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In a previous paper the existence of curves C on the product variety
ExXE’ of two elliptic curves E and E’ with complex multiplication, with the
self-intersection number (C, C)=2, was proved. EXE’ is then the Jacobian
variety of C, C being a theta divisor on EXE’ (Weil [7], Satz 2). The pur-
pose of this paper is to determine explicitly, in a special case E=FE’, the
number of mutually non-isomorphic such curves C of genus 2. More precisely,
we shall determine, for a given elliptic curve E with the ring of endomor-
phisms isomorphic to the principal order of an imaginary quadratic field
Q(~/—m), the number H of isomorphism classes of canonically polarized Jabo-
bian varieties (EXE, C), C being a theta divisor, as a function of m. In the
case m=1 (mod 4) and m >1, for example, we shall obtain the following

result:

H= g TG~ DI+ D+ 5 h2-t,
4 P

where the first product extends over all prime factors p= —1 (mod 4) of m,
and the second over all prime factors p=1 (mod 4) of m; and & and ¢ are che
class number and the number of distinct prime factors of the discriminant of
ber H is reduced to that of the number of classes and the number of * sin-
gular 7 classes of right ideals of certain (non-maximal) orders of a quaternion
algebra, and for this purpose Eichler’s method ([1] Satz 10) is applicable.

We denote by @ and Z the field of rational numbers and the ring of
rational integers, respectively.
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§1. Summary from a previous paper.

In this section we shall summarize the parts of our previous paper [3]}
which relate directly to this paper, and see at the same time how we have
been led to a number theoretic problem. Let Q(~/—m) be an imaginary
quadratic number field and o its principal order; we take m a square-free
positive integer. Let E be a l-dimensional abelian variety (i.e. an elliptic
curve) with the ring a(E) of endomorphisms isomorphic to the principal order
p; once for all we identify a(E) with o through a fixed isomorphism. For any
two endomorphisms 4, u(€0) of E, {4, u} # {0, 0}, the correspondence A, ,: E
= x—(Ax, px) € EXE defines a homomorphism of E into the product EXE of
E with itself. The image of E by 4, , is an abelian subvariety of dimension
1 on EXE, namely an elliptic curve lying on EXE; we denote it by E, ,.
Any elliptic curve on EXFE is a translation of some FE, ,. Each endomorphism
of ExE is given by the correspondence: EXE = (x, y)—(px-+ry, gx+sy)eEXE,
where p, q, 7, s€o. This endomorphism may be expressed by a matrix

(2 1;) This is an automorphism of EXFE if and only if ps—qr is a unit of

0. The intersection number (£, , E., of two elliptic curves E, , and E,, is
given by

. NQan—pé)
! g Ex)= AI—H8)
W i Ben)= "Ny, NG, )
where N(4, ) denotes the norm of the ideal (2, ), etc. Every divisor X on
EXE is algebraically equivalent to a linear combination (with integral coeffi-
cients) of elliptic curves; hence basing on the formula (1) we can attach to
every divisor X on EXE a 2 by 2 matrix

k «
@ MxO=(z )
where %, [ are rational integers and a 0, and & is the complex conjugate of
«, such that for any elliptic curve E, ,,

1 fp -2
M(Ez)= N, ) \—1p 1,{) :

For any two rational integers %k and /, and any element « of o, there exists a
divisor X on EXE for which the equality (2) holds. For two divisors X and
Y on EXE, M(X)=M(Y) if and only if X=Y?P. The intersection number
(X, Y) of two divisors X and Y on EXE is given by

(X, Y)=det M(X+Y)—det M(X)—det M(Y);

1) For two divisors X and ¥, X=Y means that X is algebraically equivalent to Y.
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in particular we have
%(X, X) = det M(X).

We also have a formula
X Een= yie py EDMAO().

Now let X be a divisor on EXE with (X, X)=2. Then either X or —X
is linearly equivalent to a positive divisor Y (3], Lemma 4). Let M(X) be
given by (2). On account of the relations kl—aa@=1 and (X, E,)=~Fk, we
know that the former case occurs if and only if 2 >0. Suppose EXE is the
Jacobian variety of some curve C of genus 2, and Y a theta divisor of it.
Then Y is a positive divisor with (Y, Y)=2 and Y itself is a curve of genus
2 isomorphic to C. Hence we observe the set of all positive divisors Y on
EXE with (Y, Y)=2. The conditions ¥ >0 and (Y, Y)=2fmean Y is non-

degenerate and Z(Y):f—;j(Y, Y)=1 (Nishi Th. 6 and Cor.). ([(Y) means

the dimension of the complete linear system |Y| determined by Y.) There-
fore, if Y and Y’ are two positive divisors on E X E such that Y=Y’ and
(Y,Y)=2, then Y’ is a translation of Y. We know that to every matrix

M= (2 OD, k,leZ, a=o, k>0, kl—ad =1, there corresponds a positive divi-

sor Y on EXFE with (Y, Y)=2 such that M(Y )= M ; and conversely. And by
each such matrix M, Y is determined up to translations. The base of our
calculation is the following

Lemma (Weil [7], Satz 2). Let A be an abelian variety of dimension 2,
and Y be a positive divisor on A such that (Y, Y)=2. Then, either Y is wrre-
ducible and A is the Jacobian variety of Y, the identity map of Y being the
canonical mapping of Y into its Jacobian variety; or Y is a sum of two elliptic
curves, Y =E,+E,, (F,, E,)=1.

