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In the previous paper we discussed the Hille-Yosida theorem in case
of nonlinear semigroups in Hilbert spaces: For a maximal dissipative operator

A the evolution equation %u(t) e A - u(t), u(0) = D(A) has a unique solution

in a certain weak sense, and hence such an operator generates uniquely a con-
traction semigroup, and conversely, if the generator A, of a contraction semi-
group {T,} is densely defined, a maximal dissipative extension A of A, gener-
ates the initial semigroup {7,}. Thus the following two problems have been
left open:

1) whether weak solutions of TdtueA-u for a maximal dissipative

operator A are genuine solutions or not,

2) whether the generator of a nonlinear contraction semigroup in Hilbert
space is densely defined or not.

In this paper we give positive answers to these problems. Further we
study nonlinear holomorphic semigroups: We show a parallel theory with the
linear case on such semigroups {7,}’s that for fixed x € H, T;x is holomorphic
in t and for a fixed ¢, T, is analytic as a mapping H— H. Analytic mapping
is a natural generalization of continuous linear operators.

In Kato gave positive answer to the problem 1) in case of single-valued
operator A, and extended main part of to the case of Banach spaces with
uniformly convex duals. He solved further nonlinear evolution equations in
which the generator A depends on . Some part of our results can be extended
to the case of Banach spaces with uniformly convex duals or the case in which
the generator A depends on {. For simplicity, however, we restrict ourselves
to the case of nonlinear semigroups in Hilbert spaces.

The author wishes to express his hearty thanks to Professor Kato and
Professor Yosida for their kind advices and encouragements.

REMARK. After finishing this work the author was communicated by
Professors Crandall, Pazy, Kato and Dorroh their new works [107], [11] and
[13] which contain remarkable results. Especially, together with their results
we attain to a complete form of the Hille-Yosida Theorem for nonlinear semi-
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groups in Hilbert spaces. A short explanation for this is given in §5 as addi-
tional notes. The author is very grateful for their communication.

$1. Genuine solutions of Tg—u(t) < A- b

In this section we deal with nonlinear evolution equations. Let A be a
(multi-valued) maximal dissipative operator, i.e., A satisfies the following:

D) Re<x'—y", x—y> =<0 for e A-x, ye€A-y, x,ye D(A).

2 D(I—pA)Y=H for u>0.
We shall consider the Cauchy problem

7(117 u) & A - ult)

3
© u()=x e D(A).

If u() is absolutely continuous, then u(f) is differentiable for a.e. ¢ and is
expressed by the indefinite integral of the derivative. We say that u(?) is a
genuine solution of the equation 3) if u(f) is absolutely continuous, belongs to
the domain D(A) of the operator A for a.e. t and satisfies 3) for a.e. 1.

In we showed that the equation 3) has a solution in a certain weak
sense, and such a solution is unique. More precisely, we constructed an ap-
proximating sequence {u,} to the weak solution u such that

@) u,(f) is the solution of —jt—un(t):Anun(t), where A, is a mapping:

x— ‘,,,71795/ —x'  for x’ € A-x, x& D(A).

®) u,(¥) — u(?) in the norm topology uniformly in ¢ [0, ¢,].
®) G, ()~ 5 u() in the weak topology o(L}L0, #,], L0, 1),

where L%[0, ¢,] is the Hilbert space of all square integrable H-valued mea-
surable functions on [0, #,]. Our purpose in this section is the following
THEOREM 1. The Cauchy problem (3) has a unique genuine solution.
For the proof we need several lemmas.
LEMMA 1. Let A be a mapping L0, t,]— L340, t,] such that

D feA-f for f, fe L0, t,] if and only if f(He A- &) for a.e. t.

If A is maximal dissipative, A is also maximal dissipative.
ProOF. Let fe A7-f, ge /Nl-g. From the evident inequality
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Re (f-g, f—g)=Re [ (-4, fO—g®dt
<0

it follows that A is dissipative. Hence it suffices to show that D((I~f~1)“1)
= L4[0, t,]. For fe L%4[0,t,] we put g(t)={I—A)'f(®). Since (I—A)" is
Lipschitz continuous and f(f) is measurable, the function g(¢) is measurable.
For a fixed x € H, we have |g@®)—{U—A)x| < || f®)—x||. Hence it holds that

gDl = =+ 1T—A) x|+ D)

which implies | I g(O]2dt < oo, since fe LLL0, ,].
0

LEMMA 2. Let B be a dissipative operator. Then the extension
B-x={%:3x, D(B), x,—x strong, and 3%, B - x, ,
X, — % weak}

i1s also dissipative. Hence, if B is maximal dissipative, we have B=B.
ProoF. If = B-x and y= B-y we have evidently

Re {i—y, x—y>=1lim Re {#,—,, x,—y.>=<0.

~

PrROOF OF THEOREM 1. By Lemma 1, the operator A is maximal dis-
sipative. Hence by Lemma 2, the extension A is equal to A. Put v () =

(I——};A>_Iun(t) for an approximating sequence {u,} in (4). Since |u,()—v,®)|
— 0 uniformly in ? (see [4]), v, —u strongly in L%[0,¢,]. The two relations

S uy= A e A- v and —Su,—-dou weakly in LH[0,1,] by

imply —jr ue E u=2A-u. Since u(t) is absolutely continuous, our weak solu-

tion u(t) is a genuine solution. The uniqueness of a genuine solution follows
from the dissipativity of A:

[u@—v®l = |uO—v O+ [ g —u(|ds

= [|u(0)~v(0)[|2+2j0tRe <7;l§ u(s)—- éis—v(s), u(s)~v(s)>ds
= [Ju(@—v(O))?,

for -fu()e A-u(s), S v A us for ae. s.
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§2. Domain of generators.

The purpose of this section is to prove the following

THEOREM 2. If the domain D(T,) of a contraction semigroup {T,} is convex
and closed, the domain D(A,) of the infinitesimal generator A, of {T;} is dense
in D(TY).

In we introduced three notions of infinitesimal generators A, Ap and
Ag ;. We cite them in some revised form:

12

®) Ax=lim A,x, where A, = %(TFI) .
h1i0

©) Apx=w-lim A,x with sup [|A,x] < oo,
REQED n>0

where @ is an ultra-filter of subsets ¢ C (0, o0) converging to 0.
10) Agpx={x—y: x=w-lim (/—24,) 'y} for 2>0,
hEYED

where @ is the same as in (9).
In [4, Theorem 2 and Corollary to Theorem 1] we showed some of their

basic properties:

€8)) A CAp, ACApa,s
and
(12) D(Ay) = D(Ap),

where D(A,) for instance means the closure of D(A,).

For the proof of Theorem 2, we need more precise properties of these
generators: the key to the proof is Lemma 6. Since the generator of a non-
contraction semigroup is not necessarily densely defined (see [4, Example 17),
the proof must be based on the contraction property. We use the method of
“infinite speed principle” which we shall explain in the following. For a
contraction semigroup {7} and for x € D(T,), T;x is continuous in { by defini-
tion. Thus for any ¢ >0 there exists a d > 0 such that

13) Tox—x|| <e for 0<t<o.

