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§0. Introduction.

In a recent paper [2] Hormander defined pseudo-differential operators
through a function class S7;(2), 0<4, 0<p, for an open set £ in R". We
say p(x; &) e Srs(82), when p(x; &) belongs to C~ (R"XR"™ and, for every
compact set K {2 and all «, B, there exist constants Ca,p,x Such that

0508p(x; &)1 = Cop I+ [EYMHOI-0%1, xe K, é€R",

where a =(ay, -+, a,) and 8=(B,, ---, B,) are multi-indices whose elements are
non-negative integers and

L. 0
&= 851 ’
|a|:a1+ - tay, ]‘BIZ‘31+ +ﬁn

In the present paper we shall study the H, theory of pseudo-differential
operators for the special case: 0=0<p=1, 2=R" and C,p,x=C,,s (inde-
pendent of K). In this case Hérmander proved an inequality of the form

12X Doyulle = Cpllull,,

9. =2 . 5

= o5, oz oz, =0t

when m =0, and Lax-Nirenberg proved a sharp form of Garding’s in-
equality :
Re (p(X; Dyu, w) =z —K|ul3,

when m=1, p=1 and 0=0. But we must remark here that it is complicated
to derive the corresponding inequalities when m is an arbitrary real number
and the |-|, norm is replaced by the ||-||; norm for real s. In the present note
the space 43, i.e., the set of C>~ functions in R" (or R"X R™) whose derivatives
are all bounded, plays an important role.

In Section 1 we define the operator class g§7;, 0=0<p<1, and, through
it, the class .£7; of pseudo-differential operators. The main theorems, which
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NSF-GP-8114, and the Ford Foundation.
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are found in Friedrichs [1], Kohn-Nirenberg [6], and Lax-Nirenberg [7] wilt
be stated here (and proved in Section 3).

In Section 2 we prove the basic asymptotic expansion theorems concerning
adjoints and products of operators of class §7;. Here we shall often make
use of operators p(X; D,|X,) of multiple symbol which are found in and
[8] The method of Kuranishi (to appear) will be applied in the asymptotic
expansion theorem for the behavior of operators of class $7; under coordinate
transformation, when 1—p<d<p =1

Section 3 is devoted to the proofs of the theorems of Section 1, making
use of the results of Section 2.

I wish to express my hearty thanks to Professor H. Fujita for his helpful
advices.

§1. Definitions and Main Theorems.

Let @ be the space of complex valued C* functions, defined in R”?, whose
derivatives are all bounded, and let S be the subspace of @ consisting of
functions, together with all their derivatives, which die down faster than any
power of |x| at infinity. &’ denotes the dual space of S.

For u =& we define the Fourier transform of u by

(L1 U= e tu(dy, x-E=xgt -+,
and for any real number s we define the norm |uf, by

12) lullz= [<&>>|a)|as .

Here we used the Friedrichs notation in [17]:

CEX=A+[ED",  dé=(Qm)"d¢.

By H, we denote the Hilbert space obtained as the completion of S in the
norm |-[;, and set
H—oo:UHsy HOO:(\HS‘

For uw e H, and ve H_,, the inner product (u, v) is defined by

(w, )= [ 2E)HE)as .

DerFINITION L1. For any real number » we define an operator A": H,,, — H,
by

AUE) = (e ae) .

We have easily
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luls=Aulo,  luls, S lull, for s =s,.

DEFINITION 1.2. i) For any real number m, we denote by S35, 0<d<p =<1,
the set of functions p(x; &) which belong to C= (R"XR™ and satisfy with
constants C,,s

1.3 |0202p(x; &) = Cpp{E)m™ =PIt in R™XR"

for all @, B8, and set
S->=NS™ where S™=S7.

ii) For p(x; &) e S»s we define an operator p(X; D,), which is called to be
of class 875 by ‘

(14 pOX; Dyu() = [ e=ip(x; Hu©ds, ues,

and set
82 =M 8™ where $"=87,.

m

For p(x; &) e Sps we shall often use a notation |p|;,;,= |P|m,,,, defined by

(L.5) 1Pl = | Max sugn(iagaép(x; E) (&) mHaal=elBby L oo,

al St, gl Sty R™x

REMARK. i) Let p(x; —iax):laé}maa(x)(*iax)“ be a differential operator
of order m with coeflicients a,(x) of class 8. Then p(x; §) € S™ and p(x; —id,)
=p(X; D,y 8™

i) We can regard A" as A"=<D,) € 8", and especially A"={D,)"
coincides with a differential operator (1—4,)” when » is a non-negative even
integer where 4,—=20%+ --- +02,. In what follows we often use this fact as
in [47.

iii) S},’LI{BICSZ';%Q when m; < m,, 0, = 0, 0, = 0,

iv) Using the fact

xBE(X; D)= B Cop [ €20 (8708 plx; D)

it is easy to see that operator p(X; D,) is a continuous map S into S.
THEOREM 1.1. p(X; D,) € 8% is extended uniquely to a bounded operator :
Hgm— Hy for any s and we have with a constant Cp,

(1.6 12X Doyulls < Cp slltllssm -

REMARK. This theorem, together with the corollary of Theorem 1.7, can
be proved by means of interpolation theorems, if we only prove it for the
integer s=~Fk (cf. [3]). We shall give here direct proofs without using inter-
polation theorems.

DEFINITION 1.3. We denote by .£~= the set of linear operators G: H_., — Ho
such that for all s;, s, we have with constants Cg, s,
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.7 IGullsy = Coppsall©llsy -

We call G an infinitely smoothing operator.
DEFINITION 1.4. We denote by L5, 0 <0 < p <1, the set of linear operators
G: H...—H_., such that there exist p(x; &) & S%s and

G—p(X; Dy)e L7,

and we call G a pseudo-differential operator of class £7; with the symbol
p(x; & e St

From the definition it is easy to see
Lol C L2, when m,<m,, p,=p,, 0;,=0,,
8t C L, S LT
Now, let G = Q.E},’fa. Then, for any s, s,, we can select p(X; D,) e $p; for

m=s,—s, such that G—p(X; D,)e L-*. By means of Theorem 1.1 and the
definition of £~ we have

[Gulls; = I(G—D(X 5 Do)ulls, 12X 5 Dullsy = Copyeall s -

This means G € L%, so that N\ LP;C L~ Since L~~CN\.LT; is clear, we
m m
have

(18) I_WZQI,TB.

