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Interpolation by the real method preserves
compactness of operators

By Kantaro HAYAKAWA

(Received June 14, 1968)

In this paper we will prove the following

THEOREM. Let [E,, E,] and [F,, F,] be arbitrary interpolation pairs, and
let T be a continuous linear operator from the couple [E,, E,] to the couple
[Fy, F\1. If the mappings T: E,—F, and T: E,—F, are compact, then for
1=p<o0,0<0<1 T:5, p; Ey, E)—S@, p; F,, Fy) is compact. Here S0, p;
E,, E)) is the interpolation space by the real method of Lions and Peetre [1].

When the couple [F,, F,] satisfies a certain approximation hypothesis,
A. Persson proved that if T: E,—F, is compact, then T: E;—Fy is also
compact, where Ey and Fy are the interpolation spaces by the real or the com-
plex method.

The author wishes to express his gratitude to Professor H. Komatsu for
his continuous interest and encouragement during the preparation of the pre-
sent paper.

§1. Notations, definitions and fundamental facts.

For two linear topological spaces € and &, we write £C & if € is a linear
subspace of & and the identity map is continuous.

A pair of Banach spaces [FE,, E,] is said to be an interpolation pair if
there exists a Hausdorff linear topological space &€ such that E,C & and E,Cé&.
In this paper, when we write [E,, E,] or [F,, F,] we always assume that the
pair is an interpolation pair.

For [E,, E,] we can define Banach spaces E, N\ E, and E,+E, with norms

X1l zonmy = Max (| %]l zo, %] £1)
and

[ %l £+ £, = Inf U xoll o+ 1210l £y 5 X = x+2)
respectively.

Given a Banach space E and real numbers p and § (1< p=<oo), we con-
sider E-valued sequences {a,}r--.. such that {e™|a,|:} !?. In the linear
space of all those sequences, which is denoted by [2(E), we introduce the
norm
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In case p= oo, we modify this norm in the usual manner.

DEFINITION 1.1. Given real numbers p,, p, and 0 (where 1< p,, p, = oo,
0<6d<1) we denote by w(p, 0, E,; p,, 0—1, E,) the Banach space [2(E,)
ABLCED.

DEFINITION 1.2. Under the same condition, if {a,} € w(p,, 0, E,; b, 0—1, E)),

then the sum § a, converges in E,+FE,. The set of all such elements > a,

m=—=o0

in E,+E, forms a Banach space with the norm

”a”S: Inf ”{am} Hw(po,ﬁ,EO;pl,ﬂ—l,El); > Ay =a}.

We denote this Banach space by S(p,, 4, E,; p, 0—1, E,)) and the mapping
{an} -2 a, by 3.
ProposiTiON A (Lions-Peetre [17]). If p,<q, and p,<q,, then we have

S(po: 6; Eo; Pp 0—1; E1)CS(Q()» 0’ Eo; qu 0”"1: E1) .

ProprOSITION B (Peetre [27). If %: 1770———% »gﬁ—r, then we have
0 1

S(pm 0: EO) ply 6_1’ El) :S(py 0: Eo; p’ 0_1) El) .

In this paper we denote S(p, 4, E,; p, 6—1, E,) by S@, p; E,, E;) and w(p,
0,E,; p,0—1, E) by w@, p; E,, E,) for short.

DEFINITION 1.3. Let E and F be Banach spaces. We denote by @(E, F)
the Banach space of all continuous linear operators on E into F. If T < B(E, F)
is compact from £ to F, we write Te K(E,F). We denote by B(E,, E,],
[F,, F,]) the Banach space of all linear operators on E,+E; to F,+F, which
transform continuously E, into F, and E, into F, respectively. If, in addition,
T; E,—~F, and E,—F, are compact, we write T € K(E,, E,], [F,, F.J).

DEFINITION 1.4. A Banach space XDE,NE, is said to be of class
H4(E,, E) if there exists a constant C >0 such that |a|y < Clla|f)all§, for
all ae E,nE,. Also a Banach space XCE,+FE, is said to be of class
Ko(E, E) if there exists a constant C >0 such that for any ¢ = X and for
any t>0, we can choose a,(f) in E; (:=0, 1) with the property that a,(¢)+a,()
=a, |a®)|g, = Ct 0 alyx, and ||a,(H)] g, = Ct*%|ally. A Banach space is said to
be of class Ky(E,, E,) if it is of class K4(E,, E,) and of class K4(E,, E).

Then the space S(p,, 0, E,; b, 0—1, E)) is of class A 4(E,, E,), (see [1]).