Roughly speaking, “ T,x is of finite speed at t=0.” Let y be another point
of D(T,). If the vector T,y—y has the opposite direction to x—y (i.e., T,y—y
= p(y—=x) for some p > 0), the contraction condition || T, y—T,x|| < |x—y| implies

IT.y—yl = | Tix—x|

that is, “ T,x is no less speedy than T,y”. Suppose that for a fixed xe H
there exists a sequence {y,} C D(T,) such that each vector T,v,—y, has the
opposite direction to x—y, and the speed of T,y, increases infinitely as n— co.
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Then, if x e D(T;), T;x must have infinite speed at t=0. This is a contradic-
tion, i.e., x & D(T,). More precisely, we have

Infinite speed principle. (i) If for x € H there exist some sequence {y,}
C D(T,), t, | 0 and a constant £ >0 such that

T, yn—x > || yu—x|+£, for n=1,2, -,

then we have x & D(T)).
(i) If for x e H there exist some sequence {v,} < D(T},), h, | 0 and a con-
stant £ > 0 such that

A In=prn(y,—%)  for some fz,>0 (Ah,,:f—,};—(T,m—n)

and
| AppYull =00, yp—x|zZ£>0,

then we have x & D(T)).
ProOF OF (i). Suppose that x = D(T,). Then we have

[ Ttnx_x” = HTtnx— Ttnyn“{“Tcnyn_x“
= | Ty Yn—%I— | Tox— T, Vall
Z | yo—xll+E—[x—yall =k .

This contradicts (13) since £ >0 and ¢, | 0.
PROOF OF (ii). Suppose that x = D(T,). Let x’ be an element of H such
that |x'—x|| < % Let x” be the element defined by

[ —
Xy —X=0(Yp—X), where a, = Reg ?L—Jf’——yr’;—xl .
I yn—xll

Then Red{x'—x2, y,—x>=0 and |a,] é'*%*. The relation A,,V,= pn(¥,—x)
means T}, Vp—Yn = huptn(¥,—x). Hence we have
(14) Thnyn——x;z/ :yn_‘x’}‘hnﬂn(.yn"x)"{‘x"Xg

= [1+hnﬂn—an](yn“x) .

This implies Re!{T,,y.—x2, x'—x!>=[1+hp,—a,1Re{y,—x, x’'—x!>=0.
Thus we have

15) 1T a0 =211 = [ Thp Yo — 27 1>+ 12" — 2 |12

On the other hand,

16) =2/ 11*= || yo—2x7 |24+ 27 —x/||?
=[l—a, || ya—x[*+]x7 —x/||*.

By (14), (15) and (16) we have
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[ Thn Y =2 1" = Yu—%'|I* Z Rnfrnll yn—xII* »

or
/ 7 hn#n“yn—‘xnz
17 Tho V=X = Yp—2|| = - dnll
> ofn] Yp—ae*
= 1T, Yo+ ya—xll+2]lx—x|

Rk
= 5 % [ An Il = hapl Aryal

K
for p=-g1%

since | T, Yn—x|| < | yn—x|+e’ for n=n(e’) by (i). Note that the positive con-
stant p is independent of n=n(¢’). We put x,= Ty,,x. Suppose that |x,—x||

-S*HZ'* for [=1,2,..,m. In (17) putting x’=x, for [=1, 2, ---, m, we have

[ Va2l =l Yn—x) Z | Thp V=%l — | ya—2:0 = phnll An, Vel »
hence

18) [Yn—2[—=1yn—2nll = phn|| Ay Inl -

0 . .
Let m:[—h—;]. Then ||y, —x||—|[¥n—2nll < || x—x,|| < e by [13). This contradicts
[18), since pmh,|| Ay, V.| —co as n—oco.
LEMMA 3. Let D(T;) be convex and closed. Then for any h>0 and 2=0,

there exists a y,; € D(Ty) such that (I—2A)Yn=x. Yu1 depends continuously
on h for fixed 2=0 and also on 2 for fixed h> 0.

h
Proor. We define the mapping P:z—- - 1k X4+— Z—HL T.z. Note that the

relation y=({I—1A,)"*x holds for ye D(T,) if and only if y=Py. For the
approximating sequence {y,}: Y, =%, Vo4 = PVn, €ach y,,, is contained in D(T,)

since x e D(Ty), y,< D(T;). Since P satisfies |Pz—Pz/| < Z-HZ |z—z’|| and

since D(T,) is closed, the sequence {y,} converges to an element y,; < D(Ty).
Evidently y,, satisfies the equation y= Py. The continuous dependence of y,,
on & and A is evident.

LEMMA 4. Let D(T,) be convex and closed. For any point x € D(T;) the set
{Vma=U—2A) " x: h >0} is bounded. Moveover, for any p >0, the weak limit
ymzkue-iierg (I—2A,)x exists in {ye D(T,): |y—x|| <p} for some 2> 0.

PrOOF. At first we shall prove the second half of our assertion. By
Lemma 3, there exists y,, in D(T;) such that (/—1A,)y,=x for h, 2>0. By
Infinite principle ii), for x = p there exists a constant A >0 such that

(19) | Apynall < M, for |yn—x|=p.
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Let xogvz%. If || y,—x| = p for some h>0, then the relation (J—2,A) Yz,
= x implies
1
| An Yol = A [ Yare— x| = 2M .
This contradicts [(19). Hence

(20) [ Yaze—x < p, for h>0.

Since bounded sets in H are weakly compact, the weak limit yy=w-lim y,;,
h€ps@

exists in |y—x| =<p. Since D(T;) is convex and closed, it is weakly closed,
and so D(T}) 2 y¢.
The relations 20:_257 and imply

| Yare—x | = 22, M,

which means the boundedness of {y;,: 2> 0}.

LEMMA 5. For a constant h>0 and a point z< D(T,), let F be a real
hyperplane which contains z and is orthogonal to Tyz—z. If for a point
ye D(TY), Thy is in the opposite side to Tyz concerning F, then we have ||y—z|
= || Thy—z].

Proor. By assumption, F={x+z:Re<x, T)z—z>=0} and Re<{T,y—z,
T,z—z>»< 0. Hence we have

| Twy—2z|* = | Thy—Twz+ Thz—2|*
= Twy—Twz|*+ | Thz—2z|*+2Re {Tpy—Twz, Thz—2)
s ly—zIP—|Twe—2|*+2Re (T y—z, Twz—z)
=ly—z]*.

LEMMA 6. Let D(T,) be convex and closed. For x e D(T;) the relation

(¢4)) y=U—AApy) 'x (= w-lin;.) (I—2A) %)
hEps
implies
22) y= lim (I—2A,)'x
h€psd

that is, (I—2A,)"*x converges strongly to y.

Proor. Note that y,=({I—24,)"'x exists in D(T,) by Lemma 3. Suppose
that y, does not converge strongly to y. We shall obtain a contradiction, by
showing the following steps.

I. There exists a sequence A, | 0 such that

(23) Yo =U—2A44,) ' x =y weakly ,

and
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29 [¥2—y1—p>0.