Let ¢(¢) be a bounded and non-continuous function which vanishes outside a

compact set, and define an operator ¥ by llf/z\t(é):gb({-‘)a(f). Then, it is easy
to see ¥ e £~ But in view of Remark iv) ¥ e S since ¢(&)aE) & S for
some % < S. This means

S L~
THEOREM 1.2. i) Let G LPs Then, for any s we have with a constant
Co,s
1.9 IGulls = Ce,sllttlls4m -
iy Let Ge L%y with the symbol p(x; &)  S%s. Then, G* in the sense
(1.10) (Gu, v)= (u, G*v), uesS, ves,

exists as an element of LTs and has the symbol p*(x; &) € S5 such that
N-1

.11 P*x; &) — D pF(x; £) e S  for any N
j=0

where pHx; &) e Sps®, j=0,1, -, and are defined by

(1.12) PH(x; ©) = 3 —05(—ide) p(x; &)

J“'
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iii) Let GieLy, G, L3 with the symbols p(x; E) =Sy, bx; &)
e S, respectively. Then we have G,G,c Lp5™ with the symbol r(x; €)
e ST such that

N—-1

(1.13) r(x; &)= D rix; ) e Spmr e for any N,
Jj=0

where r(x; &) e Sny™®=P7 5 -0,1, -, and are defined by

L14) e = 3 (0BG £ ).

=]
COROLLARY. Let G, L)}, G, Lg3. Then, the commutator
(1.15) [G,, G, =G,G,—G,G, & LT5m =0

THrEOREM 13. Let Ge L£->°. Then, there exists the kernel K(x;y) <= B(R"
XR™ of G such that

1.16) 105K(x; llsy = Cays  Sor any a, s,
and we have

(L.17) Gu@) = [ KGxs yyu(ddy .

THEOREM 14. p(X; D)€ SpsN\L~= if and only if p(X; D) e S~

COROLLARY. Let Ge L3 Then, the symbol p(x; &) e Sms is uniquely
determined (mod S—).

Now let G=(G;;) be an [ X! matrix of G;; € LF; and let p(x; &) = (p;;{x; &)
be an [X[ matrix of p;;(x; &) € S%s which are the symbols of G;;. Then, we
write

GeLys, px;6HESE:, pX;D)e 8

and call p(x; &) the symbol of G. We denote u=(~u,, ---, u)) €8 (€ Hy) when
each u;e8 (e Hy, j=1, -, L

Then, we have

THEOREM 1.5 (Lax-Nirenberg). Let G < L%;. Suppose there exists a her-
mitian symmetric and non-negative matrix py(x; &) € STs such that

1.18) G—pS(X; D,) e L399,
(We call pyx; &) the principal symbol of G.) Then we have with a constant K,
1.19 Re (Gu, u) = — K| ulln-o-or «
THEOREM 1.6. Let G < L£9; with the symbol p(x; &) e 89,5 and set
(1.20) PG )l =TIm sup |p(x; O,
where | p(x; &)| is defined by
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(1.21) Ip(x; &I :1]\’1‘«1}1( {Ip(x; Oul}

with constant vectors u=(uy, -, u,). Then, we have

(1.22) inf  ||G—T| =|plsw = I p(X; Do)l
Te.cp"’gp_a)

where |G| = sup |Gul,
llallio=1

Next, we consider a C* coordinate transformation x(y)=(x,(¥), ---, x,(3))
such that we have with a constant C >0

(123) a'y]’xi(y)e-@y: Z.,_].Zl, e, N, C"lg]ayx(y)Lg_C

where 8yx(y):(8iji(y)) is the Jacobian matrix and |0,x(y)| denotes its deter-
minant. Then, we have

THEOREM 1.7. Let Ge LD, with the symbol p(x; &) e Sks. Suppose
1-p=06<p. Then, Q=Q; defined by

(1.24) Qu(y) = (Gu)(x(y))  for w(y)=u(x()
belongs to L35, and has the symbol q(y; ) € Sgs,, Such that

N-1
(1.25) q(y; p)— Z}lqj(y; ) Spe-dY  for any N
F=

where gi(y; n) e Spze=24, 7=0,1, ---, and are defined by

A2 ain= B g BB PEO); 50 7))

. 1ayx(y: yol |ayx(y1)| }y1=y
with
(1.27) 0yx(y, y1) = j OlayX(yHrt(y—yl))dt :

COROLLARY. The space H, is tnvariant under the coorvdinate transformation,
which satisfies (1.23), in the sense H,, > u(x) if and only if w(y)=ux(»)< H,,
for any s.

§2. Properties of operators of class $7;.

First we give a fundamental

LEMMA 2.1 (Hérmander). Let p(X; D,)e 8% 0<0<p=1. Then, for any
non-negative integer k, p(X; D,) can be uniquely extended to a bounded operator :
Hywm— H, and we have with a constant C,,;

@D 1p(X5 Dyulle = e Max {|plse,ia} |4l icsm

1 7l2=No

where N,=Max {20(n+1)/(p—0)+1, [(n+1)/p]+1}.