Now we consider an equivalence relation in the set of all positive divisors
Y on EXE, with (Y,Y)=2: two such divisors Y and Y’ are equivalent to
each other if and only if there exists an automorphism 4 of E X E such that
Y'=A47(Y). In other words Y and Y’ are equivalent to each other if and
only if there exists a birational automorphism of E X E which maps Y onto
Y’. We denote by h, the number of these equivalence classes (that 4, is finite
was proved in [3], §5; but this will also be established later in §5). If Y is
irreducible, then by Weil’s lemma, Y is a non-singular curve of genus 2 and
EXFE is the Jacobian variety of Y, Y being a theta divisor of EXE ; and two
such curves are birationally equivalent to each other if and only if they are
equivalent in the sense just mentioned above; we denote by H the number of
equivalence classes which contain positive irreducible divisors Y, (Y, V)=2.
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Finally we denote by h, the number of equivalence classes which contain
sums of two elliptic curves E,+E,, (E,, E,)=2. Then, by the we have
H=h,—h,. Suppose an automorphism 4 of E X E is given by the correspon-
dence: E X E = (x, y)—(px-+7ry, gx+sy)€ E X E, where p,q,7,s<p, and ps—qr
is a unit of p. It is easy to see that the condition Y’ = A-'(Y) is written in
the following form :

o=@ Dl D).

Now we observe the set of all matrices M= (g OD, where %, [ are rational

integers, a o, k>0 and det M=Fkl—aa@=1. We define an equivalence rela-
tion in this set: two matrices M and M’ are equivalent to each other (notation

M~ M), if and only if there exists a matrix U= (é) Z) where p,q,7,S€0

and ps—qr is a unit of o, such that M’ =tUMU. Then the number of these
equivalence classes is equal to h,.

§2. The number #,.

Two elliptic curves E,; and E;; on EXE are isomorphic to each other if
and only if two ideals («, 8) and (7, d) are in the same class ([3], Cor. of Prop.
3); and E, 3= E;; if and only if @d— By =0 3] Cor. 2 of Lemma 3). Suppose
two sums of elliptic curves E,+E, and E,+E, with (E,, E,)=(E,, E)=1 are
equivalent. Then there exists a birational automorphism of EXFE which maps
E,+E, onto E,+E,. Hence E, is isomorphic to one of the two elliptic curves
E; and E,. The elliptic curve E, (resp. E,) is a translation of an abelian sub-
variety E, s (resp. E; ;) of dimension 1 on EXFE; and we have E,+E,=F.;
+FE,; What we have just remarked implies that the classes of ideals («, B
and (7, §) are determined by the equivalence classes of the divisor E,+E,.
Now, since (E, g, Er5) =1, we have N(a, B)N(y, 0)= N(ad—S7); and this means.
(a, )y, 0)=(ad0—Py). Hence, if the ideal («, B) belongs to a class C, say,
then the ideal (7, d) belongs to the class C-1. There is an isomorphism ¢, of
E.p>x E;; onto EXE which is the identity map on E,; and on E;; ([3], Cor.
of Prop. 6). Suppose E, ,+E,, is another divisor with (£, , E,,) =1, such
that (4, p)=C, (v, k) =C-1. Then there is an isomorphism ¢ of E, ;X Ey; onto
E..XE, ,; and an isomorphism ¢, of E; ,X E, , onto EXE which is the iden-
tity map on E; , and on E,,. The composed map A=, ! then is an auto-
morphism of E X E which maps E, g (resp. Ey;) onto E, , (resp. E, ). Hence
E,s+Ey; is equivalent to F, ,+F,,. On the other hand, for any elliptic curve
E.p; on EXE there exists an elliptic curve E;; such that (E,p E;s=1 (3]
Prop. 6). These facts imply that A, is equal to the number of pairs {C, C-'}
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of ideal classes. Since the number of classes C for which C=C", is 27,
where t is the number of distinct prime factors of the discriminant of the
principal order o, we have

o= (b2,

where 2 is the number of ideal classes of the principal order o.

§3. Quaternion algebra.

In the rest of this paper we shall determine the number h,. In this sec-
tion we shall establish a correspondence between the classes of matrices des-
cribed at the end of §1 and the classes of right ideals of some orders of a

quaternion algebra. We observe a quaternion algebra K=@Q-+Qv—m +QI
+Q+v —m I, where 2= —1 and Iv/—m = —~/—m I, over the field @ of rational
numbers. By an order in the quaternion algebra K, we understand, as usual,
a subring of K, which contains the ring Z of rational integers and is a free
Z-module of rank 4. If S is a free Z-module of rank 4 contained in K, then
the set R={£é e K|SEC S} makes an order in K, which we call the right order
of S. For an order R in K, by a right R-ideal we shall mean, in this paper,
only such a free Z-module S of rank 4 in K, whose right order is equal to
R». Now, to every matrix M= (Z C;), kleZ aco, k>0, kl—aa=1, we
make correspond a right p-module
A =ko+(a+1)o

in K, where o is the principal order of Q(~/—m). A is then a free Z-module
of rank 4, and the right order R of A is equal to D+%~(l+«/:7n+1)o if m=2

(mod 4) and k=[=0 (mod 2); R is equal to o+Io in other cases. To see this,
suppose A+Ip (A, p € Q(v/—m)) belongs to R. Since k(A+Iy)=k(A—ap)+(a
+Dky, we have 2’=2—ap<epo. Consequently (a+I)y (=—2A'+2A-+1y) must
belong to R. Since for any w o we have ko(a-+1p= klo—a)ap+(a+Dkop
and (a+Da(a+Dp= —klop+(a+Iwat+ad)y, we see (a+I)p belongs to R if
and only if p((w,—@ya, k, |, wea-+&,@, a-+&) Co, where w,=+'—m if m=1 or
2 (mod 4); w,= 5 (I-+~/=m) if m=3 (mod 4). Since kl—a@=1, this is equi-

valent to the condition pu(w,—@, k, [, 2)Co. Noticing that the congruence

2) For the orders R with which we shall mostly concern in this paper, this defini-
tion of right R-ideals proves to be equivalent to that of Eichler (see §5). His definition
is: a right R-ideal is NppR(p) NK where p,’s are regular elements and p,R(p)=R(p)