In fact, since the set {y,: h>0} is separable and bounded by Lemma 4, the

weak topology on the set {y,} is metrizable. Hence w-limy,=1y implies the
h€pc O

existence of a sequence {h, >0} satisfying [23) If every sequence satisfying
(23) converges strongly to y, then {y,:he @< @} converges strongly to y.
Hence by our assumption there exists a sequence {y,} satisfying and

both.
II. For any &> 0 there exists n(¢) > 0 such that

(25) uThnyn"—ynH <, l<yn’—y’ x—’_y>| <e, H‘yn—_ynz_pzl <e¢

for n=n(e).
Moreover, if ¢ is sufficiently small, for a fixed n=n(¢) there exist x,>0 and
m(e, n) > n such that

(26) sup [{ThYn—Yns Ym—I>1 <& [{V=Yn, Y—Im>| <&, for mz=m(e, n),
0<h<hy,
27 [ Yn=Yml 480 < Tn,¥,—¥ul  for m=m(e, n),

(28) ” Thyn—"Thnyn” < Kq for h = ["’Z’L]hm, m 2 m<5; 71) .
The first inequality in follows from
ThnYn=Yn=haApyYn =12 (Jp—2x)—0 as n—oo.

The second and third inequalities in follow from and [24). The in-
equality (26) follows from the fact that the sequence {y,—y, T»y,—y)> con-
verges to 0 uniformly on the compact set {T,y,—y:0=<h<h,}. The inequality

(27) follows from

“ Thnyn_ymﬂz = “ yn—{—hn/z_l(yn‘x)“‘ymnz
= “ yn_ym}}2+2_2hn2” yn——x||2+2,2'1hn Re <yn*‘x’ yn_ym>

_Z._ ” yn~yml|2+22"1hnll yn—yﬂz'—Gl_lhnSg ”yn'—ym!|2+2'2_lhn(p2'4e) .

The inequality is evident by the fact lim [*Z”‘]hthn-

m-—>co

II. We shall show that there exists A}, 0 < h/, <h,, such that
(29) Re <Th;1yn—y, x—y> < —p*+3e for n> n(e).
We apply Lemma 5 putting z=y,, hA=h, and y=Ty,y, for k=0,1,2, ...,
[;Z'] Then if we had Re { TwnmIn—Ymr ThmIm—Ymy =0 for all k, we had

(30) [ Tonm Ya=Ymll Z 1T e 15nm Yo —Imll -
Hence by
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1 Thn Y2 =Ymll S 1 Thn Y= Tennmminm Yull 1 Ternsmminm Yn— Yl
< En [ Yn—ml -

This contradicts (27). Thus we have for some i/ =kh, (0 <h’ < h,)

Re {Twyn—=Im TopImn—Im> >0,
or equivalently (using T, Yu—Ymn=—hnd ‘(X—Ym))

RedTwYn=Ym x—Iny> <0.

Combining this with second and third inequalities in we have

Red{ Ty, x—Yn> < —p*+2e.

Using (26) we have Re (T, y,—3, x—y) < —p*+3e.
IV. Now we can show x & D(T}), a contradiction. By [29) and (25)

1Tt yn—=20* = | Tat Yn—=2|*+lx—yII°~2 Re { Ty yp—2, 2=y
2 [[x—y|*+20*—6e = || y,—x[*+p*—8¢.
Since the set {|y,—x[:n=1,2, .-} is bounded, we have for some £ > 0
1Tw =21 > lya—xl+£  Yn>mn(e), 0<3h, <h,.

Thus infinite speed principle i) implies x & D(T)).

LEMMA 7. Let y be a point of D(T,). If there exists an xe< D(T,) such
that y=(I—2App) 'x for some 2> 0, then y is contained in D(Ag).

Proor. By Lemma 6, there exists a sequence &, | 0 such that

Ve=U—AAy) 'x—Yy strongly as k—oo.

By the relation A(Th,yx—yi)=h(ys—x) we have for a fixed A>0 and for
ny=Lh/h]

g
ATy Y=Vl = ZEI | Trn,ye— Tin-15n, Vel

= A Thp Ye—Yell = nihiel y— x|

Since y,—y, nyhy—h and Tn,,, Ye— TrY as k—oco, we have

< “,127 | y—x| for any 2> 0.

I*,lg(Thy—y)

The boundedness of {A4,y: h >0} implies the existence of w-lim Apy.

Proor oF THEOREM 2. By Lemma 4, for an arbitrahr? Cgoint xe D(T))
there exists y € D(T,) such that y=(I—2A44,) 'x and |x—y| =p. By Lemma
7 we have y e D(A4p). Since the constant p can be chosen arbitrarily small
for a suitable 2= 2(p), the relation (12) D(A,)=D(A,) implies our assertion.

Q.E.D.
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We shall give some additional results on the generator Ap;. In the follow-
ing we assume that D(T;)=H. By Lemma 6 we see easily that

(€3)) Apy2x 3y} lim y,=y and lim A,y,=x.

h&p&ED heped

In fact, it suffices to put y,=({—24,) (y—2x). By the generator Ay, is
independent of A:

Am;‘—:Amﬂ for 2, ﬂ>0.

Further we can prove that Ay, is independent of the choice of an ultrafilter
@. In fact, we put for two ultrafilters @ and ¥

y=U—2Ap))'x, z={U—2Ap) 'x.
Then by Lemma 6 there exist sequences %, | 0 and %, | 0 such that
y=1im (—24,,)x, z=1lim (I—XAh;l)“lx.

n—o0

Assume that y 2z and |y—x|| = |lz—x||. Then for some £ >0,
|Re (z—x, x—y)|+r = [x—y]*.

By Lemma 5 and by the same argument as III in the proof of Lemma 6, we
obtain

sup ,Re<Thzn—x, V—X> Z || Ym—x]|2 for sufficiently large =, m.
0<h<hn

Hence sup ||Tpe—x|*z ||y—x|*—- and

0<n<hy,
sup ,Re {Twz—x%, y—x>=|y—x]||*— —Z— for sufficiently large n.
0<h<hn

Since
lz—@x—)|* = le—x|>+||lx—y|*—2Re {z—x, x—y)

sA4llx—y|*~x,
and since for some 4 with 0 <h <h),

I Twz—Cx—y)|* = | Trz—x|*+ | x—y[*+2 Re { Thz—x, y—x

2| ThZ'—XHZ—}—3Hx—y||Z__J§ﬁ

= Ay 3F
we have 2x—y & D(T;) by infinite speed principle (i). This contradicts the

assumption D(T;)=H.
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§3. Domain of maximal contraction semigroups.

The Hille-Yosida theorem in connected with the results in §§1 and 2
is almost satisfactory for the case that D(Ty)=H. For contraction semigroups
whose domains are not the whole space H, the situation is a little complicated.
However, we must treat such semigroups, especially in the theory of holo-
morphic semigroups (cf. §4). We say that {T,} is a maximal contraction
semigroup if it cannot be extended to a contraction semigroup with larger
definition domain. Note that any contraction semigroup may be extended to a
maximal contraction semigroup.

ExaMPLE. Let H be the one-dimensional Hilbert space C'. We put

t 1—v/1-0—1? for 0t<1,
= 0 for 1<t.
Then we have ¢(p(t))=min (t,1). We define a contraction semigroup {7}
such that
Tire? = p(p()+t)e'?, for 0=r=1.

The infinitesimal generator A, is defined in the unit disc:

Agre’? = @' (p(r))e’ = —99(17% e?  for 0=r<1.
Since the function r—¢’(p(r)) is a strictly increasing function and maps [0, 1)
onto [0, o), the resolvent (/J—A,)! is defined on C'. This semigroup {7} has
“infinite speed ” on the boundary of the unit disc, hence it is a maximal con-
traction semigroup.