Remarks on pseudo-diyferential operators 419

PrOOF. In the case m=0, k=0, we follow carefully Hormander’s proof
in [2], p. 154, by setting e=(p+0)/2. Then we get (2.1) for m=0, k=0.
For general p(X; D,) e $%5, we note that

Ip(X; Dullr = WZSICHG%P(X; Dyul,
and
A iy
0ap(X; DJu(x) = 3 Coyar | €705 p(x; £)E7(E ™™ AM ™ u(&)dE .
Then, since
05 p(x; £ ey ™M e 83, for a/'=a, |alSk,
we have, by means of (2.1) for m =0, k=0,

16X 5 Dulle < Crppe Max {151y, A5l -
{14 1o=Ny

Noting that |A*™u|,=|u|jem We get (2.1). Q.E.D.
LEMMA 2.2. Let p(y; &) € S%s and set
F@=[ewép(y; uiidy, ues.
Then, we have for any N

2.2 [F(E)| = Cupn| Dl y,o{EIMH-PN

The proof is clear, since

§F @) = [ i (—id,)"(p(y ; Hu())dy
and
[(—10,)(p(¥; Eu()| = Calplm|.o<5>m'“3'”'a§a [0y u(y)| .
Now, let p(x; &|x,) be a C>* function in R*X R"X R™ which satisfies
2.3) 1020807, p (x5 £ x)| = Capr (& YTHOIHTIZRIBT,
and deﬁne iplll,l,g,Le,: ]plm,ll,L2,l3 by
[Pl ig,a,s = Max sup  (|0g0%0%,p(x; &]xy)]
lal =11, 18] =lp, iyl Sig R"XR"xE"
. <€>ﬂ(m+5]a+i’l-—{)lﬁl)) .
Then, we define an operator p(x; D,| X,) by

24) PX 5 Do) XDu(x) = [ e [ eriovép(a; & x)ue)dxdé

and call this an operator of multiple symbol.
We have
LEMMA 2.3. Let m be a negative number such that m < —(n-+k;+2k,).
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Then, for the operator p(X; D,| X)) of multiple symbol in [(2.4), we have

@5) 102D Dal Xu(@)| = Af Qs b7 [y, y 00 |

uesS, lalgk,,
and consequently we have

(2.6) 1p(X; Do Xpulls, = Al -2k,  UES,
where A, A’ are constants of the form
(27) Cm,n,k1,k2 l pl ki,m+1,2k ¢
ProOOF. By the assumption we can write

PX; Do Xyu(x) = | K(x, x)u(x)dx,

where
K(x, 2= [ =0 3p(x; €| x)de
Then we have for |v|<n4-1, |BI=Zk, |7|= 2k,
| e, OBLK(x, x) = | 3 Cappm | €5 2053)”
BF=pr=y
- {EPHT'OBBOLIT p(x; & xp)}dE]

é Cn,kl,kz ‘ pl k1,n+1,2kg »
since
|@0e)” (&7 47088057 p(x; E1 XD} = Copiegyr CED™HH¥H & L,

This means
BBTK(x, 1) € Lyyy  for |81k, I7]<2k,.

We write as in [4]
08p(X 5 Dy X, )u(%) = [BBK(x, x,) (0, )" (i, > 2ux,)dx, -
Then, integrating by parts
185X Dal X)) | = 080, Y™K, 1) - iy~ ),

< A, [Crmayy ™€,y () dxy

1Bl = ky.
Hence, we get (2.5). By Schwarz’s inequality we have

108D (X 5 Dol Xu(®)]2 = A, [ G, 57 M0 | (i, >Ry |y

and, integrating both sides with respect to x, we obtain (2.6).

Q.E.D.
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THEOREM 2.1. Let p(x; &|x,) be a C* function which satisfies (2.3) and let
P(X; Dy| X)) be the corresponding operator of multiple symbol. We define
pix; &) e Sgs@ 1, j=0,1, -, by

1 .
2.8) P )= 3 - (0L &Ko
Then, for any integer k,, k,=0 we have
(2.9) |0FRyu(x)| = Af<x—x1>“"*”l<i6w1>‘2’“2u(x1)|dx1 , o lalsky,
and consequently we have
(2.10) [Ryule, = A’ l[ull -2z, »
where Ry= Ry(X; D,|X,) is defined by

N-—1

@11) Ryu@) = (X Dol X=X (X5 Do) Ju®),

N is an arbitrary positive integer which is bigger than (m-+n-k,+2k,)/(0—0),
and A, A’ are constants of the form

(212) Cn,m,k1,kz,N | p] k1, N+n+1,N+Ek1+-2k2 *

ProOOF. Since

=3 ;1, [ (87020 s £12,)aic0 [ €220 %u(x,)dx, 2

lael =4
= [fexsmert 3 jal, (5 — D)0 (65 & X)pymati(5)AT,AE
we have
@13 Ryu=[{fess 5 N o—apes £l mpuCe)dn b
where
(2.14) pulis €13, 1) = [ (L—BN-10%,p(x; §|x-+1(r,— D)t

Now, let ¢(&) be a Cy function such that
p&)=1 on {&;[5]=1}
and set ¢.(&)=¢(c), ¢>0. Then, ¢. (&) has the properties:

D ¢eCr, ¢)—1 as ¢—0 forany ¢,
i) 10508 =CoetEH MM for any 0=r=|al,

(2.15)

with a constant C, independent of ¢ >0. By means of Lemma 2.2, the function
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in brackets in (2.13) belongs to Ll for any fixed x, so that we have by means
of Lebesgue’s theorem

Ryu@= 3 - Nolim ([ @are=02g,@p0c; €1, xpute)dds,

= lim [ [ ete=20ef 6 (&) (—i0e) bl s €1, x,)

e Nﬁd‘ &0
+ B Cowdf PO pulic; €|, ) ulx)ddx,

Then, making use of (2.15) and noting that N > (m+n)/(po—0), we have for small
fixed 0< 7, <,

| B =02 bals £], 1) < Cy(EY" ™D & Llg,,
087 $(E)0F Palit; €] 3, 1) | = Cye (€)= Ma-0 & L,

Hence, again by means of Lebesgue’s theorem, we have

Ryu() = 3 N [ [ ee-soi(idgp,e; €15, wyuCededs,

N
- Z - "“pa(X; Dx' Xl)u<x) )
lol =N &
where p,(X; D,|X,) are operators, of multiple symbol, defined by

pa(x; E I xl) - (—"lag)an((x, E ] X, xl) .
Then, by the definition of p.(x; &|x, x,), replacing m by m—(p—0)N,
pa(x; E|x,) satisfy the condition [2.3). Applying to p(X; D, X))
we get (2.9), [2.10) from [2.5), [2.6), respectively. Noting that
[pa'l k1,n+1,2ke é Cn,k1,k2,N I p] k1,N+n+1,N+ki1+2kg s

we can see that constants A, A’ have the form [(2.12). Q.E.D.