ProPOSITION C (Lions-Peetre [11]). Let p,, p, and 0 be real numbers as in
Definition 1.1. If T B(E,, E], [F,, F.]), then we have

) TeB(S,0, Eo; by, 01, Ey), S(Po, 0, Fo; by, 0—1, Fy) and

i ITle=CITISOITH].
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where [T g, IT|l, and ||T|, are the norms in the spaces B(S(p,, 0, E,; p;, 0—1,
E), Sy, 0, Fy; by, 0—1, F)), B(E,, F,) and B(E,, F,) respectively.

ProposiTION D (Lions-Peetre [1]). Let Xy, and Xy, be Banach spaces of
class Kp,(Ey E,) and Kg,(E,, E,) respectively (where 0<0,+60,<1). Then we
have

S(QO’ Dr Xﬁo; 01, 1)'—‘1, Xﬁ_{): S(pm aw Eo; pp 0,)_]-, El) ]

1 1—6, i
where 6,=1—v)0,+v0, and “ :~—fj~j0—+g—l

ProOPOSITION E (Peetre [27]). We have

1=0, L.

SO, 73 By ED=S( 1, 75 50, 0; Ey ED, 56,15 By, E).

ProrosiTiON F (Lions-Peetre [17], Peetre [2]). Let E be a Banach space.
Then we have
SChor v, RUEY; by v—1, IR (E) = 32(E),
where

11—y v

(1.1 6, =(1—-)0,+v0, and +-
1

pv - pO

§2. Interpolation space of the spaces w(#, p; E,, E,).
PROPOSITION 2.1. For 0<y <1, 1< p, p,<co and 0< 0, 6,<1, we have
S(bo, v, wlo, bo; Eo, E); D1 v—1, w0y, p15 Eo, EV)
=w(0,, ;5 Eo, Ey),

where p, and 0, ave given by (1.1).

Proor. We shall denote by S the left hand side of our identity. By Pro-
position F and Definition 1.1, we have

S=So, v, (BEINEAED; by v—1, [F(E) N (ED)
C-S<p01 v, [gg <E0> ; ﬁl: V—'ly [gf (E())) = lfq’,’j (EO) .
Similarly we have SCI[§»(E). So we get SCI5(Ey) N §-(E) =w(l,, p,;
Ey, Ep.
Let A1 be a real number satisfying p,(1—2Av)=9p,. For {a,}=sw@,, p,, E,, E,),
we set
Qp, if n=0

um,n st

0 if n=£0
and

Vm,n = U, ntlamd »
where
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tn = Max {m—L2-(0,—0,)+ AmBy+10g a5,

m

220000+ Am(B,—1)+10g lanl )} -

Then we can verify the following lemma.
CALCULUS LEMMA.

D T LN | G LA PN

i) eIIm B ey B e a7
) e 3 (e D0 0B < ] anl 5+ (€O gl )
V) IR B Dy |8 (| ap] )P a5

Proor oOF THIS LEMMA. We will prove iii) and others can be proved
similarly. By the definition of v, ,, we have

oo
emﬁlpl EOQ Hen(v-l)vm’n”%é — em01p18(1~v)p1[am]”am”gé R

n=—

We set log ||a,| 5, = ¢, and log |a,| z, = d,,, then it is sufficient for us to prove
V) malpl—’_(l—“’))pl[am]_}—plcm é Max {maupu_‘_pvcml m(ﬁv—1>pv+pudm} M

But this is evident since, by the definition of 1 and 6,, p, we have

1 .0, 6 ¢ 0 1 ,6,—-1 6,—1 6,—1 6,—1
R e L

’1—;7 p1—pp ﬁp1 ‘p_oj 1— 1 po k.
and
(maupu+pvcm— mﬁlpl_plcm)/(l_—v)pl
- b, 0
"“mpv X po >+ZC77L)
{m(ﬁu_l)pv+pvdm—M0lpl_plcm} /=)D,
—mp (Go—1 _ 0 —1 LS I
_mp,,( b b )—I—Rdm—}— =5 (dp—Cpu—m)
and by the definition of a,, we have v). Hence we have iii).
Now, using i), ii) and Definition 1.1, we have

2I{an}lwb,puiEe,ED

_1 1
> (%; le™va, )|z ) vy +(§ | e™Pv-Laq,,|5v)px
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1 1
> C(genvpogu emﬁovm’n”%%) Py —{—C(% ™o % ”emcao—nvm,n”%ol) Py

