(i). We call the set P(4)\U P 4) the set of the prime divisors of the
group 4.

Now the definition of the zeta functions Z#(w)=Z%(4;u) (k=2,4, ) of
the group 4 is given by the following expression;

22)
log ZH(4 ; w)

s e E%?’ NE-1__ Tlgg P o 1ink-1 k-1, \m
— l: ZA deg pﬁl__zp (PP %@ (va _ £s) + degP}Lp mu) .
m=1 {@(A) SP €p j=1

“deg P “deg P o ,;
deg Plm pP C}.Z__pé) Céj {deg Plm

This definition is a generalization of the zeta function {, (%) in [CMP], Vol.
1, Chap. 1, p. 18.

2-2. The first equality. Now we shall study the relations between the
Hecke polynomials H,(4; u) and the zeta functions Z#(4; u) of the group 4.
For this purpose, we shall study the 4-fixed points which are caused by the
torsions of 4. First we see that Plz{a): jiztS— and P,={i=+~—1}p

r
are the only ['-conjugacy classes of the fixed points on $ whose isotropy

g
groups have torsions. Therefore, to study the torsion of 4, let F:OAgo{f’Fa,
=1

(pieI'%) and F:@Agpéﬁf,- (¥ = I'®) be the double coset decompositions of
J=1

I, and P,1), ---, P,(g,) and P,(1), ---, P,(g,) be the corresponding 4-conjugacy
classes of points on 9. Let

(23) oIy NP © 4° if and only if j=<v,
and
24 oIy N TP = 4° if and only if j<;.

Then P,(j) € ®(d) and P,(j) € ®(d4) if and only if p=1 mod3 and p=1 mod 4
respectively. Moreover P,(j)€Q(4) and Pyj)e Q) if and only if p=-—1
mod3 or p=2o0r 3 and j<y, and p=—1 mod4 or p=2 or 3 and <y,
respectively. Still more, if P,(j) and P.(j) e P(4)J0O(4), then their ramifi-
cation index is
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3 - J=Ve
@5) (P = { L
e Yo
and
) 2 ISy
26) wm=|
e ] 2>V

Then, if e(P,(7)) or e(Py()))+ 1, we see that we can put &p,;,=® Or {py;=1
respectively. All of these facts can be proved easily by using theorems in
[CMP1], Vol. 2, p. 25, p. 27, p. 31, p. 36 and p. 39. In the following, we put
for [=1,2

deg Pi(j) - P e 2)

@7 D= ,
1 - P e Q)

to simplify the notations.

Now we shall quote some lemmas which are necessary to prove the first
equality.

LEMMA 1. Let r, k, [ be integers.

(1) If Pe @) or P Q) and r+0, then

{07 e%}a, {057eb}a, {0Pcb}a {0576} 5 {00 €£P  }as {057€FP L4y
{eb}ar {eblas -+, {e£P7'}4

or
{8%}4’ {8¥}A’ R {Eﬁp—l}d

are respectively all different.
(i) If Pe @) and r+0, then {0peb} s 498 Pk contains just

0 A°-conjugacy class if k<0
deg P A°-conjugacy classes if k=0
deg P(p*—p*=%) d°-conjugacy classes if k>0.

(iii) If 4 is a subgroup of I'=PSL2, Z?) of finite index and P& P(4)
Q) with ep+1, then {eb}sN4* (== 0 mod ep) contains just

deg P A°conjugacy classes if k=0
deg P{p’“—— (Q%f)—>p’°'1} A°conjugacy classes if k>0,

where deg P should be replaced by 1 if P<Q(d), and (—Q(—g—”—)—> denotes the
Legendre symbol.

(iv) We take an element A< I'° such that X(APomf\Ao)'l_l:nA@m((l) JX "
Then we have
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(28) ZAPOUG)Z“I = {(é& gﬁ)lg : (Zp(fi)m)z } .