It should be noted that a maximal dissipative operator does not necessarily
generate a maximal contraction semigroup. In fact, let A be the operator
such that A-0=H. Then A generates the semigroup {7T,}: T,0=0. Evidently
A is maximal dissipative but {7;} is not a maximal contraction semigroup.
Thus we are led to the following:

PrROBLEM 1. What kind of maximal dissipative operators generate maximal
contraction semigroups? Conversely, is a maximal contraction semigroup
necessarily generated by a maximal dissipative operator?

PrROBLEM 2. Determine the condition on subsets of H in which there exist
maximal contraction semigroups (or densely defined maximal dissipative opera-
tors).

We shall discuss these problems.

THEOREM 3. 1) The domain of a maximal contraction semigroup {T,} is a
closed convex set not contained in any closed hyperplane.

ii) The closure of the domain D(A) of a maximal dissipative operator A
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1S convex.
For the proof of i) we need some lemmas.
LEMMA 8. Let {Sy,:ac '} and {S,: a e I'} be two systems of spheres in H:

Se={xeH: [x—x,|<1,}, Sw={xeH:|x—x,|=r.}.

If \xa—xpll = llxt—2xpll and ro=<rl for every «a,Be&l’, the relation afE\TSa?ﬁqb
implies N SL+ ¢.
acl’

For the proof, see [5].

Put £ =the convex closed hull of D(T)).

LEMMA 9. For a fixed natural number k, there exists a mapping U,: £ — 2
such that

[Upx—Uy| = llx—yl  for any x, ye 2
and
Uwx=T,xx  for any xe D(T}).

Moreover, if x,, xhc Q satisfy
[20—Ty-px| = |xe—x]  for any xe D(T)),

then there exists an extension U, of T,-, such that Ugx,= x}.

PrOOF. We let the set £—D(T,) be well-ordered, as {x,}. By transfinite
induction we shall construct such a mapping U,. Assume that the contraction
U, is defined for all xz with 8 < a and for all y € D(T), satisfying U;y=T,_.).
Let S(x—z; 2)={x": |x'—Z|| < |lx—=z|/}. We apply Lemma 8 to the two families
{SGa—xp; x8), Sxa—y; V) B<a,yeD(Ty} and {S(xa—xg; Upxg), S(xa—y; Upd):
B <a, ye D(Ty)}, then

N Sxa—x5: 20N (\ SEa—y:)# ¢ (since @ x,)
Bla Y= D(Ty)
implies

N SGa—xp; Upxg) N (\ S(xa—y; Upy) =S+ ¢.
Bla Y= D(Ty)

We denote by P the projection H—{ i.e. Px=y for |y—x| = inf |y’ —x].
ye

Since ||Pz—x|| < ||z—x| for any xR, ze H, we have Pz e S® for z/ S«
Hence SN2 +¢. We pick up an element x,eS*NL2 and let Ugyx,= x,.
Then U, defined on D(T)\J {x5: B =< «} is a contraction. By transfinite induc-
tion we obtain a required mapping U,. Q. E.D.

Let {Ug:a} be the set of all mappings in Lemma 9. For every U¢ we
define T¢,=U¢ and T, =T2T¢ for t=j5/2%, s=1i/2k. Then we have a semi-
group T*={T¢:t=j/2%,7=0,1,2,..-}. We denote by r, the set {T%:ja}.
We define the canonical mapping for [ =&

Jup: T DY ]L,kT”:Tﬁ for Te,=T8, T sy, TPer,.
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Evidently D(J, ) =7, and J,,;,[ix=/Jns For T ez, we put Af=25%T%,—I).
By Lemma 3 for any x< £ and any 2> 0 the element y§(x, ) ={U—214¢)'x
exists in 0.

LEMMA 10. For a fixed z < 2, the family {T§z: a} are equicontinuous in
t, that is, for any €>0 there exists some 6 >0 such that if 2-* <6 we have

1T z—2|| <e for any T*=1;.
PrOOF. First we shall verify our lemma for a z in the convex hull of
D(Ty):
&= ﬂ1x1+#2x2+ +ﬂnxn: x; € D(Tt>: Og ﬂ]é 1: 2/'5]: 1.

Without loss of generality we may assume that this representation is unique,
i.e. the points {x,, x,, -+, x,} are linearly independent. For T*< 7,

ITEz— Tl < lz—x0 7=12,-,n.
For a sufficiently small § >0 we have
“ T;",kx]--—-xjH <ég for 2% < 0.

hence
ITE wz—x5]l < lz—x;]+¢” j=1,2,-,n.

Assume that our assertion be verified for n=mn, For n=ny+1, denoting by
P; the orthogonal projection to the linear manifold spanned by {x,: k=j}, we
have

(32 1P;Tiz— Tyl < | Piz—z| 4",
since ||P;T¢wz—x;| < |Pjz—x;]+¢’. The relation [32) implies
pizp—e  j=1,2-,mn,
where PT (2= i} tix, and P is the orthogonal projection to the linear mani-
fold spanned byk:{lx,c: 1<k<n}. Hence
pitne’ = py = pi—e’

since 1— X pi, =y}, This implies |PT$2—z| <e, and so we have
kEj

ITez—z| <2, (since |PT .z—T% 2] <e).

For an arbitrary z/ € £ we pick up 2= y;x;, x; = D(T,) such that |z—z/|| <e.
Then

175w’ —2' | S 1 T5w2’ — T3zl + | Tz —zl +llz—2"|| = 4e.

LEMMA 11. Put y¢,=U—2A¢)'x, for fixed x,, x,, -+, X, € 2. Then the
set Y (D ={E )"} HXHX - XH for a fixed A>0 is convex and closed.
B —

m

Moreover
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o= sup VI[y—x)*—0 as 2]0.
W) EUTY L)
PrROOF. Let (yii)2 € Y=Y (A, Yeh—Vs,n @8 j—co. Then we have
a; o 1 a; 1 - 1 1
Ty 2k yen = <I+72k">yk;§z“72*k‘xn~—>yn = (1+7Z/E)yk,n—7’2ﬁ‘xn .
it is clear that the mapping U, satisfying

Uk:TZ_;c on D(TL), and Ulc'yk,n:yk,n

is a contraction. Hence by Lemma 9 (y;,.)2 € Y, Thus Y is closed.
Let (v¢,), (3 ,)e Y, Then we have

yloct.n——zzk(Tg—ky?,n—y%m) =Xn, yhﬁ,n_zzk(Tg—kyg,n—ygm) =Xn,

and
Tiw=U%, T8 ,=US&.
Hence
A2HUEYEn— UL yen) = Q24+ D)(YEn—YEm) -
We put

1 s 1
Zn= 727<y%.n+y§m): Zn= 727(U%y1‘cx,n+Ugy§-n) ’ 1 =nz=m.