Now, according to Friedrichs [1], we define the reversed operator pE(X; D,)
ofgp(X; D,) = S§s by
@16 PR Dgu = [ e [etiptn; Quie)drnde,  ues.

We have

THEOREM 2.2. Let p(X; D,) € 8ps and pB(X; D,) be the reversed operator
of p(X; Dy). We define py(x; &) e Sg5©=%4, j=0,1, -, by
(2.17) Dpi(x; E)Zlﬁllj-“a“(—las)“‘b(x & .
Then, we have

PRX; D)~ i‘ (X5 Dy, p(X; D)~ i (—1YpX(X; Dy)
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in the sense: for any integer k,, k,=0 we have

@1y (e D)=S p/X; D))

" éA”u”—zkzr MES,
1

@18y |(pCx; Dy~ 5 (~1YpX; D

“u”—zkz, 'LLES,

where N is an arbitrary positive integer which is bigger than (m-—-n-tk,+2k,)
/(o—0), and A, A’ are constants of the form

(219) Cn,m,kl,kz,N ‘ pi N+kj+2ke,N+ni1 *

Proor. We can consider p®(X; D,) as an operator of multiple symbol:
p¥(X; D)= p(X; D,| X)) where p(X; D,|X,) is defined by ;b(x Elx) = plxy; &)

Then, applying Theorem 2.1 and noting that p;(x; 5)—— (*135) 0%, p(x1;

&)p1=z» We easily get (2.18). It is easy to see that a constant A has the form
(2.19). We adopt a function ¢.(&) which has properties (2.15). Then, as in the
proof of Theorem 1.1, we have

FOC Du(@y= e =18 5 (—idey 0%, p(xs; Eulr)dndé

= (1) ff et 5 ) 0%, (xy; DU ddE

al=j ol
Hence, writing

POX; Dyute) = [ [ es==8p(x; Oux)dxde,
we have

Ryu(t)= (p(X; D)= 2 (~IpHX; D))utx)

—lal N;a‘ jfe’(x i (X x)apa(x X1 )u(x )d-xldE

where
pal, 13 &)= 01 A=Y p(ry+Htax—x) 5 )de .

Then, again, making use of ¢.(&), we get

Ryu@= 3 - ;LV, ([ exe-202Ga b, x,; Su(x)dx,de

lal=N

= 2 = ‘ pa(X D ‘XDM(?C),

Ial N a
where p(X; D,|X,) are defined by p,(x; &|x;) = (0)*Pa(x, x,; §). Applying
Lemma 2.3 to p,(X; D,| X, we get (2.18)". Q.E.D.

THEOREM 2.3. Let p,(X; D,) € Sos, D(X; D,) € 84,3, vespectively. We define
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7’]'(.76; E) = S:J’:l;-mz_(pﬁﬁ)j’ ]: O: 1’ "ty by

(2.20) G = B 1 (Ci00 s DA 6.
Then, we have

DX 5 DIPAX; Dy~ 374X 5 D)

in the sense: for any integer ky, ky, =0 we have

| N-1
(2:21) ;[(me; D)X ; D)= 2 ri(X; Do))u
j=0

| < const. 1]y,
L1

where N is an arbitrary positive integer which is bigger than (n—+m,~+Fki-+2k,)
/(p—0) with k{=Max {k,+m,, 0}.
PROOF. Set

Dei= 22 ‘1—‘

lal =j al

05(—10e)py(x ; €)

and write

@2) X DA DY
= (X D) 5 (~DYPE(X; D+5.X; DB D)
— 3 —1YpE(X; D).

Then, by means of Lemma 2.1 and (2.18)’ in Theorem 2.2, we have

.23 B D(X 5 D=3 (~ VD8 D) )u
Jj=0 k1
- const.”(p (X; D)= S (~1YpE(X; D))ul s
= 2 H x = 2,5 ’ . kl
é const.||u|| ~2kg
Set

N-1
p(x; Elx) =polx; E)j;o (—‘1)jp2,j<x1 ;6.
Then, by definition, we have

224 DX D2) 3 (~DPPE(X; D)= (X Dal X))

Hence, setting

(225) r}(x ; 5) = Iﬁjﬁlr (_iaf>ﬂa§1p<X; 5‘x1>xl=w ’ ]: 0: 1: Tty

we have by means of Theorem 2.1

2.26) |(px: D1 x0="E X D) = const. Jullus,
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By definition
N—1
Eré(X; £)
Sy io{pG o B, ) are—ivgmae o)

=D s 1 AN (e EVAIHB(— i \HE-B p (x
el < 1p1 < 0(' A28 ﬁ/!(ﬂ_ﬂ/)!( 185) pl(x) E)ax ( ZaE) pz(x: E)

lﬂl <N

(227) lor|
el _ a
EXm+ 2 L ,%L ")
/3 :

T aipery al =N
|al< ,B

=IQP0; &FIQ(x; &).

Then, [@(x; &) e SPy™ @~V — g 143D g5 that by means of Lemma 2.1, we
have

(2.28) ITP(X; Dullr, = const. [u] -, -
On the other hand
(=D
IPx; &= A —i0g)P' (x5 &)
Iy I<N B =y .
(=1 B
e =B Gyt TR D)
Then, since
Z _774( 1)|ﬁ| B 1 When ﬁ/:T
wipsy B—BN'G—PT 0 when ‘3'<7‘,
we have
(2.29) IR(x; E)— r, (—10e)"pi(x; £)0Tpa(x; )
= j:i‘orj(x ;6.
From (2.22)-(2.29), we obtain [2.2T) Q.E.D.

THEOREM 24. Let an Ixl matrix p(x; &)= (p;;(x; &) belong to SE7.
Suppose p(x; &) is hermitian symmetric and non-negative. Then, there exists a
constant K such that

(2.30) Re (p(X; Dyu, u)= —Klul,, uesS.

Proor. We follow the method of Friedrichs in [17.