For the proof, see [CMP], Vol. 2, p. 10, p. 20, p. 27, p. 31, p. 36, p. 39.
LEMMA 2. We have
(i) The d-equivalence class Py(i) contains just f,(i) cuspidal points.

(ii)
@) dim@y=F e 41— B a0+ g S A0—{ 5 S0}
i i 0 - k>2
+71f§1f2<1)’"{{‘i‘j@lfz@)}H{ e
where {{x}} (x= Q) denotes the decimal part of x.

Proor. (i) is special case of [CMP], Vol. 2, p. 14. (ii) is easy from the
theorem of Riemann-Roch and from the fact that P,(j) (j<v,) or Py(j) (J=Zvy)
contains just f,(j) elliptic points of order 3 or just f,(;) elliptic points of
order 2 up to 4°-conjugacy. Q.E.D.

LEMMA 3. (The Eichler-Selberg trace-formula). Let 4°C PSL(2, R) be any
Fuchsian group of the first kind. Let 6 be an element of GL(2, R)/+1 such that
d/v/det (0) does not belong to 4° and that A4° and 07'4°6 are commensurable.
Let 4°04° act on the space of the cusp forms of the weight k (k=2,4, ) as
before (cf. §1, (7). Let S(0) be the trace of this linear endomorphism. Then
S(0) can be written, as

(30 S(0) = S,(0)+ S4(0)+S5(9) ,
where S;(0) (1=1, 2, 3) are defined as follows;

D
3L S:(0) =2 Res (v),

where v moves all the representatives of all the elliptic 4°-conjugacy classes (i.e.,
such conjugacy classes that have a fixed point on 9) contained in 4°04°, and if
we denote the index of the centralizer of v in 4° by e, and the eigenvalues of
v by +£{p., p/}, then

(32 Res () = —5+ o+ (o} ' —p /(o) .
(i)
3 S(0)= DRes (),

wnzre ¢ moves all the A°conjugacy classes of all the cuspidal points of 4° and
y moves all the representatives of the left A°-coset contained in 4°4° and

fixing c¢. Further, if we write 24'= g ((1) i " and AvA~1/+/det (6) =
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(g” Z”)/x/a,,d,, with an element A< PSL(2, R) and with mutually prime positive

integers a, and d,, then

0 a4, >d,
(34 Res()=1 — & - (det <»>> T a=d,
—akd;(det (v)) En cea, < dy

(ili) S,(6) does not vanish only in the case of k=2. Then Sy(0) is the
arithmetical mean of the number of right A°-cosets contained in 4°04° and the
number of left A°-cosets contained in A4°04°.

We quote this lemma from Eichler [4].

Now we can prove the first equality:

THEOREM 1. Let 4 be a subgroup of finite index of PSL2, Z”). Then the
Hecke polynomial H(d;u) can be expressed by means of the zeta function
ZH(d; u) (cf. (22)) of the group 4 as follows;

(35) Hy(d; w)=Z{(d; w) X ci(u) X cj(u),
where
(36) ci(w) = A—p*tu)~e,

) 1 e B>2
e =] A—w(—pn) - k=2,
and

+(p— 1)[~ Efl(J) {{ Lﬁ(])}}]

+o-0[ ¢ B a0~ {52 A0}

) 0 -« k=1 mod 3
+f§~§fl(j>{p—(—*p—3)} 1 . k=—1mod3
= 1 . k=0 mod 3

+f~2f2(1){ﬁ( e,

where (—;—l—) and (_73) denote the Legendre symbols and {{x}} (x<Q)

denotes the decimal part of x.
We note that c{(u) (resp. cj(u)) is a correcting term which is caused by
the volume of 4°\9 and the torsion of 4° (resp. by the case k=2).
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ProoF. By Proposition 3, we have only to prove

(39) —tr Uy(d, m)=(the coefficient of Jj%"i in log Z#(u))
0 o k2
+8pm(k—2)_ {
14-p2m e =2

For this purpose, we shall calculate the trace of the Hecke operator U4, m)
using Lemma 3.