We shall show that there exists a contraction U} in 2 satisfying
Utz,=2,, Uir="T, on D(Ty).
Assume that for some n and »’
1Z2n—Znl > lzn—2n| -

Then, if Re <y1?,n'_zn—ylz§,n’+zn': gn——gn'>§ Re <y%,n_"zn—y?.n’+zn': Zn—zn'> we
have

2841 Y o~
| 'ﬁ?tﬁ(y?.n—zn—y%.n'_i"zn') +(Zn_zn')

> H(y%.n"—zn_ylccl.n’+Zn’)+(zn_zn')” ’

and if Re{¥§,—z,—Yin+2n, Zn—20 > S ReYE,—2,—Vbn 20, 2n—2p )y We
have

A28 41
|22t Ota—za— 3+ 20)— (a2

> H(y%,n"zn'_y%.n’+Zn'>_(zn—zn’)” .
Thus at least one of the two relations
NUEYEn—Ugyenll > | =il
”Ugylun _Ugyg.n’” > “ yg.n"yg.n'” s
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holds good. This contradicts the contraction property of Ug, and UZ,.
Hence we have
12, =20 | S lza—20)), 1=n, n'=m.

Since | U 38, — U238 (=55 90— Y8all) Z | 98,— 8], and since | UgyE.,
—Tpad = 158 —y1, 1UEYE—To-xdl < 1 98,—y] for y € D(Ty), we have

1Z2o—=T,9l £ llzo—3Il  for any y e D(T).
Hence by Lemma 9 there exists a contraction UZ in £ such that

Ulz, =2, for 1<n<m, Ur=T, on D(T).

The semigroup T} (e ;) defined by U satisfies

2y — 27T 42, —2,) =x,, for1<n<m.

This means (z,)», € Y,. Thus Y, is closed and convex.

Suppose that for some &> 0 there exist sequences {1, |0} and {(¥).m
e U Yi(4;)} such that

k

Iyi—xl=e.

Since yi ——2,-2’“1‘(T2_,c].y$; =¥y =x, (W) e Y%,), this contradicts the equicontinuity

of {T¢#x: a} by infinite speed principle. Q. E.D.
We define Y. (A)= F\ (the weak closure of 6 Y. By Lemma 11 the set
n=1 k=n

Y(4) is nonvoid. For fixed x € £, 2> 0 we denote simply Y, =Y,(2), YV.=Y.(.
LEMMA 12. For any y € Y., there exists a sequence {y,‘é‘je Yy, 1 j} such that

Vil —y (strong) as j—oo.
PrROOF. We define the norm || and the inner product (,Y in HX .- XH
as [Gel = v/ [al* and <), (3> = 35 {ar 3.
For T*e 7, and k<!, we denote Af=2%T, ,—I) and yf=(I—21A%)x.

From the equicontinuity of {T¢x: T*< \U<z,} it follows that for any ¢ >0 there
exists some k(¢) satisfying

33) lyi—yEll<e  for IZk=k(e), T*<c,,
by virtue of [12, Lemma 2]. (This can be seen also in a similar but more

complicated way to the proof of Lemma 6.)
Let yi* be the element of YV, with

ly—yil =y/ig§ ly—y"1.

Such an element yg* exists uniquely in ¥, by Lemma 11. Assume that Yk s .
Then we have lim ”y——y,‘j']’?f]] =x >0 for some subsequence {k;}. If {y%} is not
ko0
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a Cauchy sequence, i.e.,

1650, Y, Ak iz,
the relation for a =a, implies
(34 | yee—yetl = | v =yt =l vt =y = p—e.
For sufficiently large %;, we have

Hy—yel—rl<e.

Since Y,c is convex and closed, and since y;f/ is the point of Yy, with minimum
distance from y, we have

(35) Re {y—yi}7, z——y,’Jj’?i> <0 for zeY,,.

Putting z:y,@'j we have

1y =gl 41 viegs =il = ly—vefl* = Ay =yt )

by [33). Let =k, m>j. Then the relations |y—yi*i|=k—e and ||y—yikm|
< k-+e imply
| yisi—yewm||® < 6re+2e” .

This means that {yg T} isa Cauchy sequence. Put y,=Ilim y;%. Then |y.—y|

Joo

=¢. Since \UY, are bounded, i.e.,
k

sup ||/ —=yi; | <M <oo,

'!I‘Um

we have by for ze U Y,
[Zk 4

Re (y—Yu, 2-Y0> = Re {y—yifs, 2=y Y+ el y=yel + 2=y [))
<ele+M).

By letting z tend weakly to y, we obtain a contradiction for such an ¢ that
e+ M) < £?/2.

LEMMA 13. Let O ={¢p={(a, k)}} be an ultrafilter with lim k=oo.
Then there exists a filter ¥ = {¢ = {(a, k)}} such that et

1i;fn (T—2A) 'x= w-lién (I—2Ag)'x  for any xe£.

ProOOF. Note that w-lim (/—1A#) 'x exists in £. For an arbitrary finite
(]

set {xy, X5, -+, X} C £ and for an arbitrary positive ¢ >0, we put ¢{x, x,, -
yXm; €} = {(a’, k) | W-li;)n U—=2A7) %y — (I —2AAE) 1, || <&, 1=Yn=m}. By
Lemma 12, every ¢{x,, ---, x,; €} is nonvoid and contains a sequence {(«a;, k;)}

with lim k;=oo. Thus the filter ¥ generated by {¢{x,, x,, -+, xn; ¢}} satisfies

jooo



Differentiability of nonlinear semigroups 391

our requirement.
LEMMA 14. There exists a filter ¥, such that

Yi(x) = lqi,m (=27 A8)"x

exists for every xe £ and for 1=0,1, 2, -
Proor. The filter in Lemma 13 for 1=1 is denoted by

Ui={oD¢%xy, -+, Xn; 8 Xy, X, €0, >0}
We define a dissipative operator A as

ACy={y—x: y=2,®m}, yo(X):lggl I—Ag)*x.
Let @, be an ultrafilter containing ¥,. Then for every x = Q2

y,(x) = w-li~m (I—2-1Ag)x
Yo

exists in Q. Putting y¢.(x) =T —Ag)'x, we have
(36) You(x) = U2 AF) 1@ x+277y56(%))

hence y,(x) = lim (I—27*Ag) (2 'x+27'y,(x)). Define a dissipative operator A®:
Yo

APy ={2(y—x): y=y,(0)} .

Since 2-'x+2-'y,(x) € £2, we have by (36)

A(O) C A(l) .
The filter in Lemma 13 for 21=2"' is denoted by ¥, = {0 D¢'(x;, -, x,; €):
Xy, s X, 8, e>0}. Then for every x e 2

y,(x)=lim (J—2-1A,) 'x
¥

holds good. Note that ¥, ¥,. Repeating this process, we have a sequence

{A™} of dissipative operators and a sequence {¥,} of filters of indices (a, k)
such that

A(O)CA(I)CA(Z)C e,

vr.cv,cv,c -,
€
Yu(X) = I;m (I—2"Ag)'x exists for every xe 2,

APy = {2"(y—x): y,(x) =Y} .

The filter ¥, ={pD3p": p" =3V ,} satisfies our requirement.

Proor OF THEOREM 3. i) The closedness of D(T),) is clear. Suppose that
D(T;) is a proper subset of the convex closed hull 2 of D(T,). We define a
dissipative operator A defined densely in Q:
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A-y={2"(y—x): 3n, y.(x) =3},
where yn(x):liym (I—2"Ag)'x, and ¥, is the filter given in Lemma 14. The

graph of A is toﬁe union of the graph of A“s, where A is the operator
defined by (37). Since D((I—2-"A™)~)= (2, we have

D(I—-2"A)"HD R, n=0,1,2,--.