P
but for a finite number of primes p.
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ad@+1=0 (mod 4) is impossible if m =1 (mod 4), we have the desired result.
We shall say two matrices M and M’ are properly equivalent to each other

if there exists a matrix U of determinant 1, with elements in o, such that

tJMU= M. For two properly equivalent matrices M and M’, putting

, (R o /P 7 .
w=§ %) = D =y,
we have the following relation:
P q k el ) N _ s k  a+T
(F §>(c‘v~—[ l )(q s) - (d’——[ I
Since kl=(a—I)a—+I), we also have the relation:
p v —_— 4 /
3) ok, a+[)<q S) — (&', a'+1).

where p=p-+kg@—I). This means that the two right R-ideals A=ko
~+(a+1) and A’ =Fko+(a’+-I)o are in the same class: pA= A’. Conversely,
if two right R- ideals A, A’ in the same class are associated with matrices M
and M’ respectively, we have a relation of the form (3) with p K, p #0, and
ps—qr a unit of p. Then we have the relation:

(P q k a+INp o\ _ ko a4
ooy Dl TC V=R O
Comparing the coefficients of I, we see that kpp(ps—qr)=Fk’. This means that

ps—qr is a positive rational number, and consequently is equal to 1. Hence
the two matrices M and M’ are properly equivalent.

Now we shall show that if R=o+Joor R = o+%—(1+x/—~vm+1)o (the latter

is aamitted only in the case m =2 (mod 4)), then every class of right R-ideals
contains a right ideal of the form A=ko+(a+I). We begin with

LEMMA 1. Every right o-module S contained in K is of the form a+(y+1D)&,
where a, & are v-ideals in Q(/'—m) and 7 is an element of Q(v/—m).

PROOF. Put a=S"\Q(/'—m) and &= {y|x, y € Q(~/'—m), x+IyS}. Then
a, € are o-ideals in @(v/—m). There exist two elements 7,18, y.+1B, of S
such that (B, ;)= Whenever two elements 1, 1, €p satisfy the equation
BiAy+ B2, =0, we have y,4,+7.4, =a. Hence for any element {t = &', we have
(718:— 72t € a; and this means y,8,—7,8;, =a¥. There exist two elements a,
and a, of a such that y7,8,—7.6, = a,B—a, B, so that (y,+a)B:—(7.+a.)pB:=0.
Since y, (resp. yr,) may be replaced by 7,4, (resp. 7,-+a,), the proof is com-
pleted.

LEMMA 2. Let SC K be a right v-module and a free Z-module of rank 4.
Then there exists an element p =0 of K such that pS N Q(~/—m)=n.
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PrROOF. We write S in the form stated in Lemma 1: S=a+(+DE If
p.=A+Ip is an element of K, then p,S=a,-+(r,+~1)%;, with & = (ra, (ur+D.
Since S is a free Z-module of rank 4, we have a0, €+0. Hence we can find
two elements X/, yu’ of Q(~/—m) such that (u/a, #8)=p. Taking 1=2'—j'7,
@= ', we have p,S=a,+(y,+1)o, say. Then p=(y,+I)'p, has the desired
property.

LEMMA 3. A right o-module S=o-+(y+1)Q is a right v+ Io-module if and
only if L+#£0, 81Co, =8, yeo, and 77+l

Proor. For any element w o, we have wl=—y@-+(y+ 1)@ ; and for any
element fe &, +DBI=—A+1P)B+G+I1)75. Hence SICS if and only if
reo, 08 (14+77)8Co, and 78 These relations imply 772 & and
(14+rPHLEC L, so that L &; consequently €=¢. Thus we see the conditions
stated in this Lemma are necessary. Sufficiency is obvious.

Let S=o04-(y+1)Q be a right o-+/p-module in K. By Lemma 3 we can put
81=ka, and y7-+1=kla, where k, [ are positive rational integers; a, is primi-
tive ambiguous ideal in o, and @, is the norm of a,: a,= a,Z+(r+w,)Z with
r € Z. The right order of S is given by

LEMMA 4. The notation being as above, the right order R ={£|§€ K, SECS}

of a right o+ Io-module S is equal to o—l——;ﬁ(r+1)a51 if m=2 (mod 4) and k=1
=0 (mod 2); o4(y+1)ag! otherwise.

PROOF. Suppose £=x+(r+1)y with x, y< Q(+/—m) is an element of R.
Since 1= S, we have £ €S; and consequently x €0 and (y+1)y = R. Therefore
R is of the form o+(y+1)E, where € is an o-ideal in Q(+/—m). For any ele-
ment w €0 we have w(y+1)=(w—a)r+(r+a; and for any element Sk 'a;!
we have (y+DAGy+1)=—G7F+DB+G+I(Br+7). Then € is the greatest
subset of Q(~/—m) satisfying the relations: (w,—a@,)7€Co, €k a5, (7
+Dke '€ Co, T, (k*ay?y)C C k'a;'. Hence we have an equality €' = (w,—®,)7>
kag, lag, a,T,(a5y)). Now we know y o (Lemma 3), and €-*Co. The relation
ry7+1=~Fla, implies y is relatively prime to €. Hence we have w,—@,c €.
For any two elements «, a’=q, we have a congruence a'(ay+af)ay!
= (a’+aNayag! (mod E-1). Thus from the above equality we have a formula
C = (wy—@,y, kay, la, a,T,(a;?)). Now, if m =3 (mod 4), then w,—&, =+ —mea,
and T,(ag")=(1). Hence by this formula € '=qa, If m=1 (mod 4), then
w,—®,=2+—m e a, and T,(a;)= (1) or (2); and, since the congruence y7+1=0
(mod 4) is impossible, we have (k, [, 2)=1. Hence € 1=q, If m=2 (mod 4),
then w,—@,=2v —m e 2a, and T.a0;))=(2). Hence we have G i=(k, [, 2)a,.
This settles our assertion,