(i) The terms which come from the elliptic points.

First we shall calculate the term coming from {dpsb}, with P e P(4) and
r+0. Let degP=d, ep=¢ and m= |r|d+p. We contend that

0 e n <0
(40) [

1 e—1 (p'r Cl )(k—l)_(plr CIZ)(k-l) ~
—deg P-H#. — PSP PSP mk-2 ., >0
B ¢ Sy 1/ "=

comes from A(P, r) :2\7[{5;55,}4U{5;’s§;}4] to the trace of 7T(m). Then, since
(=0
¢=0 if and only if deg P=d|m, we see that

0 .. deg Ptm
(4D {

—deg P- /7;; . e‘;\l (pplH)* P —(pg LH*" pcE=

oo deg P
2 el pE e eg Pm

comes from m/d@g PA(P, ) into the trace of U(m)= T(m)—p**T(m—1). There-

7=0
fore, just the first sum of the coefficients of u™/m in log Z#(u) comes from
these conjugacy classes.
Now we shall prove the above contention. By Lemma 1, we know that
{037eb} 4 47%+ contains just

0 -+ 1<0
42) deg P e 1=0
deg P(p*—p*1) - 1>0.

4°-conjugacy classes. By the definition of pp and {p, their eigenvalues are
+{p#' %, pECE}. Therefore, from each 4°conjugacy class, there comes

1 1 (pircl )(k—l)_(p/:trcg)(k—l) B
43 = AP 5P I[j,: . mck-2)
29 2 ¢ F—Fty !
to the trace of T (m). Now, by the definition of ¥(4, m) and T'(m), we must
sum up from [=0 to [=¢p—1 and from i=rd—m-+1 to 1= p with “two times
of 7 above multiplicities (since » may be replaced by —r). Consequently we
have the above contention.
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We can calculate the term coming from {ek}, with Pe P(4)\JOUD),
ep—=¢+1 and [ #0 in a similar way. We see that

@ —aep- o LS (Al (A
Cmc 1) C/l(k D o2
C C/z o

comes from E(P):e\:jl{sﬁ,}‘, to the trace of T(m). Therefore

45) —deg P--—- 1 {;D (Q(CP) )}  pen lzi Cimcg; %//zluc:)

comes from E(P) to the trace of U(m). Consequently, from torsions, there

comes
0 .. k=1 mod3

(46) — :g‘"lfl(n{p—(fﬁi)} 1 k=1 mod 3
—1 -+ k=0 mod 3
— AT

to the trace of U(m).
(i) The terms which come from the parabolic points.
Let f,(i)=d and m_rd+/,c From and from the definition of

%(d4, m), we know that p# ( 0 pm ) 0=l pm™re—1) constitute the representa-

tives of the left 4°cosets contained in ¢®I(4, m)e®™* N * ™YL Therefore
QD 0 * »

1 m m(k—2)
47 — (" D)p =0
__pm—rdpm(lc—z) e > O
comes to the trace of T'(m). Therefore, summing up these terms,
(48) ——%(pm—l)pmm—@_ > prordpmi-2
0<r=m/d

comes from the cuspidal points contained in Py (i) to the trace of T (m).
Therefore,

— PP (1) - iy
(19)

_pm(k—Z)__%;pm(k'Z)(p——l) e fo@) | m

comes to the trace of U(m)=T(m)—p*'T(m—1). Consequently
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(50) =P B fD) =5 (=D 3 )

Jo(i)lm
comes from the cuspidal points to the trace of U(m).
(iii) The term which appears only in the case of k=2.
From [Corollary 4 of [Proposition 1, we see that %(4, m) contains just p*™
4 p?m-tb o 4-pP4p right A°-cosets and pP™-p*™-i4 ... -pP4p left A°-cosets.
Therefore p*™-p*» 1+ ... +p*4p comes to the trace of T(m) only in the case
of k=2. Therefore

1 e B> 2
pPrp e k=2

comes to the trace of U(m)= T (m)—p* T (m—1).