1 11
= Cp(Z e””’"([% ™o, /| 5 T #0 + L2 €™ D0y, o | B ] 70 }P) o

So, for any fixed n, {vy,n}m=—c € wlf (E) N mlfi-1(Er) = Wimy(0os Do ; Eop E)V and

{ ” {Um,n }:nc= —-oo” w(m)(”o;po;E’o:E1)}:°=~oo = (n)[€°

Similarly, using iii), iv), we have

{” {Um:n}ﬁz—oo”w(m(ﬁbpl;E‘o,El)}%o:-m = (n)[gl—l .
So, we have

{{vm,n}z:—w}fz—oo E Weny(Po» ¥» w(m)(am Po; Eo ED; by v—1, Weny(O1s Py 5 Eoy EY))

On the other hand, from the definition of {v,,}, we have

oo
Y Upn =0y for any m.

n=—co

Then we have {a,} = S. Hence SDw(,, p,; E, E).
PROPOSITION 2.2. Under the same assumption as in Proposition 2.1, we
have
Shos v» SO, bo; Eoy EV) 5 D1, v—1, SO, py; Eoy E)=50,, b.; Eo, Ey) -
This can be proved from Propositions D and E.

§3. Spaces S0, 1; E,, E,) and S(1,1; E,, E)).

Though for p>1 we cannot define the spaces S, p; E,, E,) in the case
when =0 or 1, we can define them for p=1 as in §1.
DEFINITION 3.1. We set

w(0,1; Eq, E)=I[E)NI(ED, SO, 1; Ey E)=2w0,1; E, E)),

w(l’ 1 > Eo: E1) - IKEO) M l(l)(E1): S(]-’ 1; Eo’ El) = EW(I, 1 > Eoy E1) .

Then we have following lemmas.

LEMMA 3.2. E,NE,CS0O,1; E, E,) and |allsw,i:50,20= 2] zsnz:

LEMMA 3.3. E,NE, is dense in S0,1; E,, E)).

LeMMA 34. SO, 1; E, E)CE, and ||a|g, = l@llsco,1:80,21 fOr all a=S(0,1;
E,, E).

LEMMA 35. For any ae E,N\E,, we have | allgw,1;50,20 =18l 2o

LEMMA 3.6. For any a= S0, 1; E,, E,), we have |alsqo,;z0,£0= 4l 2o

D) V) EmrlB (Eo) (0F Wemy (o, bos Eo, E1)) means that {v,,,} is an element of
[Bo (Ey) (or w(fo, Dos Eo, E,) resp.) considered as a sequence in m for the fixed n.
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Lemma 3.2 and Lemma 3.3 are proved in for 0< 6 <1. Our proof is
the same.

Proor or LEmMMA 34. For any a= S0, 1; E,, E,) and for any > 0, there
exists {a,}ew(,1; E, E,) such that > {a,}=0a¢ and |{a,}ll.=A+e)|als.
From the definition we have {a,} e [}(E,), hence we have X a,=E, Then
ace E, and "

H{an}lw = [{an} | iy = 2 N 9nllee Z [ 2 anllzo= 2]z, -

Then |a|z,=({+¢)|als for any ¢>0. Hence we have |afz, < ||a|s.
Proor orF LEMMA 3.5. We may assume that a+0. Then we set

a if m=N

llall zo - 0 if m=N.

Then we have |{a,}|,=allz,, Hence by the definition we obtain |al|s = | al g,
is proved immediately from Lemmas and
From the above lemmas we have
ProOPOSITION 3.7. S(0,1; E,, E)=E,NEF =the closure of E,NE, in E,.
Similarly we have S(1,1; E,, E)=FE,NE,".

REMARK 3.8. Propositions 2.1 and 2.2 are valid in the case when 6,=0,
6,=1 and p,=p,=1.

§4. Proof of Theorem.

We shall state our theorem rigorously with our notations.

THEOREM 4.1. Let [E, E,], [F,, Fi] be interpolation pairs, and 1< p< oo,

0<b0<l. If Te K(E, E], [Fy F.]), then T:5@, p; E,, E;))—S@, p; F,, F)) is
compact.

For any @, p fixed as before and for any T < B(E,, E,], [F, F,]) we can
define an operator T on w(, p; E,, E,) into w(@, p; F,, F,) induced by 7. That is

T{an) ={Ta,} € w@, p; F,, F,)  for any {a,}=w@, p; E,, E,).
Now we remark the following fact:

REMARK 4.2. For Te 8(E,, E,], [Fy F.J), T is compact from S, p; E,, E,)
into S, p; F,, F) if and only if Yo7 is compact from w(, p; E,, E,) into
S, p; F,, F,). Here o7 is the composition of operators T and 3.