We shall construct a solution of the equation

@8 % u(t) € Au(®)

uye 2, u@=y,€@-DT)NDA).
For this purpose we construct an approximating sequence {u,(#)} satisfying
d
”d’t‘ unU) - Anun(t)

(39
u,(He L, U, (0) = y,—27"y8, y) = 1;’111 (J—A$) x,—x,,

where x, is an element of y,—Ay, and A, is the mapping:

x—27"x" —x’, xe DA, xeAx.

Let P be a projection H—2 1ie, Px=ye with |y—x| = inf ||y’ —x].
y e
We define u™(t) by induction : !

uPO =32, w0 = P(yo+ [ Au(s)ds) .
0
Then u™(f) e £, and

L~ u® | = | P(ve+ || A ©ds)— P30+ [ Awuge=>(ds)

= [ Awu(s)— Augro(s) | ds
0

Since A, is Lipschitz continuous, we see that X || u™({)—uf™ ()| < c. Hence
the limit u,(t)=limu{() exists. The fact that u,(f) satisfies the equation
m—oo

(39) is verified as in the proof of Theorem 1 in [I14]. By the same afguement
of [4, Th. 47, {u,()} converges strongly to some function u(t) uniformly in
t [0, t,] and the function u(f) is a solution of [38).

Now we have to show that

. T,x for xe D(T))

(40) Tox =
u(t+s) for x=u(s), s=0,

is a contraction semigroup. Since A is dissipative, we see by that

lu(s+D—u(s’ -+ | < Ju(s)—u(s’) | for s,s,1=0.



Differentiability of nonlinear semigroups 393

Hence it suffices to show that

41 | u(s+H)—Tx | < || u(s)—x| for xe D(Ty),s, t>0.

We consider s, ¢, s+t < [0, 7] for a positive constant r.
We define discrete semigroups {7%"} as follows:

Ten=2"FAg(I—2""A¢)1+1,
Ter=1, Tgr=TgrTen for t=j2°% s=7/2°%,

(42)

Since (I—27"A#)™* and 2°¥A¢=T¢,—] are contractions, {T@": t=;2°% j=
0,1,2, .-} is evidently a contraction semigroup. Hence Ag"=2¥Tgz—1I)
=Ag(I—2-"Ag)! is dissipative and we have

(43) | AgnT x| < || Agmx || for t=j2% xe Q.
We shall show for u%=y¢ —2-"y¢, v¢ = (I—A%) *x,, v¥ =y¢—x, (= A¢y¥) that
(44) [TErut—TeEmug | <e, for n,m=n, (o, ee,e¥.,, 0<t=52"%<r.
In fact,
| Tomus—T%maust |2 | ug—u |
= Z (T et — T & e—stimn " — I T332kt — T 53 |1*)

—ZZ““Re(A”T mud— AT oMy Tan ya_ Tamqyas,

- 2 272 | AgnT o — Apm™T 4™l ||% .
Since we have
Re (AP T 2 pun— AR ™ oy, U—2""A8) T G un— U —2""Ag) T 5™ >
=0
and
| Tom s —(—2-" A Thmqe | < 277 | AenTam 2 |
we have by [(43)
| T —Tmas | S 4r @ 427429 for j2*=r.
It holds that for any fixed » and ¢, 0t <7
(45) lim T¢ru=u,t)  G=52"" j,=[12%]).

[e'e]

In fact, let p;=||T% us—u,(j27%)|. Since

T(]_",_Zl)z ku Td ﬁkua“{—j‘ Aa’ nre jo ku“ds

un(GHD2 D = (5294 T A2 9)ds,



394 Y. KOMURA

and since lim A¢"u,(t) = A,u,(t), we have for (a, k) € ¢

(e}

O = | un(j270)—THuz |

T (A A2 | ds
0

—k
[ N AT (2= AT g ds

= 27 e+ 27520+ 277 | w5l
< p;(142m-*)4 2%, for some o= ¥,
(satisfying 27| vl < 2%¢).
Hence by induction we have
05 = por ™" +2re™ e < (N =, | 427" y¥ —yi e +2rem™"e
for 02 %<7,

which implies [45). Since lim Af(I—2-"AH)'y= Ay for ye D(A%) (=0), we
have for fixed «

(46) lim [T — T4 | =0,

since {u%; n} is relatively compact in Q.
Now we can show (41) for s=12"% t=72"% s+t=(+)2"% < [0, ] by (44),
and [(46):
[u(s+D—Tux | = u(s+D—unls+0) |+ unls+D—TZFuz |
I Terug—TEsug |1 Tosun—Tex |
S| Toug—x|+3e
= | uls)—x||+6e,
since
| u(s)—Tuz |
= | u()—un(s) [+ n()— T ug |+ | T ug—Tiuz |
<3e.
By the uniform continuity of T,x and u(¢), the relation (41) for any s, ¢, s+t
&[0, 7] holds good. Thus {74} is a contraction semigroup, which contradicts
the maximality of {T,}.

It remains to prove that the domain D(T,) is not contained in any closed
hyperplane of H. Suppose that D(T,)C {xe H: Re{x, ¢>=a} for some ec H
with |e|| =1. Let S,(x+e)=Tx+e for x = D(T,). Then {S,} is also a contrac-
tion semigroup and its domain e-+D(T;) has the void interesection with D(T)).
Hence
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. T,x for xe D(T)
Tt.x ==
Six for xcet+-D(T).

is an extension of {T,}. {7} is evidently a contraction semigroup. Thus the
proof of i) is completed.
LEMMA 15. Let A be a maximal dissipative operator. Then we have

47 lim | x—{—AA) x| = inf [[x—y]| for any x< H.
210 yED(4)
PrOOF. Since (/—1A4)'x € D(A), we have
(48) | x—(I—2A) x| = inf |jx—y|] for A>0.
yED(4)

Conversely, for ye D(A) and y= A-y we put y,=y—1y’. Then y,—y as
A1 0. Since (/—AA)™! is a contraction, the operator [—(/—21A)"' is also con-
traction. Hence we have

IUT=U=2A) Dx—T—=T=24)") y:]|
sl x=yll=lx=yIl as 2]0.
Since J—(I—2A) M)y, =y,—y—0 as 1|0, we have by the above relation
(49) % d—=UT—=2A x| =lx—v].
The relations (48) and (49) imply (47).

PrROOF OF ii). Let y,ze D(A) and x=py—1—p)z for 0 < p <1. Suppose

that x & D(A). Then, putting y,=y—2y’ for = A-y, as in the proof of
Lemma 15, we have

IUT—=2A4)"x—y | = | U—=2A) " x—T—2A)""y; |
slx=yl—llx—y| as 2]0.

Similarly we have Tjﬁ |(I—2A)*'x—z|| = || x—=z|]. Since
Lo
ly—zl= _IZIEI Ny—U—=2A)" x|+ U—24) " x—z )

=y—x|+lx—zll=ly—zl,
we see that

1}m (I—2AA) 'x=vy—1—v) -2z for 0<v<1,
10
and

Um [(I-24)"x—y| = x—] .

Hence we have lim(/—2A)'x=x. But this contradicts the assumption
—— al0
x & D(A).
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THEOREM 4. 1) A maximal contraction semigroup {T;} has a densely
defined generator and is generated by a maximal dissipative operator.

i) If @ maximal dissipative operator A is single-valued, the semigroup
generated by A is a maximal contraction semigroup.