(iv) The term which comes from the identity operator.

From p™4° there comes p™%* =2 dim &,(4) to the trace of T(m). Therefore
—dim S, () (p—1)p™*%-® comes to the trace of U(m)=T(m)—p* T(m—1). Well,

by Lemma 2, this term is equal to

Gh

62—y (=DG—DLL s A1 oy 3 1)

~o-1p [ 5 5 1O0—{ 5 Z A0} ]

—-0p o4 S AO—{{ g ZAO e oy T2

Now we add these five terms and prove the equation [39) (cf. [Corollary 1
of [Proposition ). Q.E.D.

§3. Congruence zeta functions of fibre varieties.

3-1. Quotations. Let F,, be the finite field with p* elements and F, be
its algebraic closure. Let j€ F,, E; be an elliptic curve with modulus j and
A; be the endomorphism ring of E;. Now the following results are due to
Deuring :

There may occur only two cases.

(i) A, is isomorphic to an order of an imaginary quadratic number field
K, where the conductor of (4; is prime to p and p decomposes in K. Moreover,
A; contains some units other than =1 if and only if j=0 or 12°. In this
case, we call the modulus j a singular modulus.

(i) A; is isomorphic to a maximal order of the quaternion algebra D
over ) in which only p and the infinite place ramify. Further, such a modulus
j is contained in F,. In this case, we call the modulus j a supersingular
modulus. Hereafter we denote by S the set of all the supersingular moduli.
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Now we shall cite a theorem from [CMP], Vol. 2, Chap. 5 on which our
subsequent arguments rest.

THEOREM CM. Let p be a prime number and 4 be a subgroup of finite
index of I' = PSL(2, Z?’). Then thereis a finite algebraic extension L over the
rational functional field K=F_(j) whose constant Jield is F,, and there is a
Jollowing commutative diagram;

g

@) 21
(53) i’ /) ’n‘
@) 72 PK).

Here P(K) denotes the set of all the prime divisors of K which do not
corrvespond to supersingular moduli or the infinite point co and P(L) denotes
the set of all the prime divisors of L which lie on elements of P(K). Moreover,
horizontal maps 9, and Jx are degree preserving bijections, perpendicular maps
1 and m are induced by the natural injection and by the natural projection
respectively. Still more closely, Ix 1s induced by the map

(54) P2 P={z}y— J(2) mod P P(K),

where [(z) denotes the elliptic modular function, B denotes a fixed prime divisor
in the algebraic closure of Q which divides p, and in the right hand side we
have identified P(K) and the set {F,-conjugacy classes of all the singular
moduli}. Moreover, all the prime divisors belonging to S—{0,12%} decompose
completely in L.

REMARK 4. We see that P,= :}55211%}]1 and P,={+~/—1} correspond

to {O}r,, and {12%}r, respectively by Jx (cf. [CMP], Vol. 2, Chap. 5).

REMARK 5. This theorem implies that the decomposition law of prime
divisors in L/K can be described by means of “the decomposition law of
prime divisors” in I'/4. 1 remark that I have not described the decomposition
law of the prime divisors {0}r,, {12°}r,, and {oco}r, only because of the
simplicity.

REMARK 6. Since J; and 9, are degree preserving, we see easily [[": 4]
=[L: K].

3-2. Construction of fibve varieties V, and their congruence zeta functions.

Let £ be the universal domain of the characteristic p and U,= 2—{0, 12%}.
Let {E;};ep, be the family of elliptic curves defined by Tate’s equation

2’

(55) VizrXYZ= X0 X2 s 2t i PYO).