For the proof of [Theorem 4.1, we will prepare two propositions.

DEFINITION 4.3. Let E be alinear space. For any element x in the linear
space E*= of all E-valued sequences ;

_ (~k-1) ,(-F —k1 -
x=(-,x , X xCRED ey LY
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we define the projections P, P, and P_ from E=*~ to E** by
Pox=_(-,0,0, x50 .. | x® .. x%=D (0, ...)
P+x:("' ’ Oy 0: O: Tty O) x(O), Tty x(kﬁl): x(k)’ "')
P x=x—P.x.

PROPOSITION 4.4. If T K{w(0,1;E,, E), w(d,1; E,, E)], [Fo F.J), then
for any 0 (0<0<1) TeKw®,1;E,E), S6,1;F,F).

Proor. First we notice that TP, Kw@, 1; E,, E), S@,1; F,, F,)) for
any k, where P, acts on the space of E, E,-valued sequences. So it is enough
for the proof to show that the sequence of operators 7'P, approximates 7'
uniformly in 8w, 1; E,, E), S, 1; F,, F,)). We shall denote the norm of
this space of operators by |-||s for short. Then

1T~ P)llo 1T~ Pe)Psllg+1TU—PP-llg -

From Propositions 2.1 and 2.2, and Proposition C in §1, we have

17U~ PyPllo £ CITU—PYP.IFOITU— PPl -

We shall prove that |T(J—PgP-|s—0 as k—co. Since |[TU—P)P-|,<M for
any £k, it is enough to prove that

| T(I—PYP-[,—0.
This is proved immediately from the next lemma.
LEMMA 4.5. For any ¢ >0 there exists N, such that
1T —Py)P-x|| 7y < elI—Py)P-Xllwco,1320, 200

for all xew(0,1; E,, E,) and for all N= N..
ProoOF oF LEMMA 4.5. If Lemma be not true, we can choose a sequence
{vn;}, in w0, 1; E,, Ey) and ¢, > 0 satisfying

€y n; 1 oo,

) [vasllw =1 for all j,
©) (U= Pr )PV, =0,
@ 1T 50 = €ollVm o -

On the other hand by Definition 4.2 we have

’I}n].: Z (Pk+1_Pk)P-vnj ’
kénj
and
[(Persi— POP-ty o < 0l -

Now for k=n; we have
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”ek(Pch“‘Pk)P—vnj”w(l,l:Eo,.Ex)
= [(Perr— PPV lwo,i580,50 = |Vnjlwco, im0, =1 -
Since T:w(l, 1; E,, E))—F, is bounded, we have,
©) e"”T(P,m——Pk)P_vnjHFl <M for all n; and k=n;,
from which we have

170 lposes < [ Tvnglloy = 1T B (Pery—PPvnylley = 3 ™M .
=71j __nj

By (1), we have |Tv,;|ppr, —0 as j1oo. On the other hand, from (2), {Tv,;}
is a totally bounded set in F,. Hence we have ’f‘vnj—+0 in F,. This contradicts
(4). The lemma is proved.

Similarly we have |T(I—Py)P.ll;—0 and |[T(—Py)P.|s—0 as k—co.

Then |T(/—P,)]s—0 as k—oo. The proposition is proved.

PROPOSITION 4.6. Let D, and D, be Banach spaces with D,C D,. If T, in
B(w@, 1; E, E), w@, oo; Ey, E)], [Dy, D) has the property that T,: w(,1;
E,, E)—D, is compact, then the mapping T,: W0, p,; Eo E;)—SW, p,; Dy, D))

is compact, where 0 <y <1 and =1—y.

by
PrROOF. As in the proof of Proposition 4.4, it is enough for us to prove

that T,P, approximates T, uniformly in 8w, p,; E,, E)), S(v, p,; D, D,). To
show this fact we prepare
LEMMA 4.7. For any >0, there exists an integer N,> 0 such that

1 T\T—Py)x|| py = el —P)*ll w1 20,80

for any xew(@, 1; E, E)) and for any N= N..

ProoF oF LEMMA 4.7. If Lemma does not hold true, there exists g, >0
such that for any 2 we can find Ny=k and xy, € w(0, 1; E,, E,) with the pro-
perty that

| T\(J— Py )xn oo > ‘50”([_'PNk>xNkuw(0,1;Eo,E1) .
Now we set

yN)c: (I_PNk)xNk’ sz :yN;\,/“yNk”’w(ﬂ,l;Eo,El)

Zy, has the following properties.
)] I Tz n, e > €0 for any k.