Now suppose S be a free Z-module of rank 4 contained in K, whose right
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order is o+1Ip or o~|—%\(l+\/ —m-1)o (the latter is admitted only in the case

m=2 (mod 4)). Since D+IDC0—|—%-(1+«/~m+I)o, S is in any case a right o4

Io-module and Lemma 1-4 are applicable to S. By Lemmas 2 and 3 there exists
a regular element p e K such that pS is of the form o4-(y4/1)k~'a;"; and by

Lemma 4 the right order of S is equal to o+4(y+1I)a;* or o+—%—(7+1)a51 (the
latter is possible only if m=2 (mod 4)). It is easy to see that if the right
order of S is o-+Io, then the former holds: if o+éa(1+«/ —m+1), then the
latter. In either case we have a,=p. (Notice that since a, is an primitive

integral ideal of o, aq, can not be equal to %wo or 20.) Thus, for an order

R=o+1Io or o—l—f—;j(l—l—«/erI)o, every class of right R-ideals contains an ideal

of the form A="%kpS="Fko+(y+1). Therefore there is a one-to-one correspon-
dence between proper classes of matrices M described above and classes of

right R-ideals (R =o0--Ip or D+%—(1+\/—7m‘—]—1)o). If m=+1 or 3, the principal

order o of Q(+~/—m) contains only two units, namely -+1; hence one class of
matrices M consists of one or two proper classes. In the former case, in this
paper, the class of matrices M or the corresponding right R-ideals will be
called singular. We denote by H’ the number of proper classes of matrices

M, where M— (g . k1€ Z aco k>0, kl—ad=1; and by F the number

of singular classes of matrices M. We have then h,= —%(HH—H”) (m=+1,3).

Also we denote by H'(R) (resp. H”(R)) the number of classes (resp. singular
classes) of right R-ideals. In the case m=2 (mod 4) we have H' = H'(R).
H"= H"(R) where R—=op-+41/lo; and in the case m=2 (mod 4) we have H"
= %}H’(R), H = %)H”(R) where the sums extend over two orders R=o-Io

and R = o—]——%‘(lJr«/W%J)o.

§4. p-adic extension.

Let Q(p) be the field of p-adic numbers and Z(p) the ring of p-adic integers.
We denote by R(p) (resp. A(p)) the p-adic extension of an order R (resp. an
ideal A): R(p):R(?Z(p) (resp. A(p):A(?Z(p)). Also we put K(p):K(?Q(p).
If R is an order in the quaternion algebra K, then R(p) is an order in K(p),

i.e. a subring of K(p), which contains Z(p) and is a free Z(p)-module of rank 4.
We shall understand, in this paper, by a right R(p)-ideal a free Z(p)-module of
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rank 4 in K(p), whose right order is equal to R(p). We can easily see that if
A is a right R-ideal, then A(p) is a right R(p)-ideal. Let [A,, A, 25, 4,] be a
Z-basis of an order R in K. By the discriminant of R we understand
D =det (T(2;4;)), where 1, means the conjugate of 2; in the quaternion algebra
K. By the level of an order R we understand the positive rational integer

g=n(R)"

where F means the complementary ideal of R and n(f) the greatest common
divisor of the norms of elements of K. (The comlpementary ideal B of R is
one which has a Z-basis [, gy, ¢t f£,] such that T,(A,p)=1if i=j; =0 if
1#J.) The p-component of D (resp. q) is equal to the discriminant (resp. the
level) of the p-adic extension R(p). It is known that if p| ¢ (i.e. ¢=0 (mod p)
and ¢=+0 (mod p2), then p2||D ([I] §2). For the orders R=o-+/o and

R :o+~%—(1+\/‘—’n7+1)0 (the latter is admitted only in the case m =2 (mod 4)),
by a simple calculation we know that g=m if a) m=3 (mod 4), or b) m=2
(mod 4) and R:o-}—%a(l%—\/fﬁﬂ—[)o; and that g=4m if ¢) m=1 (mod 4), or

d) m=2 (mod 4) and R=o0-+Io. And D=¢g? (though the prime p=2 does not
satisfy the above condition). It is known that if K(p)=K®Q(p) is a division
Q

algebra, then p|g. We denote by g, the product of all and different such
primes p. By a simple calculation we know that an odd prime factor p of ¢
divides ¢, if and only if p=3 (mod 4); and 2|q, if and only if m=1 (mod 4)
or m=2 (mod 8. We put ¢=g¢q,q,. Now let p be an odd prime and p|q,.
Since we have pll¢q by the above result, R(p) is the (unique) maximal order of
the division algebra K(p); and every right ideal of R(p) is two-sided and prin-
cipal, and is a power of the unique prime ideal zR(p) where = is a prime
element in R(p). Next let p be an odd prime, p|g,. Then we have p|g by
the above result, and we know ([1] §2) that R(p) is isomorphic to an order of
2 by 2 matrices with components in Z(p), the left-lower component being
divisible by p:
Z Z
o= 5

We shall show that every right R(p)-ideal A(p) is of the form A(p)= pR(p)
with ¢ a regular element in K(p). Represent all elements of R(p) by 2 by 2
matrices through the above isomorphism. Tt is easy to see that the set of the
first rows of all elements of A(p) then make a left R(p)-module of the form
either (p?Z(p), p*Z(p)) or (p**Z(p), p“Z(p)). The former is generated by (p¢ 0);
and the latter by (0, p%. Similarly, the set of the second rows of those ele-
ments of A(p), of which the first rows are zeros, makes a left R(p)-module
generated by either (p?, 0) or (0, p¥). And A(p) is the direct sum of these two



A class number associated with the product 35

type of left R(p)-modules. Among the 4 possible combinations, however, the
former-former one or the latter-latter one gives a maximal order (instead of
R(p)) as the right order. The former-latter one or the latter-former one gives
R(p) as the right order; and A(p) then is equal to uR(p) where

©= (‘?a ;g), cmod p*, or p= (g,, pZ), c¢mod p?,

respectively. Therefore in this case our definition of right R(p)-ideals is equi-
valent to that of Eichler. We know that every two-sided ideal of R(p) is a

power of the two-sided ideal 7 R(p), where 7 = <g (1)> (17 §2). Remark that

the ideal 7R(p) is invariant under the canonical involution of K(p) (i.e. equal
to its conjugate). Next let p be a prime, p¥¢q. Then R(p) is a maximal order
in K(p), isomorphic to the order of all 2 by 2 matrices with components in
Z(p). We can see in like manner that our definition of right-ideals is equivalent
to that of Eichler; and every right R(p)-ideal is uniquely written in the form

* p(b))fe(p), ¢ mod p? .