Proor OF i). By Theorems 2 and 3 the infinitesimal generator A, of {T:}
is densely defined in D(T,). A maximal dissipative extension A of A, generates
a contraction semigroup {S;}. Evidently {S,} is an extension of {7,}. The
maximality of {7,} implies {S.} = {T}}.

Proor or ii). Let {T;} be the semigroup generated by A, {S;} a maximal
extension of {7,}. Suppose that D(S,) 2 D(T,). By virtue of i), the generator
B of {S,} is densely defined in D(S;). Hence there exists a point x € D(B),
& D(T,), since D(T,) is closed. By the maximal dissipativity of A and by
Lemma 7, y;=({I—2A)"'x exists for 1>0 and converges to a point y € D(A)
as 2| 0. Since y, = D(A), T,v; is weakly differentiable in ¢ by [3, Theorem 1],

i.e., wl}gr; Apy;=A-y,. Note that A-yz—_—jl{—(yz—x). Hence we have
lim 4 Ta3y—33 33— = | 33— |-
Since || Ty, —Sux || = | Spy—Sux || = |y2—x 1, we have
Re (Sux—x, y;—x>=Re (Spx—Twy, y,—x)
+Re{Thyi—Y, V2= 20+ Y:—x°
= Re {Thwy; =y Y2—%) .

Combining above two inequalities we have
.1 1 .
lim 7 Re (Sx—x, y,—x> = 5 | 32—
hl0 h Z

But this is impossible. In fact, if 21 tends to 0, we have

lim Re<» };(th——x), yz—x>: Red(B-x,v,—x>—Re(B-x,y—x,

rlo
It —co.

COROLLARY. If the domain D(T,) of a contraction semigroup {T} contains
an open set 2, the domain D(A,) of the infinitesimal generator A, is dense in
Q,i.e, ONDAHY=2.

Proor. Let {7} be a maximal contraction semigroup containing {7%}.
By Theorem 4, the infinitesimal generator A, of {T.} is densely defined in

D(T). Hence D(A)N 2 is dense in 2. Our assertion is now clear, since
A,O:AO in Q.
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§4. Holomorphic semigroups.

A continuous (single-valued) mapping f: H—H is said to be analytic if it
is Gateaux differentiable, i.e., f(x+Ay) is analytic in A for fixed x, vy € H, if
x+4y € D(f). An analytic mapping f has the Taylor expansion

fatn =3 4 0o xe DU,

where 0"f(x; ) is a homogeneous mapping of degree n. (See [2].)

To obtain similar results to linear case, a nonlinear holomorphic semigroup
{T:} should be not only holomorphic in {, but also analytic as a mapping for
each fixed t.

REMARK. Suppose that T, is a contraction defined on H for a fixed ¢. If
T, is an analytic mapping, then the function f(1) = T,(x-+2y) for fixed x,y= H
is linear. In fact, | /() =1 lim 2 (f+AD—FQ) | = lim - 1425]= | 5],

420 4150 |
Hence by Liouville’s theorem f/(1)=a constant y,. Thus f(2) =x,+ 1y, where
x,=f(0). From this fact it follows that S-x=7T,x—T,0 is a linear operator.
The situation for (J—A)-!' is the same: If A is maximal dissipative (hence
D(I—A)"Y=H) and if (/]—A)"*' is analytic, then (/—A)™* is expressed by the
form x,+L, where L is a linear operator, and A(L-x+4x,)=(L—1I) x+x,.
Hence we must consider a generator A which is not maximal dissipative.

LEMMA 16. Let f be an analytic mapping with the open domain D(f). If
the inverse f~* exists and is Lipschilz continuous, it i1s analytic.

Proor. We fix x,& D(f) and x € H. Put y,= f(x,), yo+y; = f(x,+Ax), where
f(x,+2x) is defined for 2 whose absolute value is sufficiently small. Then we

have y,=10f- x+o0(4). We define y= lzim ,,32).&:5]‘. x. It holds that
-0

F ) = (32t 0(D) = X0+ Ax+0(2)

since f~! is Lipschitz continuous. Hence f~!(y,+4y) is differentiable at 21=0.
It suffices to show that every element y = H is expressed by the form df- x,
i.e. (0f)' is defined on H. Note that df is a linear mapping. Since f-! is
Lipschitz continuous, we have

191 = LI £~ (5ot 20)— (v = L 2x-+ 0],

and
lof - x|l =Nyl =Llx| .

Hence (0f)~! is continuous. This implies the closedness of df-H. Suppose
that j&of- H. We put x,+x;=f"(y,+2¥%. Then we have

Vot A = f(xo+x3) =y, +0f - x3+0(xy) ,



398 Y. KOMURA

since f is Fréchet differentiable (see [2]). Hence A5=4f- x,+0(x;). From the
relation i&f-x,le‘éf-H it follows that —i—o(x;);éo(l), i.e, x;#0(4). This

contradicts the Lipschitz continuity of f-1. Q.E.D.

We consider a sector 2p={¢: |arg¢| <@} in the complex plane C' and a
closed set 2 in H. We shall say a nonlinear semigroup {7} to be holomorphic
in 2x X, if it satisfies the following

(50) For each fixed t e Yy, the operator T, is analytic on a neighbourhood
of 0.

(51) For each fixed x € 2, T,x is holomorphic in t < Y.
(52) {T,; te 24} is a contraction semigroup, i.e.,
1 Tx— Ty < |x—yll for te X, x,ye L.
The résolvent R(2, A) of an operator A is defined by:
R4, A)=(AI—A)".

Now we can state the relation of holomorphic semigroups to resolvents of

generators as follows.
THEOREM 5. i) Let {T.} be a holomorphic semigroup in X2y If a
neighbourhood 2, of the closed set 2 satisfies

(53) QDQA-AY'Q,  for 2€ 3, x, 0<h<h,,
2

then the resolvent R(A, A) of A= Ag,;, (4> 0) satisfies
GL)) R(2, A) is an analytic mapping on a neighbourhood of £.

(55) IR, Ax—R(, A)y] = E%R}(ewl P

for ZEZM{;‘, xnyef.
(56) For each fixed x € 2, R(, A)x is holomorphic in Z(Hﬂ,
. 2

ii) Let Q2 be a closed subset of H, A an operator 2 — H satisfying
(G DAD DR, x+te()Ax e Q for |[A|>C, 1€, xe8,

where ¢(x) >0 and A;- (x~ /12 x’) =x' for X’ € A-x, xe D(A). If the resolvent

R(4, A) satisfies the conditions (54), and (56), then A generates a holomor-
phic semigroup in 2x23,.

Proor oF i). Since {7,} is a contraction semigroup, the operator A,

= T"};—_[ is dissipative. Hence we have for 1= p+iy, >0,
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IQAI— Ax—QAI— AR Y)|? = | A=)+ Anx— AnYII*+2 Re 2 Apy— Apx, 2—3)
Z A=+ | Apx— Apy|I*+2 Re w{Apy—Apx, x—3)
=z | x—y P+ UvE =Dl — | Anx— And1)?
= plx—y]*.
This means the Lipschitz continuity of (AI—A;)"* for Re A>0:
pll A=Ay~ x—@AI— Ayl = x—21 .