) First we assume that every p;;(x; & has compact support with respect
to x. Let ¢(z) be a non-negative valued and even function of class C{°, such
that

2.31) jq?(z)dzzl, supp ¢ C {z; |z| =1},
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and define an operator r(X; D,) = $£3° by

(2.32) r(e; §={ px; E4+<6y 2@z

= px; OF ¢ 040 for e=(p+0)/2,
where
(2.33) F(C; ©)=q(@—8)<E>9<Ey .

Then, setting
q(@) = 1}32{ 1079(2)]
and
FC; & =aq(C—E) &) E)*"
we have easily

(2.34) [0 F(C; OIS Ca{EX 1 Fw(C; &)
We define another operator R, by

(2.35) Bu®) = [{[FC; ©)bE—7; OFC; pacyatpy

where p(y; &) is the Fourier transform of p(x; &) with respect to x.
Then, noting that p(x; () is hermitian symmetric and non-negative, we
have

(2:36) (Rou, wy= [{[o@5) - px; Do(C; 0)dx}dl =0,

where o(C; x) is defined by v{C; (&) =F(; &a). Now, we fix an integer N
such that

2.37) N=2{3(n+1)/(p—5)+1} .

1. Since ¢(z) is an even function, noting [2.31), we can write down

239) (G O=p; O S Lor O Ry §)
1< el <NV .
where
ro(x; §)=0£p(x; O<EY [2g*(@)dz
and

Ryx; = % gT j { f 01(1—t)N~lag p(x; EHLEY R ALY (EY Nz (@)dz

=N
Then, it is easy to see r,(x; & e SO w22 §), for |a|=2, so that by
means of Lemma 2.1 we have

(2.39) Ira(X; Dol = const. fluf,.
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Noting [2.37), we have
A1) | Ry OIS 2 [ 108Ry(r; O)1d2 = oy

where RN(X ; &) is the Fourier transform of Ry(x; &) with respect to x. Here
we used the assumption [(2.37).
Then we have

@40 IRyX; Dulo=|{ Ra(E—7; micidy

Lig)
< (f sup | RaCr; )1 dx) il = const. -
From (2.38)-(2.40) we obtain
(2.41) 10r(X; Do)—p(X; Do)ullo = const. f|ull, .
2. Next we estimate ||[(R,—r(X; D))ul, Set

P & =FC - 3 PR ).

Then we can write

T T~ — T N
@42)  Ru@=rlX; Dyu@)+ 3 i Dou@+ Ko@)
where ry(X; D,) and R} are defined by

rie; § = [ (—i0.)7p(x; OIFFE; OFC; £)AC

and
Rou@ = [{[ Fa(C; & mbE—r, OFC; naCitmdy ,

respectively. Noting and {{><2{y)> on supp F({; n), it is easy to see
(2.43) ri(x; &) e S¥d-edl Qo  for |al=2.

Since

0, (C; &)= —{ 3 0,9(C—0)(EY ) Do) (E)™10,<ED)

+ G AC—EYICE B (EV FEY ",

N )
we have for a;=(0,---,1,-+,0), j=1,--,n,

(2.44) ri s &)= [ i0,,p(x; E+0E))(E) Dea(0)a(0)do

+ji8xjp(X; OF{L; OF(T; &)4C
=rd(x; O+rd(x; &)
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where Fi({; &) are functions satisfying

[0£FHE; &) = ColE) 19 40.(L; 8)-
Then we get

(2.45) rg(x; 9 e SiF S,

Noting that 9,,q(s)q(s) are odd functions, we can write

rd(x; & = [ i0,,(p(x; E+0<E))—p(x; E)KEY D, a(0)a(0)do

= 3 [{[ 102,05, 0055 £-+00¢59d0} 0.0, (0a(o)do
This means
(2.46) riy(x;6) e85, 8.
Hence from (2.43)-(2.46) we obtain by means of Lemma 2.1

(2.47) > L
o<lal<y &1

(X; Dyu

‘ < const. |ul,.
,0

Now, in order to estimate Fy({; & 7) we shall use an elementary formula (see

[53 p. 82):
N-11
<f H— ]é) ‘]'f (])(0)>g )

(2.48) :151(#1)”1 f ! b O Y-2(O)gP(0)do
i=0 0

DY [y =A™ @) for f6), 50) & Clhs,

where

)
o) =~ 051

RS A € Sl ) S 1A
(N—=D! G=D!" (N—j—=D1 51 j=1, -, N—1.

Setting f(6) =F(; n+60(E—x)) and g(@)=<{n+0(E—n)>¥ in and using
[2.34), we have
IFa@s 6 ] =|(FO—8 1 700) 20|
=0 J]:

P, (0) =

< const. (£—7 >Nj:(F<C 3 ©)FFn(; 0 —n))d6 .
Noting
KS"’? >n+1+Ni7(E_77 ; C)l < const. <C>(n+1+N)6+(p—3)
< const. <77 >(n+1+N)5+(P~5) on supp F(C’ 7}) .

We obtain by means of Schwarz’s inequality
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| Byu(@) = const. [{[ [ (FC; &7+FaC; y+0G—nydoar)”
s{[F@; orar) " ce—py- o ae) dy

< const. j(E——?? > a(y) | dy -

Here we used (n+1+N)Jd+(po—0) = ¢N by the assumption [(2.37). Consequently
we have

(2.49) | Ryl = [ | Rou(@)|*dé < const. ul.
From [(2.42), [(2.47), [2.49)] we obtain
(2.50) I(Re—r(X; Do)ul, = const. Jluf,

and from [2.41) and we get
(2.51) I(R—p(X 5 Do)ullo = const. [ul, .

Then, writing
Re (X5 Du, w)= Re (XX ; Dy)—Rou, u)+ Re (Rou, u),
and using [2.36) and [2.51), we obtain [(2.30).