(2) “ZN;,”w((i,l;Eo,El): 1 for any k.

Then from the assumption that T,:w(,1; E, E,)— D, is compact, we can
choose a subsequence {zN;c} of {zy,} and v e D, such that lezv;c —vin D, In

view of (1) we have |[v|p,>0. Then v+0, and ||v|,,=0>0. We set &,=68/3||T,|,.
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Again we choose a subsequence {za,} of {zw; } in the following manner.

We set n,=N,. From (2) we have |z,;/lw®,i:20,2,=1 then there exists
my=n; such that |[|[(/—Pn)2nllwd,ze,en=¢. From the definition we have
N} 1 oo, then there exists N satisfying N, >m,. Now we define n, by this
Ni. So we have |(I—P,)z,lle=¢,. We define the subsequence {zz,} induc-
tively in this manner so that it satisfies the following conditions

(1) “ lenj“Do 2 €0

(2) ”anHW(ﬁ,l:Eo,El) =1 for all ]' ,

4) (I~ Py )en,=2,; for all j,

(5> ”(["_Pnj+1>2nj”w(0,1:E0,E1) _S- 81 fOI‘ all 7 ’
where

6 __Jvloy

© =TT,

From (3) and the assumption D,C D,, we have
T\zy;—v in D,.

On the other hand, from the fact that w(d, 1; E, E)Cw(, c; E, E,) and
from (5), we have

1 m
u nglznj Wb, B0, E 1>
o T PR IR S ¥ 70 S SO PR B
Sl 2 j41Znflwe,00 B0, B 1 m = nj+1/fnjllwl,<3E0,E1)

+e,.

w(8,<$E¢,E1)

By the definitions of w(f, oo ; E,, E,) and P,, we have

12l wet o320, 20> = Max {”P+Pk2”w(0,°°;E’o,E1) ’
”P—Pk‘z”w(v,miEo,El); k :07 1’ 2’ '”} »
for any ze w(@, «; E,, E;). So, in view of (0), (2) and (4), we have

k3
” El Pnj+12nj“w(0,°<=Eo,E1)
j=
m
= Max {1|P+ij§ Pn]‘+1([—Pnj)an”w(ﬂ,OC:EO,El) s

”P—ijgl) Pnj+1([—Pnj)znj”ww,oc;l-:o,ﬁ'l); k: 0: 11 2: "'}
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= Max {|| P+j§1 Pi(Prjp1— Pz llw

1P~ 3 PuPrjs=Pu2nlls k=0,1,2 )
é Max {“P-!«sznj“w ’ ”P—Plcznj“w; k:O; 1; 2;
j=12,--,m}
é Max {“an“w(ﬁ,cx;Eo,El); ]: 1’ 2; Tty m}

= Max {“an”w(ﬁ.ltEo,Ep; ]: L2, m}

=1.
Then we have
|5 3 <L te
m i3 b0z, T M '
and
1 & Tl 1
|-+ 2 Tz =20 g [0l

But, since T\z,;—v in D, we have 711 > Tiz,;—v in D,. Hence the left hand
j=1

side of the above inequality goes to |v|p, as m —oco. Thatis a contradiction.
The lemma is proved.
From this lemma we can prove Proposition 4.5, since we have

IT\d—Ppll,—0 in Bw@, p.; Ey E), S@,p.;5 Do, D))

by Proposition C and Propositions 2.1 and
Proor orF THEOREM 4.1. From the assumption T < K({E,, E,], [F,, F.J)
and [Proposition 3.7 we have

Te K([SO,1; Ey, E, SA, 15 Eg, EN], [Fy Fi) .

In view of Remark 4.2, we have

2o TE K([w(O, 1; E,, E1): w(l, 1; E, ED], [Fo FiD .

By [Proposition 4.4, we have
YoT e Kw@,1;E,E), S0,1; F, F)).

From Proposition C in §1,

SoT e 3w, co; Eqy Ey), SO, 00; Fy, FY) .

From Proposition A, the assumption in [Proposition 4.6 is satisfied by the
couple [S(, 1; F,, F), S, o ; F,, F)]. Hence we have

YoT e Kw®, p; Ey, Ey), SO, p; F,, F))  for all p (1< p< oo)
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Again from Remark 4.2, we obtain
Te K(©SO, p; Ew Ey), SO, p; Fo, F) .

This proves our theorem.
Osaka University
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