By Lemma 16, the mapping (A/—A,)"! is analytic. We fix x, € £,. Since the set
{QAI—Ap)*x,: 0 < h < hy} is bounded, the convergence of w-al)im AI—A) Y (x+0x)

is uniform in ¢ with |e| <7, for fixed 12 and x and for sufficiently small » > 0.
Thus the resolvent R(2, A) :w-a%im (AI— A, is analytic in £,. By the obvious

equality
R(A+42, A)x—R(A, A)x = R(A+ 44, A)x—RQA, AYA+A21—A)RQA+ 42, A)x
= R(A+42, A)x—R(, A)AI—A)R(A+ 41, A)x
—d20R((AI—A)R(A+ 42, A)x; R(A+41, A)x)+o(d2),
we have
7}2— (R(A+42, A)x—R(4, A)x)=—0R(AI—A)R(A+42, A)x; RA+ 44, A)x)+0o(1)
— —0R(x; R(4, A)x) as 41—0,

since (AI—A)R(A+42, A)x—x and R(A+42, A)x— R, A)x. Thus R, A)x is
holomorphic in 2 for Re2>0. From this fact and the property that {T,} is
extended to the sector |arg | < 6, we obtain easily that R(4, A)x is holomorphic

in A for |arg 1| < ‘—72;——&—0. In fact, put s =¢%“1t for |§,] < @. Then {S,=T,:t>0}
is a semigroup. The generator of {S;} is ¢"“1A. Hence the resolvent of the
generator of {S,} is R(4, ¢??1A) = R(e-"%12, A)e-%1. Since {S,} is a holomorphic
semigroup in X,_js,;, the resolvent R(4, "%t A)x is holomorphic in A for Re 1> 0.
Since ¢, is an arbitrary argument with |,| <8, R(4, A)x is holomorphic in

A€ ,. Moreover we have for p=Re1>0
2

|R(e=*12, A)e™*"1x—R(e”*"12, A)e™ "1y < L |

and so for |arg 2| <5 +6, Re (¢12)>0 and |6,| <0 we have

lx—1,

IRG, Hx=RG 3 = g orgy 511

.. . . 1
ProorF OF ii). The inequality |R(Z, A)x—R(1, A)y| §7Re—(——e@@—-”x~y|{ for

+0,=larg 1| < implies the dissipativity of -%A for |arg 1| < 6. We shall
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show that the operator A4, : x— ——};x’ﬁx/ for x € D(A), ' & Ax is analytic. Let
xL:(I—— riL—rA>-1(y0+ty) for fixed y, e 2, ye H. Obviously x, is holomorphic

in t. We put x;=mnx,—n(y,+1ty). Since x,— }Z—AxtSyOthy, the element x| is

contained in Ax,. Noting that A, is single-valued, A,(y,+1!y)=x, is holomor-
phic in ¢.

We shall construct the solution u,(#) of the equation

_éit un(t) = Anun(t) le ZB: l” =1,

U, =xe L.
Putting f=|t|, 6, =argt, the approximating sequence

u™(0) = x, u™(fe'’t) = un(tre ')+ (I —tme 1 Aum(tre'’yy  for i<,
tr=0, tr,= z‘;-"—l—mm{—mv, sup{f : um(Pe'’1)+se1 A um(tre e 2, O<Vs<t}} )

converges uniformly to a solution u,(f), since A, is Lipschitz continuous.
Note that for any m there exists some j, with (? >, by [57), and so u™(H)e 2

for 0<f<t,. Since A, is analytic, the function ~5Z»un(t):Anun(t) is p-times
differentiable if u,(t) is so. Thus u,(?) is infinitely differentiable. By the
infinite differentiability of u,(t-+fe®’t) by real { for t € %y, |6,] < 0, the function
u,(f-+1s) is infinitely differentiable in { and s. Since lim 1 (U (t+te® )y —u, (@)

eiﬂltT
tl0
has the limit independent of #,, the function »™(¢) is holomorphic in t & 2.
Since ¢1A is dissipative for |6,| <0, the sequence {u™()} is convergent
to a function u(¢) uniformly in < K, where K is an arbitrary compact set in

the sector Y, The function u(f) is evidently holomorphic in the sector X
and satisfies the equation

Auemn e,

u)y=xe 2.
ExaAMPLE. Let H be the one-dimensional complex space C!. We put
Az =2%, R={zeC':Rez< —|Imz|}.
Then we can easily see that the operator A and the closed set £ satisfy the
conditions (55), (56) and (57) for § =" Z Instead of (54), the resolvent R(4, A)
is analytic on 2, = {z = C*: Rez < 0}. The operator A generates the semigroup

{T} in 2x 2z such that T,z= (,%,,,_0_1 for ze £2—{0}. Note that 2, is a
4
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neighbourhood of 2—{0} and T,-0=0. The semigroup {7} is evidently holo-
morphic in %23~ .

4

§5. Additional notes.

RESULTS BY CRANDALL-PAZY, KATO and DORROH. We shall explain shortly
a part of [10], [11] and closely related to ours. Let A be a maximal
(multi-valued) operator. Using the fact that the set Ax is convex and closed
for every point x & D(A), the single-valued restriction A° (called the minimal
cross section of A by Crandall-Pazy and the canonical restriction of A by
Kato) of A is defined by :

Ax=y, yeAx and |yl= inf [|»].
Y Edx
The most remarkable fact is:
THEOREM (Crandall-Pazy, Kato and Dorroh). Let {T;} be the semigroup
generated by a maximal dissipative operator A. Then the infinitesimal gen-
erator A, of {T,} is an extension of A°.

More precisely, we obtain the followings:
) Apg=A4,

ii) Our solution u(t) of —{;Fu(t)e Au(t) is a strict solution of

Dru(t)y = A'u(®) (D* =the right differentiation).

iti) The answer to the first half of Problem 1 in §3.

The result ii) is much better than our Theorem 1.

THE HiLLE-YOSIDA THEOREM. We shall begin with explanation of iii) above.
If A°C B° for maximal dissipative operators A and B, then the semigroup
{T,} generated by B is an extension of the semigroup {S,} generated by A
(Theorem above). Hence, if the semigroup {S,} is maximal contraction semi-
group, then A°® is maximal in the class {B°: B is maximal dissipative}. Con-
versely, if {T,} is not a maximal contraction semigroup, a maximal extension
{S,} of {T,} is generated by a maximal dissipative operator A ([Theorem 4).
The infinitesimal generator of {S;} is A® (Theorem above), and so B° S A°.
Hence, if A° is maximal in the class {B°: B is maximal dissipative}, then the

semigroup {S,} generated by A° is a maximal contraction semigroup. Thus
we obtain

THE HILLE-YOSIDA THEOREM FOR NONLINEAR SEMIGROUPS. If {T;} is a
maximal contraction semigroup, then the infinitesimal generator A, is densely
defined in D(Ty) and is maximal in the class {B°: B is maximal dissipative}.
Conversely, if an operator A is a maximal one in the class {B°: B is maximal

dissipative}, then A generates on D(A) uniquely a maximal contraction semi-
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group {T,} whose infinitesimal generator A, is A.
For instance, our ii) is easily obtained as a special case of
this theorem.
Ochanomizu University
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