II) For general p(X; D)= &5%. Let ¢(x), ¢(x) be non-negative valued
Cy functions such that

[g@dx=1,  supp¢C{x; [x|=7},
(2.52)
p(x)=1 on {x;[x|=2¢,}, suppdC {x; |x|=37,}

for a fixed z,> 0.
We define p,(X; D,) e 855 by

(2.53) p(x; ) =¢E+x)p(x; &),

and set

(2.59) uP(x)=¢E+nu(), wP(=~1-¢E+)ux).
Then,

Re (p(X; D.z‘)”: lt)
(2.55)

= [ Re 0.5 DY, wydz+ [ Re (X5 Doyu®, wydz .

Noting that ¢(z-+x)=1 on supp ¢(z+x), we have from the result of I)
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[ R 0X; DYu®, wydz = [ Re (0(X; Dyu, ud)dz
(2.56)
> —K ([ ple-+2)? ()| *dx dz = —K"|ul.

Here, we must remark that from the proof of I) the constant K has the form
Cyu| P15 with [, [, depending only on M, N and | P2l 1,0 = Cnoor 0l Plugioe
Noting again ¢(z+x)=1 on supp ¢(z+x), we have

| ®e X Dyug, wydz

=[f % X DIug, ue)dz
(2.57) = [ pX 5 Dud 3+ [dz

= [J1p.0X; DJuP@)|*dx dz -+ const. |ul3.
Then, we have
PX; DuP(x)= [ e [ttt 0)p(x; O)A—Pa+1) - ulx)dx,de
=pX; D.| XDu(x)
where p,(X; D,|X,) is defined by

p(x; Elx) = Pz+0)plx; E)1—d(z-+x)).

Noting that (—i0¢)*0%,p.(x; &|x,)=0 for any «, we have by means of Theo-
rem 2.1

(2.58) | p(X; D)u(x)|* < const. ¢(2+X)f< x—x, )" " ux,) | *dx,

and get by [(2.57)

259 1 [ R (p.0X; D, wydz| = const. |ul3.

From (2.55), (2.56), [(2.59), we get for general p(X; D,) € 843. This com-

pletes the proof. Q.E.D.
Now, let x=x(y) be a coordinate transformation which satisfies the con-

dition [1.23)

LEMMA 2.4. For any integer kB we have with a constant C,

(2.60) Celllulle,e = lwlley < Celluller  ueES, w(y) = u(x(y)).

PrROOF. When % is a non-negative integer, making use of the equivalence
norm Y [|0Ful, we can easily get (2.60). For negative Fk, using [ u],

|a =k

:Sup,,l,(&,@,., we also get (2.60). Q.E.D.

vt | Vl-k
THEOREM 2.5. Let p(X; D,) € 85, and let Q, be an operator defined by
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(2.61) Qw(») =X ; Dyw(x(y), ues, w(y)=ux(y)).
Suppose 1—p =0 < p. Then, for any integer k,, k,=0 we have

.62 [(@=Zav; D)u|, =AWl

where q(y;n) e Sz}gf;’“a)f, 7=0,1, -, and are defined by (1.26), N is an arbitrary
positive integer which is bigger than (m-+n-+k,+2k,)/(0—0), and A is a constant
of the form
(2.63)

Cn,m,k1,k2,N | p| k1,2 N+nt1+k1+2kg *

Proor. Let ¢(x), ¢(x) be non-negative valued C5° functions which satisfy
the conditions (2.52) where 7, is a small positive number such that for any z

(2.69 @2C)*=[0,x(y, y)1=2C on Supp Pe+x(MPE+x(3),
where 0,x(y, y,) is the matrix defined in (1.27). Now we write Q,w as
(2.65) Quw(3) = [p(X; DuP(Mdz+ [p(X; DYuP(x(»))dz

where p(X; D), w(x), uP(x) are defined as in (2.53), (2.54), respectively.
I) First we consider

03[ p.X; DyuP()dz = [03p.(X; DyuP(x)dz,  |al <k, .
We have

PAX; Doyu() = [ fer=-0€p,(x; )1 — P+ xulx)dx,de

so that, as in (2.58), we have by Theorem 2.1

1052:(X ; DaJusP(x) |2
(2.66)

< Aypet0) [ (x>0 | (i, Y- | *d
with a constant A, of the form
(267) Cn,m,k],kz,N,¢,¢ I pl k1, N4+n+1 e

Then, we have with a constant A, of the form (2.67)

= X

ke laisk

g A2”u” ~2kg *

|§2X; Doupdz

[820.(X 5 Doyup(x)dz

0

(2.68)

II) We follow the method of Kuranishi. Using a function ¢.(&) which
has the properties (2.15), we can write
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DX DUPG(9) = [ 4p,(x( 3) 5 &) [ oriu ey
= lim [{ fers -3 (), (x(5) ; OE HuPR(3,) [ 9,x(3)] s

Now, we take a change of variable 0,x(y, y)7é =%. Then, we have

PAX; DYuP(x())
(2.69)

=lim j ern j &G 0,2(3, YTV 5 7]y u(x( ))dy, b
where

a.Ly; 9y =PE+x(NPE(); 0,x(3, YD) [0,x(y, y)| 71 0,x(y) | dlz+x( ) .

From the assumption: 1—p =<0 <p, it is easy to see that ¢,(y; |y, satisfies
the condition [2.3). Since |95,6.0,(y, y)™ )| =C, (with a constant C, in-
dependent of ¢ >0) on supp ¢-+x(y)p(z+x(y,), by means of Lemma 2.2 the
function in the brackets in (2.69) is estimated by an L}, function independent
of . Letting ¢e—0, we have

(2.70) DX D)uP(x(3) = g.(Y 5 Dy | Y Jw(y) .
Set

1 .
2.70) Q.Y )= M@j’&”l‘ (—10)" 05,005 ; D1V Dy1=p,i=0,1,
and

N—-1

(2.72) R, yw(y)= (qz<Y; Dyly)— EO 7.,iY; Dy))ww) .
Then, by means of we have for |B| =<k,

|BER.xw( )| = Ayb(zx()) [ y—31> 01Ky, >~ y) | *dy,
so that we have

@.73) H [ Reyw(9)dz

= AWl —orayy »
k.Y

where A,, A, are constants of the form [2.1Z2) which are estimated by a con-
stant of the form |[2.63) Noting that ¢(z+x(y,))=1 in a small neighborhood
of supp ¢(z+x(y)), it is easy to see that

Yy

q(y; v):jqz,j(y; n)dz .