Every two-sided R(p)-ideal is of the form p?R(p). Finally let p=2. We shall
prove the following

LeEMMA 5. Every right R(2)-ideal is equal to a principal ideal pR(2) with
a regular element p in K(2).

PrOOF. In the case a) m =3 (mod 4), we have p=2rqg and hence the

Lemma is true. In the case b) m =2 (mod 4) and R:D+~%A(l+\/1—7ri+1)o we

have p=2|q (¢g=m); then we can prove the Lemma in the same way as in
the case of odd p, pllg. We shall treat the case ¢) m=1 (mod 4) and the case
d) m=2 (mod 4) and R=o0+Jo. In either case the order R is equal to o+/o
and the rational prime 2 ramifies in n. Suppose S is a right R(2)-ideal. We
denote by 0(2) the 2-adic extension of the principal order o of Q(+~/—m). Since
S is a right 0(2)4/o(2)-module in K(2) and a free Z(2)-module of rank 4, and
since every ideal of 0(2) is a power of the prime ideal 7o(2) where = is a prime
element in 0(2), we can put S=z'(0(2)+(+Dr0(2)), 7 € Q2)(~/—m). The con-
ditions SIS means, as in Lemma 3, that y €0(2), s=0, and =*|y7+1. Then
we see, as in the proof of Lemma 4, that the right order of S is of the form
o(2)+(r+ Dz *0(2) and the ideal 7 *o(2) is determined by the equality =n"o(2)
= (wy—@y)7, (7+Dx=5, n*, o°T,(x *yo(2))). Since, by our assumption, the right
ST (= 5y0(2)) C 7o(2), this means that z° or (y741)x~° is a unit of o(2). In the
former case we have S=7z'R(2); and in the latter case we have S= z'(7—1)"1R(2).
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Hence our assertion is proved.

By we know that, also for the prime p=2, our definition of
right R(2)-ideals is equivalent to that of Eichler. Next we shall determine the
two-sided R(2)-ideals and the number of integral right R(2)-ideals with given
norm. At the end of our proof of we have seen that, in the case
) or d), every right R(2)-ideal is written in the form 7'R(2) or z'(F—I)"'R(2)
where ye0(2) and « is a prime element of 0(2). First in the case c), if 7—I
is not a unit of R(2), then, putting y=a-+b+/—m, a, b & Z(2), one of the two
elements a¢ and b is odd and the other is even; hence (1+I)F—I)* or
(v —=m+D)(F—I)1 is a unit of R(2). We can see that three right R(2)-ideals
A=zR©2)=1+v—m)R?2), B=(1+DR?), C=(/—m+DR(?2) are two-sided”
and satisfy the following relations: A?= B*=(C?=2R(2), AB= BC=CA and
BA=CB= AC. Consequently we know that every right R(2)-ideal is two-sided
and can be written uniquely in one of the three forms: A”, A"B, A"C. Remark
that the ideals A, B, C are invariant under the canonical involution of K(2),
respectively ; the ideal AB is (two-sided and yet) not invariant under the
canonical involution. Now we consider the case d) m =2 (mod 4) and R =o-Io.
It is easy to see that the two right ideals A=+/—mR(2) and B=1+1)R(2)
are two-sided and satisfy the relations: A2= B*=2R(2), AB=BA. Let
S=aR(2), where a =a-+bl+cv/ —m+dv/—mlI < R(2), be an integral right R(2)-
ideal. If a==b (mod 2), then « is a unit of R(2) and S=R(2). If a=b=0
(mod 2), then « is factorized as follows: a=a’'v—m, a’ € R2). If a=b=1
(mod 2) and ¢ =d (mod 2), then « is factorized as follows: a = a’(A1+I), a’ €R(2).
In what follows, those elements a =a+bl+cv/ —m-+-dv/—mlI of R(2) which
satisfy the condition: a=b=1 (mod 2), c=d (mod 2), will be called primitive.
If « € R(2) is primitive, then c¢+dJ is a unit of R(2) and a’ = a(c+dIl)™* is also
primitive and has the form oa’=a’+b/'I++/—m. Suppose a=a-+bl+~—m
and a’=a’+4b'I++/—m are two primitive elements of R(2) and « is not a zero-
divisor and 2°| @a. Since @a’=(a—bl—+/—m)a’ +b'] +~—m)=aa’+bb’'+m
+(ab'—ba)[+(a—aW —m +(b—b)V —ml, a’ € aR(2) if and only if a=a’, b=0’
(mod 2%). And the last congruences imply a?4b2+m = a’24b’2+m (mod 2°+%);
consequently a’= ae, where ¢ is a unit of R(2). Hence we have aR(2)=a’R(2)
if and only if a=a’, b=b' (mod 29. On the other hand, if a=a-+bl++ —m
is any primitive element of R(2), then a”:a\/:%(l—!—l)‘l:-—%m—*—'%mf

+—§f(a-—b)\/ —71—%'—(a+b)\/ —ml is also a primitive element of R(2); and we

3) In fact R(2) is the unique order of level 4 in K(2), in this case. But this is not
necessary in what follows.