Then this family has the following properties;
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(i) E; is an elliptic curve with modulus j which is defined over F,.(j)
and contained in the projective space P*(9).
(ii) The correspondence j—— E; commutes with every specializations of

J over Fs
Now, for any integer » =0 we put
(56) U,=\U JXE;jX + XE;C P (Q)XPUADX - XPHQ).
S ———— ————

r copies r copies

Then U, makes a fibre variety defined over F,, whose basic variety is U,
and whose fibre at j is E;X -+ X E; (r copies).

By the way, since L is a finite algebraic extension of K, the complete
non-singular model V of L over F,, makes a covering curve over PY),
which is a complete non-singular model of K over F,,. We identify U, with
a subvariety of P!(2) defined over F,, and denote by V, the subvariety of
V which is made of all the points that are mapped
into U, by the covering map. Then the covering map Vr
7 induces a finite surjective algebraic morphism from
V, to U, which is defined over F,,. We denote by O
V, the fibre variety over V, which is induced from U,
by #. We note that V, is a (non-complete) non-singular
algebraic variety defined over F,, and that its fibre v,
at xe V, is EggyX -+ X Eqg (r copies).

PROPOSITION 4. We can calculate the number of Fyn-rational points on
AX By X voe X By C V, as

T

U,

p3 Us

[ P if x is not rational over F
7 N(L, x, m)= {(pmHeg @ _1)(pimideg @ 1)}

------ if x is rational over F ,, .

Here we denote by {p,, pk} the characteristic roots of the Frobemius endo-
morphism of the elliptic curve Eqg, over F(x) and deg (x)=[F,(x): Fj,]
We see that {p,, ph} is equal to *={p, p} if w(x) is supersingular and other than
0 and 12°.

PROOF. Since Erq, has (pp/des @ —1)(pim/des @ 1) F ,,-rational points if
deg (¥)|m, we have immediately the first assertion. Now we assume that w(x)
is supersingular. Then deg (x)=1 (cf. Theorem CM). Moreover it is known
that every supersingular elliptic curve over F,, whose modulus is other than
0 and 12° has +{p, p} as its characteristic roots of the Frobenius endo-
morphism over F, (cf. Proposition 5 of [HP7]). Therefore we have the second
assertion. Q. E.D.

Now let Vi (m=1,2,3, .--) (resp. V) be the set of all the F ,,-rational
points on V, (resp. the set of all the F ,-rational points on V,). Then above
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Proposition shows that the congruence zeta function Z%u)=Z<L;u) of the
fibre variety V, over F,, can be written as

€ log ZX(L; )= 5[ 3 {(p'ees @ —1)(ppacs @1} L

o m
m=1 xEVO

LEMMA 4 (Lemma 3 of [HP]). Let Ay (T)e Z[T] (0 <r< k) be the polyno-
mials defined inductively by

Ao,o(T) =1
A1, (T) = (T+D A, {T)— Ag,r- o T)—TAp-1,(T),

where A, (T) should be replaced by 0 whenever 0 <r <k is not satisfied. Then
we have

®0) (XY 5D /(X=Y )= 5 Ay (XY ((X= 1Y =D

(59)

Proor. Immediately by induction on 7.
COROLLARY 1. Let the notations be as in Proposition 4. Let w(x) be a
singular modulus, then we have

m(k—1) m(k—1)
(61) (0575 % —pg 810/ (pracs ) — pipiaes ()
=S Ao (™) (e (&) — T)(ppmidest () — 1} |
r=0
PRrROOF. Because p,p, = p?dee @, Q.E.D.
COROLLARY 2.
k—2

(62) (k= Dp"*® = 3 App O H(E D"~ D" D}

Now, for any polynomial A(T):ianT“ with integral coefficients, we put
n=0

(63) ZA; W)=ZL, A; u>=1°jo ZAL; pru)n .