Then, we have
N—
@274 jpz(x s Dayus(x(y))dz = qu;(Y 3 Dyu( y)+f R yw(9)dy .

From [2.65), (2.68) 2.74), applying Lemma 2.4 we get [2.62). Q.E.D.
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§3. Proof of Theorems in Section 1.

PROOF OF THEOREM 1.1. In Theorem 2.3 we set p(X; Dy)y=A' S 855
and p,(X; D)= p(X; D) € 8¢5 Set k=0 and k,=Max {—[(s+m)/2]+1, 0}.
Then, we have for a large N

" (4p(X; D»—-E‘mx; Dx))ul

< const. |||, <const. [l -
0

Since (X ; Dy € 85, j=0,1, ---, we have by means of Lemma 2.1
(X ; Doyulls =1 4°p(X; Dyull,
N—-1
§ go “rj(X; D.z')““O“JI_COHSt- “u“s+m§ const. ”uHs+m .
! Q.E.D.

LEMMA 3.1. Let pi(x; &), j=0,1, -, be a sequence of functions of class
Sn5@=%3. Then, there exists a p(x; €) € S%s such that

(3) PCxs O— 3 px; DS SE® T for any N.

ProoOF. Let ¢(&) be a C= function such that
for &1 =1,

PO=11 tor (8122,

and set
pla; &= g BE/E)Dx; £),

where t;,7=0, 1,3---, are determined such that

108080, ©)] < gy e for & 2t,, lal+IBI =,

and #;—oco. Then, p(x; &) is a desired one. Q.E.D.

PROOF OF THEOREM 1.2. Let p(x; &) € S%s be the symbol of G and write
G=G—pX; D)+p(X; D,). Then, by means of Theorem 1.1, we get (1.9).

ii) Since |(Gu, v)| = |Gull,|vl, < Cellullnllv]o there exists a unique element
w=G* e H_, such that

(Gu, v) = (u, G*) for ueH,, veH,.
Now set p(x; &)=p(x; §) = S%s. Then, by definition, it is easy to see
(X5 Du, v) = (u, pHX; Do)v) .

By means of Lemma 3.1 we can construct p*(x; &) € S3; which satisfies (1.11).
We write down
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N—
G*—p*(X ; D) = (G*=F*X; D)+ (X Do 3 7 D)

+( T prCx; Dy—p*X; DY)

It is easy to see that G—p(X; D,) e £~ derives G¥*—p*X; D) L~=. By
means of Theorem 2.2, for any k,, k, =0, we have

“(ﬁre(X; Dx)—l:g:;D}*(X; D.))u

| = const. [l

L3
N—

for large N. Since lej*(X; D,)—p*(X; D,) € $S75%~9¥, we have by Lemma 2.1
=0

” ( me ; D)—p*(X 5 D) )u

| = const. [ulsvim-c-aov
i1

Hence, for any s, s,, taking k,=>s,, —2k,<s,, and N such that k,+m—(0—0)N
=s,, we have

I(G*—p*(X; Da))uls, = const. [[ul]s, .

This means G*—p*(X; D) e L=
iiiy By means of we construct »(x; &) e Smim which satisfies
1.13) and we write

GiGy,—1(X; D) = (G1— (X5 D))Got-Di(X 5 Do)(Go— Do X5 D))

(15 DIBX; D= Zr(X; D)

+( 'S riX; Dy—r(X; D).

Then, by a way similar to the proof of ii), we get G,G,—r(X; D) L.
Q.E.D.
PrOOF OF COROLLARY. Let r(x; &), v'(x; & be the symbols of G,G,, G,G,,
respectively. Then, r,(x; &) =r(x; &—r/(x; &) is the symbol of [G,, G,] and by
definition 7,(x; & e S™'™“"®  Hence, [G,, G,] & LT ™D, Q.E.D.
ProoF OF THEOREM 1.3. I) We have by definition

|0:Gu()] < [<&>-m(<am 8| |Gue) Dae
é Cn”Gan+lak é Cn,[a[,sllu“ -5 fOI' anY S »
so that there exists K, (x;y) € Hx, such that

(32) ”Ka(X; ')”s,y é Cn,lal,x

and we can write
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(33) 056 () = [ Ku(x; yyu()dy.

From this we get, for any fixed x, K, (x; ¥) € 8, and

G4 |0BK (25 )| < Coyat1 K a3 Mnsist = Conatipr
We have
(3.5) | Ko (x4dx; 3)—Ka(x; M| = Cal Kalx+dx; )—Ko(x; llay
— C, sup |03 Gu(x+dx)—Gu(x))|
uF0 %]l -n
< Co | dx] .

From [3.4), it follows that K,(x;y) is bounded andguniformly_continuous
in R®XR™.
II) Now set K(x; y)=K,x;y) and
j
x N’ .
Kj(x; y):fo Kaj(xlx Tyttt Xpy y>d7- ’ J= 1, e, N,

7

S—r _
where a;=(0, ---, 1, ---,0). We define G,u(x)_ by

Gyu(x)= [ Kix; yu(3)dy.

Then, we have 0,,{Gu(x)—G,u(x)} =0, so that Gu(x)—G;u(x) are independent
of x; for any u = S. Hence, we get
K D= [ VKo T s 30 )dE
0

are independent of x; and consequently we have aij(x; y)::Kaj(x; y) in the
classical sense. Since K. (x;y) are continuous, we have K(x; y) e C*(R*"XR",
and inductively we have K(x;y)c C*(R"XR™ and 0208K(x; y)= 08K (x; ).
In view of (3.2)-(3.4) this completes the proof. Q.E.D.
PROOF OF THEOREM 1.4. SPs\ LD 8= is clear.
Assume p(X; Dy)e S2;N\L~. Set

(3.6) Po(X; D) = p(X; D) A~ ™ ™0 e Spgib m L7,
Then, we can write

37 X ; Doyu() = [ Flx; x=3)u(5)dy
where

Fix; 2)= [ e p(x; O)dz .