A class number associated with the product 37

have av' —mR(2) = a”(1+I1)R(2). An integral ideal aR(2), « = R(2), will be called
primitive if « is primitive and is not a zero-divisor. Since the product of a
primitive element and a unit of R(2) is also primitive, the definition of a pri-
mitive ideal is independent of the choice of . Now, in the case m =2 (mod 8),
for any primitive element a = a-+bl+~/—m we have a@ = a*4-b*+m =4 (mod
8). Hence, corresponding to 4 primitive elements a = +1+/++/—m there exist
just 4 primitive ideals C; (1=1, 2, 3, 4), say, with norm 4. And every integral
right R(2)-ideal is uniquely expressible in one of the forms: A", BA®, C,A®
(1=<:i<£4; n=0,1,2,-..). In the case m=6 (mod 8), for any integer s> 3, the
congruence x243y2+m=2° (mod 2°*') has 2° solutions x, y (mod 2%) (notice that,
for any element a = Z(2), a=1 (mod 8), the congruence x*=a (mod 2%!) has
just 2 solutions x mod 2%); and corresponding to the 2° primitive elements
x+yI ++/—m there exist just 2° primitive ideals with norm 2. Denoting by
C;, 1=1,2,3, ---) all the primitive ideals of R(2), every integral right R(2)-ideal
is uniquely expressible in one of the forms: A", BA", CA® (1=1,2,3, . ;
n=0,1,2, ). Finally, in the case m=2 or 6 (mod 8), we determine the two-
sided ideals of R(2). For any primitive element a = a+bl++ —m € R(2) which
is 210t a zero-divisor, af@ is not divisible by 4 (because, putting al@ =a’+b’]
+c's/—m-+d'v/—ml, we have ¢’=2b), so that aR(2)@ ¢ R(2)ad, i.e. aR(2)
& R(2)a. Therefore there exist no primitive two-sided ideals; every two-sided
ideal of R(2) is expressible in one of the two forms: A"- BA". Remark that
every two-sided R(2)-ideal is invariant under the canonical involution of K(2).

The zeta-function of the order R(p) is defined by {,(s)= E} a,p~*, where

n=y

a, is the number of integral right R(p)-ideals with norm p”. Then we have
in the case ¢), &,(s)=0+2-2"%)A+27%4454 .. )=1+2%)(1—2"%)"1; in the
case d) and m=2 (mod 8), {(s)=A+27%44 45142784454 ..)= (1 27
4-4-2)(1—2-%)-1; in the case d) and m=6 (mod 8), {,(s)=(1+2"%48.8
+16 L1674 ...)(14_2*28_4_4—%_;_ ) — (1__2-—23__2 . 4*25_{_81—23)(1_21—23)—1(1__2—2s)~1.

§5. The number H'(R).

In this section we shall determine the class number H'(R) of the order R
along the line of Eichler’s paper (R is p+1Io or n+é—(1—|~«/“——m—|—1)o. (The
latter is admitted only in the case m =2 (mod 4)). Since in the cases ¢) and
d) (see §4) the level ¢ of the order R has a square factor 4, some modifications
are necessary. Let A be any right R-ideal. It has been proved in §4 that
for every rational prime p, the p-adic extension A(p) of A is a principal ideal
a,R(p) with a regular element a,. Since A is a free Z-module contained in
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K, A is equal to the intersection of all p-adic extensions of it: A= Na,RP)NK
p

where «, is a unit of R(p) except for a finite number of primes p. Conversely,
any expression N a,R(p) N K, where «,’s are regular elements in K(p), and but
14

for a finite number of primes p, a,’s are units of R(p), gives a right R-ideal
(in our sense). Therefore, for the orders R =o-/o and R :o—l—%(l—m/"——m}tl)o,
our definition of right R-ideals is equivalent to that of Eichler. Next, if B is
a left R-ideal in our sense, then the p-adic extensions are also principal ideals

R(p)B, with regular elements f, (notice that the conjugate B of B is a right
R-ideal); and B=NR()B, K. The left orders of right R-ideals A and the
p

right orders of left R-ideals B are of the form R’ =N\ y,R(p)y,' N K; we denote
?

by £ the set of these orders. It is easy to see that for any order R’ £ our
definition of right (or left) ideals is equivalent to that of Eichler. Hence the
totality of ideals whose right and left orders belong to £2 makes a groupoid
with the proper multiplication. Now two orders R’ and R” are said to have
the same type if there exists a regular element p of K such that R = uR'p.
Let R, (v=1, ---, T) represent all different types of orders of £. The left
orders of right R-ideals in the same ideal class have the same type. If two right
R-ideals A’ and A” have the same left order R,, then A” = BA’ with a two-sided

R,-ideal B. Let B,, (=1, ---, H)) be a set of representatives of all classes of
two-sided R,-ideals. Then we have

H(R)— é i,.

Now the zeta function {(s) of R({(s)= > N(A) %, where the sum extends over
A

all integral right R-ideal A and N(A) denotes the norm of A) is equal to the
product of “local ” zeta functions {,(s) of R(p). Since the residue of {(s) at

T
s=11is equal to ¢ 'z% > (H,/e,), where 2¢, is the number of units of R,, the
y=1
T
so-called mass M= 3 (H,/e,) is expressed explicitly in a “finite” form:
y=1

M= —1—12— I {(p—D TII (p-+1) in the case a), b), or ¢); the coefficient L is replaced

play Plaz 12
by ¥(1T in the case d) (cf. [2Z]. To obtain a formula for the number H'(R)

and H”(R), we need to show the following which corresponds to Satz
7 of [1]:

LEMMA 6. Let R, and R, be two orders of . Letobe an order (of rank
2 as a Z-module) in a quadratic number field contained in the quaternion alge-

bra K, isomorphic to one of the 4 orders: o,=[1,+/—17, 0,=[1, é—(l—l—«/:_g)],
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0, =T[1, v/ —m], 0o, =1, %—(l—l—VW}] (o, appears only in the case a)). Let o be
optimally embedded in R; (i=1,2), i.e’, denoting by Q) the quadratic field
generated by o over Q, 0=R; Q) (1=1,2). Then there exists an ideal a of
0 (a having o as its order) such that R,a=aR,. And conversely if o is optimally

embedded in the order R, and if a is an o-ideal, then o is optimally embedded
n the left order of aR,.