Then the corollaries of show
PROPOSITION 5. We have

68  log TLZAL, Agoyr; )
7==0

m(k—1) m(k—1)_

o0 ;dégi(-r)‘_ édeg(.r) o o
= E: 2 ‘pen/deg (x)_:;)lm/deg (x) + > (—Dp (& z)]_ )

m=1 xevg"—n—l(s) reg—1(s—{0,123}) m

Proor. Because every element of =~'(s—{0, 12°}) is rational over F,.
Q.E. D.
3-3. The second equality. Now we shall study the right hand side of
(64) and show that they are equal to log Z#(4; u) up to correcting terms.
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PROPOSITION 6. We assume that a Ad-conjugacy class of A-fixed points
P={z},€ @) and a prime rational cycle P’ = {x}r,, on V,over F, correspond
by the map 91 in Theorem CM. We denote, as before, a generator of 4, by Op,
characteristic roots of 0p by -+{pp, pp} and the characteristic roots of the
Frobenius endomorphism of Er, over F ,(x) by {ps, pz}. Then we have at first

() All the F-conjugate points x& {x}r, =P have the same {0z 02}
So we define {pp., pp} = {0 pi} and deg P'=deg (x). Then we have

(i1) {pp, pp} is equal to pdeeP{pp, pp} up to the sign *1.

ProoF. At first, we shall reduce it to the case of 4=1". Let P and P’ be as
above. Then Theorem CM shows that deg P=deg P’ and deg i(P)= deg n(P’).
By the way, it is clear that pp= piE*/9e'® and p, = g/ /&= There-
fore we may assume 4=1".

Now we shall prove Proposition 6 in this case. Let j and j/ be algebraic
and conjugate over F,. Then we have j=;** with some positive integer d.
We see that the Frobenius correspondence of degree p*¢ on U, i.e.,

(65) Ui, X, Y, Z)— (5%, X, Y2, 289 e U,

induces an F ,(j)-isogeny from E; to E;. Therefore, by the result of Tate
[13], E; and E; have the same characteristic roots of the Frobenius endo-
morphism over F_(j). Consequently we have {p;, pj} = {0;, pj} and have
proved the first assertion.

For the second assertion, let E;, be an elliptic curve with modulus
J(z) and P be the prime divisor of p in  which was fixed in Theorem CM.
Then E,, has non-trivial complex multiplications because z is a fixed point
of PSL(2, Z‘?). Therefore J(z) is integral and E,, has no defect at P. Let
J@) mod B =j, ©;, be the endomorphism ring of E;, and ©; be the endo-
morphism ring of E;. Then it is well known that

(66) Os = {k e M,(Z)| k[, 2]z C[1, 214},

where [1, z], is the Z-lattice Z+ZzC C. Moreover ©; contains ©,, because
E; is F,,-isomorphic to the reduction modulo B of the elliptic curve Eyq, (cf.
Shimura and Taniyama [12] p. 94). Since j is singular, we know that the
imaginary quadratic number field K=0;,&®,Q is isomorphic to ©,;®,Q and
that p decomposes in K. We denote by @, the maximal order of K and by
p and p the prime divisors of p in K.

Now let y be a generator of I',, Here, we may assume that pdeePy is
contained in the matrix ring M,(Z) because the assertion (ii) does not change
if we replace y by a ['-conjugate element (cf. Lemma 1). Then pdee?y is
contained in O;, because y fixes z. Therefore its characteristic root pdesZp,
is contained in O .

Since 7 is contained in PSL(2, Z?), pdee¥p, is divisible only by primes
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of K which divide p. Moreover, we may assume that pde€Pp,0, is equal to
p2dee P from the definition of the degree of P. Consequently we have proved

(67) prdesP= pdeeFpp0,
and
(68) P pp = Opiy CO; .
By the way, we have from of [HP]
(69) prdes® = 0p.O;
and
(70) o €0 .

Therefore, since deg P=deg P’ from CM and @, contains no other
units than =+1 (because j+ 0, 12°), we have +=pdeePp, = +pp. Q.E.D.