On the other hand, by means of Theorem 1.3, there exists K(x; y) € B(R" X R")
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such that

3.8) 105K e Y3 = [<EY»103K(x; €)]%dE < Cian,e
and we have

(39 DX 5 Dayu(x) = [ K(x s yuzddy
where

Kx; &= [ emK(x; y)dy .
Since F(x; x—y) and K(x;y) are continuous, we have from and
F(x; x—y)=K(x; »), so that we have
(3.10) =S px; E)=K(x; &)

Now assume that there exist a, [,>0 and a sequence {x,, £,} such that

[£,] =00 (v—00),

(3.11) [050D,(x, 5 £,)[ (&, D0 =C>0
and
(312 Sgp(laﬁpo(xzé)l<5>l>—>0 as [§|—o0,

for every [, a <a,.
Since [0£,05p,(x; §)| = Cpy (& H=HP-0¥1%01, we have
(3.13) [059Dy(x,; E)[<EX0=C/2  when [E—&,| S (&)

for a large fixed N,.
From we can write

0K(x; &)= e (@0py(x; E)+ B Cou£0% po(x; £)) .

Then, in view of [3.I1), [3.12), we have
00K (x; §)[<EY = C/3  when [§—§,[<(E)™™,
and by means of [3.8), for M > [,-+nN,/2, we have

ComuZ [ <EYM|00K(x; &)|%dE

C “1p g AM—lg)—
=5 (A = Cuggn (6 0o

le—g, =<6,>~No
as |&,|—oo.

This derives the contradiction.
Hence, we can conclude
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(3.14) sgp(laﬁpo(x; E)IKEMH—0 as [£]—o0

for any « and .
In general we have with constants C, C’

I aéjagpo(x ’ ‘f) I 2

=C sup |9gp,(x; ENI{ sup |05p,(x; &)+ Max sup [08o5p(x; &N}
le ¢l =1 &gl =1 8l=2 1§~ =1

S C/ gy~ morolal gup [95py(x; £ -
187 —¢l=1

Then, by means of we get
@3.15) sup (|0805p,(x; £)1<E)H—0 as [§] —co
for |B]=1 and any a, [, and inductively we get for any «a, 3,1. This
means that p,(x; & and also p(x; &) belong to S~
The Corollary is clear. Q.E.D.

Proor oF THEOREM 1.5. Set p(X; D,)=p,(X; D,)A-"+°-9_ Then, p,(X;
D,) e 8454, so that by means of Theorem 2.4 we have

(3.16) Re (0(X; Dou, w) = —Kulf§.

Setting = (m—(p—0))/2 and v= A""u, we then write

3.17 Re (G, V) = Re (A-"(G—py(X ; D NA7u, u)
+Re ([A77, p(X; Dy)lA"u, u)
+Re (p(X; Du, u).

Then, by means of the assumption, Theorem 1.2 and the corollary of Theorem
1.2, we have

(3.19) A (G—p(X; DA€ Lys,  [AT, pX; D)IA T € Lf,.
Hence, from (3.16)-(3.18) we have
Re (Gv, v) = — K, ||ull§ = — K, [[0] - o-a0r/2 -
This completes the proof. Q.E.D.
PrROOF OF THEOREM 1.6. We may derive (1.22) for p(X; D,). The first
part is easily derived by making use of Theorem 1.5. For the second part
we take a sequence {x,;&,} such that |&,|—c0 as yv—oo and |p(x,; &)|

— | plSup-

Let O(x), ¢(&) be Cy functions such that
O =1 for |x|<1, $&=1 for [£|=1,
and set for >0
0,,:(0)=0(c<&,)°(x—x)), (&) =P(z<E)P(E—E).
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Setting
3.19) p¥(x; E)=px; &) —px,; &),

we write

V(x5 ) =0, ()p¥(x; &), (&)
+A—=0,, ()P (x; &), (&)
+pP(x; H)A—¢, ().

Then, we can verify that each term of the above right hand side belongs to
S/ and, for any integer [;, [, >0, the norm |.|,, ,, is estimated with a constant
independent of v. Now, we take a C; function v(x) such that

lvllo=1, suppvC{x; [x[=1},
and take constant vectors u, such that
(3.20) lw, =1,  |pC;éoul =|pk; ).
Then, if we set u, (x) = e *u(r {§,)%(x—x,)) (£, )*™*c™u,, we get

”uv,r”() :1 s ”p(V)(X; D.z')uu,r” é E(T)+Cr{ ”uy,r”-(0—5)+'l(l'—gbu,r(Da:))uu,THO} )

where &(z) —0 as r—oco. Here we used |0,,.p™¢, .| —0 (r—o0) and Theorem 1.5.
Since |juy | -¢p-6—0 and |A—¢, (D), |l,—0 as v —co, we have

| p(X; Du,, || <2(z)  for v=wy(z),
so that for any ¢>0 we have
| p®(x; Du, || < 2e when =17, and v=y(z,).
In view of [3.19), [3.20), this means
Ip(X; Dol = | plse . (Cf. [1]) Q.E.D.

PrOOF OF THEOREM 1.7. Since G—p(X; D,) e L7, by means of Lemma

2.4 we get Qz—Q,< L,;°. By Lemma 3.1 we construct ¢(y; n) < S%s; which

satisfies (1.25). Then, from Theorem 2.5 we have Q,—q¢(X; D,) = L;%, so that
Qe—a(X; Dp) = (Qs—Qp)+Q,—¢(X; D)) & L3

and Qg € L%,y Q.E.D.
PrROOF OF COROLLARY. Letwe H,,. Since 4°< L3, by means of Theorem
L7 Q; defined by Qw(y)= (A*u)(x(y)) belongs to .£5. Hence, we have

lule = | 4% 180 = [ |(40)(0) 1"dx = [ | (401 13,2 5) |y

< comst. [ (Quw)(3)|*dy < const. [w|2,
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and also we have

[1]
[2]
£3]
[4]
[5]
[6]
L7]
[8]

w}?, < const. |ul2, . Q. E.D.

Osaka University
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