ProoF. The second part can be proved as in the proof of Satz 7 [1].
For the first part the assertion as well as assumption are reduced to those for
the p-adic extensions. The case in which the level of the orders R (p) is
square-free, the result is known ([1] Satz 7). Hence we have only to consider
the case ¢) m=1 (mod 4) or d) m=2 (mod 4) and R=o+lo; p=2; and
p=[1,+/—1] or [1, ~/—m] (notice that, since T T(~%(l+\/ j3)) =1, o, can not
be embedded in R(2)). In case c), since every right R(2)-ideal is two-sided, we have
R,(2)=R,(2) and it suffices to take a(2)=0(2). We consider the case d). Since R(2),
R.(2), R,(2) are of the same type, by transforming R,(2) and R,(2) by a suitable
element we may assume R,(2)=R(2); and that there exists a regular element
o = K(2) such that R,(2)=aR(2)a'. By the observation in § 4 we may assume
that « =1 or « is a primitive element of the form: a=a-+bl++/—m < R(2).
In the case p=p, let J=yl+zv —m +u~/—ml be the element of o which cor-
responds to ~/—1. Then we have y*+mz?+mu?=1 and hence y=1, z=u=0
(mod 2). Suppose a 1. Since a=b=1 (mod 2), we have @Ja = 2y(b+al)/—m
=+ 0 (mod 4). This implies o ¢ R(2), a contradiction. Therefore & can not be a
primitive element; hence we have R,(2)=R(2). Next if o=p, and J=yJ
hence y=0 (mod 2) and z—ul is a unit of R(2). The congruence aja
=20+Dz—ul)v—m =0 (mod 4) implies that « can not be a primitive ele-
ment ; consequently R,(2)= R(2). Hence the assertion.

Now the Lemma is proved, so that Eichler’s deduction ([1] Satz 10) applies.
to our case. Let R, 1 <y <T) be an order which represents a type of orders.
of . We fix a positive rational integer n and observe all elements a; (1<
<¢,) with norm n in R,. With every element « in this set we associate
s=T,(a) and the order o, = R, "\ Q(«), where Q(«) is the field generated by «
over Q. Then Q(«) is a quadratic field and «, @ determine the same s and o,
excepting the case n=4a? a= Z, a=+a. Let {0} be the set of mutually non-
isomorphic orders o, of imaginary quadratic number fields, o, D Z[¢], é2—sé+n
=0. We denote by g,(o.)the number of orders in R, which are isomorphic to
o, and optimally embedded in R, (the value g,=0 is admitted). We further

denote by =x,,(n) the number of integral principal right R, -ideals with norm n.
Then we have
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T

2 Hym )= B (He,/26) =M+ 3 T (Haw/e),

s V=

where the left hand side is the trace of an “ Anzahlmatrix” P(n) (cf. [I]), 2e,
is the number of units of the order R,, and (M) is equal to the mass M if n
is a square number; (M)=0 otherwise. Now, under the assumption that the
analogue of holds for the orders o, we can prove in the same way
as in Satz 10 the following equality (also cf. [5]):
L h(o,

@ 22 0)/e)=TIN,6) - 5

where A(p) is the number of ideal classes of the order o, 2w(o) is the
number of units of the order o, and N,(0.) is defined as follows: if
R(p) contains an order o’ isomorphic to o(p) such that o’ is optimally
embedded in R(p), then N,(o.) is equal to the index of the group of those
two-sided ideals which are the product of an p’-ideal and the order R(p),
in the group of all two-sided ideals of R(p); if R(p) contains no such order
o/, then N,0o)=0. Now we put n=1. Then every element a mentioned
above is equal to 41 or satisfies the equation a?—sa-+1=0, s2*—4 < 0. Hence

we have only two orders o,=[1,+/—17 and o, =[1, ém(l—l—x/ —3)] to observe

as o,. Then by the above assumption is satisfied. Since =,,(1)=1,
the above equality (4) gives H'(R). We have, by Satz 10, N,=1if prgq

. - D, . . . D, .
(_—: (J1C]z) 5 Np — 1—“{71,7} lf p H q, pl qi; Np - 1_}—{“5'} lf p " q, pl dz» The SymbOI
{%} is defined as follows:

{;}:{ (%), if p is prime to the conductor of o,

1 otherwise;
where £ is the quadratic field generated by » over @ and (‘%) is the Artin

symbol. Since in the cases c) and d) ¢ has a square factor 4, for the value of
N, the following supplement is necessary :

| D1 02 03

case ) f 3 0 3

Value of N, - E— I —
case d) \ 2 \ 0 2

The table is readily verified using the results of §4. Recalling the fact that
an odd prime factor p of ¢=g¢,¢, divides ¢, if p=3 (mod 4), and divides ¢, if
p=1 (mod 4), we have the following formulas:

case a) m=3 (mod 4), m >3,
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H®= 1y =D 0+D+2-+ 411 (1=(5)) T (1+(7))).

\plage 23“11

case b) m=2 (mod 4), m>2, R:o+—2A(1+\/T_7n’+])o,
H@®= {5 TO-DILG+D+2-+5 11 (1=( ) 1 (1+(5).

case ¢) m=1 (mod 4), m>1, H(R)= WPIIE (p—l)plg (P+1D+3-23,
1 2
case d) m=2 (mod 4), m>2, R=0+D,

H(R)= II(P DIL(p+1)+272,

D ldg
where ¢ is the number of distinct prime factors of the discriminant of the
principal order o of Qv —m).