Now we can prove the second equality:

THEOREM 2. Let p be a prime number, 4 be a subgroup of finite index of
PSL(2, Z®), Then we have the following relations between the zeta functions
ZEUd;u) (R=2,4,6, ) of the group 4 and the congruence zeta functions
ZAL;w) (r=0,1,2,--) of the fibre varieties V, over F,;

(71) ZEU ;0 =TI Z5(L, Apy,r; W)X "),
r=0

where Ay, (T) :éoan,k_z,,T" e Z[T7] denote the polynomials which were defined

in Lemma 4,

72) ZHLy Agey,y; )= T Zo(L ; prua)™mt-27
n=0
(73) c”(u) — cg’(u)c{’(u)cg’(u)cg’(u) ,
79 e () = 1T (1— proed-2y0y-1
i=1
1 o p=—1mod 3 or p=2 or 3
75) , J: ]:j L]i[o {1—pT1DE=2( g (1D G (p,( )" 1P @ty F-2-Py 10D} -1
cf ()= o s |
X 11 {1—pfl(J)Uc—Z)pl(]')fl(j)rpl(]')/fl(j)ck—2~r)uf1(j)} -1
J=vg+l r=0

-« p=1 mod 3,



636 Y. MoriTA

1 .« p=—1 mod 4 or p=2 or 3
T TL 1T {1—p /59020, ) 2Pity (o, ) cPin-2-rysacr) 3
T6)  cpuy=q T
X T T {1 p 00 p, Gysnp,(jy reesemysach)
J=vi+lr=
.o pE 1 mOd 4)

N

amn ¢/ (u) = (1— pP~2) H-DIT: 06—

Here, H denotes the number #(S) of supersingular moduli and I denotes the
number of supersingular moduli which are contained in {0, 12%}.

We note that the correcting terms cf(w), ¢/(u) and ¢J(u) are caused by
the defects of V, at 7 (o), #71(0) and #-1(12%) respectively, and that the
correcting term c¢J(u) is caused by the fact that every element of =~%(S)
corresponds to no 4-fixed point.

REMARK 7. j=0 (resp. j=12% 1is supersingular if and only if p=-—1
(mod 3) or p=2 or 3 (resp. p=—1 (mod 4) or p=2 or 3). Moreover

1 1 —3 1 —1
@ e o-ne - (GO0}
ProOOF. Since S—{0, 12°} contains H—I elements and every element of
S—{0,12%} decomposes completely in L/K, 7#7(S—{0, 12®}) contains (H—I)[L: K]
=(H—D[I: 4] elements. Therefore, in view of [Proposition 5, we need only

to prove
m(k—1) _mk—1) m(k—1) _m(k—1)

deg P “deg P deg (z) ; deg (x)
9 sP(A)%P deg P-£7— s Tom T > P m e
deg P ; deg P =V —n~1(s) “deg (x) ’ deg (x)
Wi, e e e

By the definition of ®(L), we can rewrite the right side of (79) as

m(k—1) mk—1)
dge (x) ; deg (x)
(80) = » ,,Bfi,,fpﬁi,"ﬂ
P m
{de ';’D'(ID e deg (x) __ s deg [€3)
7B A0} 22 E Pz O

By the way, since P’ contains deg P’ = deg (x) points and they have the same

{ps i} = {pur 0} (cf. [PEOPOSIEIOR B), we have

) e m=1 k=)
@D IR SN pﬁ}"i”’ e TR
TP deg (2] __p‘;:&e?i) PR pr Ao P
Now let J,(P)=P’, then we have from CM and
(82) deg P—=deg P/,

(@3 =pE 7 pp, pp} = £{pp, P} -
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Therefore the bijectivity of 4, implies (79). Q.E.D.
As a corollary of [Theorem 1l and [Theorem 2, we have
THEOREM 3. We have

84 5 0= TLZHL, Ag-rs X e(0)
where
(85) (1) = clw)el(u)eg (ued (el (u)cd ()

is a correcting term.

University of Tokyo
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