§6. The number of singular classes.

Every class C of right R-ideal (R =0+ 1o or R:o+—%—(l+x/iﬁ+1)o, m=2

(mod 4)) contains a right R-ideal of the form A= ko-+(a+I) where k€ Z.
aco, k>0, klad+1 (§3). It is easy to see that the class C is singular if and
only if two right R-ideals A and A’=ko+(a—I)o are equivalent. Since
A’ =+/—m 1A/ —m, the condition is equivalent to the equivalence of two
right ideals A and A+ —m.

LEMMA 7. Let m>3. A right R-ideal A belongs to a singular class if
and only if the left order of A contains an element A satisfying the equation
A2+m=0.

PROOF. Suppose A belongs to a singular class. Then there exists an ele-
ment 1< K such that A-A=Av—m. We have A2=m; and the element 2
belongs to the left order R/, say, of A. Now we have 14Av —m =ilA= Am
and hence 14= Av —m = AA. Therefore there exists a unit ¢ of R’ such that
Z2=2s. We have Q()C Q). If ¢ does not belong to @, then we have Q(¢)
=@Q(A). Since K is a definite quaternion algebra, @(¢) is an imaginary quadratic
field and ¢ satisfies the following equation: e2—ae+1=0,a=0 or 1. We can
put 1= x+ye, with x, y < Z, and the above relation implies that x=7y. Then
we have m=A1=x2N(1-+¢). Since N(14+e)=1, 2, or 3, and since we are
assuming m is square-free and m >3, this is impossible. Hence e @, i.e
eg==+1, If e=1 then 1€ Z and m is a square number. This is impossible.
Therefore we have e¢= —1 and 2 satisfies the equation A2-+m=0. Con-
versely suppose the left order R’ of A contains an element 1 which satisfies
the equation A*2+m=0. Then AR'(p) = R/(P)A for all p (§4), so that AR’ = R’A.
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A7*JA is an integral two-sided R-ideal with norm m. In the case a),
b), or c), there exists no such an ideal of R except Rv —m, and hence we
have 1A= Av —m. In the case d), there exist just two such ideals R+/—m
and B, say, where the 2-adic extension B(2) of B is (14+I)R(2). By
there exists an element C < K(2) such that A(2)=CR(2). The element C1AC
belongs to the 2-adic extension of A-!1A. Putting CAC=x+y[t+zvV —m
+uv—ml, x, v, z, u € Z(2), we have T,(C1AC)=2x =0, n(C ~1AC) = y*-+mz2-+mu?
=m. If C-1ACe 1+ DR(2), then y=0, z=wu (mod 2) and consequently y*-mz?®
+mu?=0 (mod 4). Since m =0 (mod 4), this is impossible. Hence the 2-adic
extension of A4 is R(2v —m; and we have A-'1A= R~/ —m. This com-
pletes the proof.

LEMMA 8. Let R’ be the left order of some righ R-ideal (i.e. R’ € 2). If
R’ contains an element A salisfying the equation A2+m =0, then for any unit ¢
of R/, Ze satisfies the equation 2*+4-m=0; and every root p < R’ of this equation
is obtained in this way.

Proor. This is easily seen from the proof of Lemma 7.

Now let R,, ---, Ry be a set of orders representing the all different types
of orders of 2. Suppose an order R, contains an element A which satisfies the
equation A*4+m=0. Then by Lemma 8, the number of roots p (€ R,) of this
equation is equal to the number 2e, of units of R,. With every root p =R,
of this equation we associate an order n,=R, "\ Q(x). Then every order o,
corresponds to just two roots -x; and o, is isomorphic to o, =T[1, v/ —m] or

o, = [1, %(H—x/—m)] (the latter case may occur only in the case a)). Hence

we have the equality e, = g,(0;)-+g,(0,) in the case a), and e, = g,(0,) in the case
b), ¢), or d). If an order R, does not contain such an element A, then of course
we have g,(0;)=g,00,)=0. Now we have an expression of H"(R):H"(R)
=3 3 T(Hygv(og)/e,,). On account of Lemma 6 we can apply the formula (4)

in[?’S4 1t§oV§this expression. Using the values of N, in §5, and noticing that
h(0,) = (2—x(2)A(0,), where y is the Artin symbol for Q(~/—m)/Q, we have the
following results: the number H”“(R) of singular classes of the order R is
-~12~(3——X(2))h(04) in the case a); %Th(og) in the case b); %h(os) in the case c);
h{o,) in the case d) (m > 3).

§7. Class number formulas.

We summarize our calculations in the following formulas for H which is
introduced at the beginning of this paper. We have:
I. If m=3 (mod 4) and m > 3, then
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Eh:%III@—DII@+D
?lagy Plag
b (7"2 1) -3
—— 1+{—— —(A—(—=1)*% 2
&= (1 (5))+ 3 a1k
I Ifm=1 (mod 4) and m >1, then
H=-g T G=DIT (oD h=2".
a1

II. If m=2 (mod 8) and m > 2, then

H='Jo I G—DIT(p+D

PPy Dlay

plc<1< >>mq<1+< ))Jr-.v* ey

IV. If m=6 (mod 8), then

II(P 1)H’(P+1)+ffh 2t

plq; Play

where TI’ indicates that the product extends over only odd prime factors of
g; (i=1 or 2), i.e. the first product extends over all prime factors p=—1
(mod 4) of m, and the second over all prime factors p=1 (mod 4) of m; h and
t are the class number and the number of distinct prime factors of the principal

order of Q(v/—m); and (%)-) is the Legendre symbol. In the excluded cases

m—=

(1]
£21]
£31]
[4]
L5]
[6]
(7]

0,1, 2,3, we know H=0, 0, 1, 0, respectively [3].
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