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In a previous paper [3] the existence of curves $C$ on the product variety
$E\times E^{\prime}$ of two elliptic curves $E$ and $E^{\prime}$ with complex multiplication, with the
self-intersection number $(C, C)=2$ , was proved. $E\times E^{\prime}$ is then the Jacobian
variety of $C,$ $C$ being a theta divisor on $E\times E^{\prime}$ (Weil [7], Satz 2). The pur-
pose of this paper is to determine explicitly, in a special case $E=E^{\prime}$ , the
number of mutually non-isomorphic such curves $C$ of genus 2. More precisely,
we shall determine, for a given elliptic curve $E$ with the ring of endomor-
phisms isomorphic to the principal order of an imaginary quadratic field
$Q(\sqrt{-m})$ , the number $H$ of isomorphism classes of canonically polarized Jabo-
bian varieties $(E\times E, C),$ $C$ being a theta divisor, as a function of $m$ . In the
case $m\equiv 1(mod 4)$ and $m>1$ , for example, we shall obtain the following
result:

$H=_{8}^{1}--\prod_{p}(p-1)\prod_{p}(p+1)+\frac{1}{4}h-2^{l-4}$ ,

where the first product extends over all prime factors $p\equiv-1(mod 4)$ of $m_{r}$

and the second over all prime factors $p\equiv 1(mod 4)$ of $m$ ; and $h$ and $t$ are che
class number and the number of distinct prime factors of the discriminant of
the principal order of $Q(\sqrt{-m})$ , respectively. The determination of the num-
ber $H$ is reduced to that of the number of classes and the number of “ sin-
gular ‘’ classes of right ideals of certain (non-maximal) orders of a quaternion
algebra, and for this purpose Eichler’s method ([1] Satz 10) is applicable.

We denote by $Q$ and $Z$ the field of rational numbers and the ring of
rational integers, respectively.
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\S 1. Summary from a previous paper.

In this section we shall summarize the parts of our previous paper $[3-]$

which relate directly to this paper, and see at the same time how we have
been led to a number theoretic problem. Let $Q(\wedge-m)$ be an imaginary
quadratic number field and $0$ its principal order; we take $m$ a square-free
positive integer. Let $E$ be a l-dimensional abelian variety (i. e. an elliptic
curve) with the ring $\mathfrak{a}(E)$ of endomorphisms isomorphic to the principal order
$0$ ; once for all we identify $\mathfrak{a}(E)$ with $\mathfrak{o}$ through a fixed isomorphism. For any
two endomorphisms 2, $\mu(\in 0)$ of $E,$ $\{$ \‘A, $\mu\}\neq\{0,0\}$ , the correspondence $h_{\lambda},,$, : $E$

$\ni x\rightarrow(\lambda x, \mu x)\in E\times E$ defines a homomorphism of $E$ into the product $E\times E$ of
$E$ with itself. The image of $E$ by $h_{\lambda,J}$ is an abelian subvariety of dimension
1 on $E\times E$ , namely an elliptic curve lying on $E\times E$ ; we denote it by $ E_{\lambda_{ft}},\cdot$

Any elliptic curve on $E\times E$ is a translation of some $E_{\lambda,\mu}$ . Each endomorphism
of $E\times E$ is given by the correspondence: $E\times E\ni(x, y)\rightarrow(px+ry, qx+sy)\in E\times E$ ,

where $p,$ $q,$ $r,$ $s\in 0$ . This endomorphism may be expressed by a matrix
$\left(\begin{array}{ll}p & r\\q & s\end{array}\right)$ . This is an automorphism of $E\times E$ if and only if $ps-qr$ is a unit of

0. The intersection number $(E_{\lambda,J}, E_{\xi,\eta})$ of two elliptic curves $E_{\lambda,\mu}$ and $E_{\xi.\eta}$ is
given by

(1) $(E_{\lambda,/},, E_{\xi,\eta})=\frac{N(\lambda\eta-}{N(\lambda,\mu)N}\frac{\mu\xi)}{(\xi,\eta)}$ ,

where $N(\lambda, \mu)$ denotes the norm of the ideal $(\lambda, \mu)$ , etc. Every divisor $X$ on
$E\times E$ is algebraically equivalent to a linear combination (with integral coeffi-
cients) of elliptic curves; hence basing on the formula (1) we can attach to
every divisor $X$ on $E\times E$ a 2 by 2 matrix

(2) $M(X)=(\frac{k}{\alpha}$ $\alpha_{l})$

where $k,$ $l$ are rational integers and $\alpha\in \mathfrak{o}$ , and $\overline{\alpha}$ is the complex conjugate of
$\alpha$ , such that for any elliptic curve $E_{\lambda},$

”’

$ M(E_{\lambda.\mu})=\frac{1}{N(\lambda,\mu)}(\frac{\overline{\mu}}{\lambda}\mu$ $-\lambda\frac{\overline{\mu}}{\lambda}\lambda)$ .

For any two rational integers $k$ and 1, and any element $\alpha$ of $0$ , [here exists a
divisor $X$ on $E\times E$ for which the equality (2) holds. For two divisors $X$ and
$Y$ on $E\times E,$ $M(X)=M(Y)$ if and only if $X\equiv Y^{1)}$ . The intersection number
(X, $Y$ ) of two divisors $X$ and $Y$ on $E\times E$ is given by

(X, $Y$ ) $=\det M(X+Y)-\det M(X)-\det M(Y)$ ;

1) For two divisors $X$ and $Y,$ $X\equiv Y$ means that $X$ is algebraically equivalent to $Y$ .



28 T. HAYASHIDA

in particular we have

$\frac{1}{2}(X, X)=\det M(X)$ .

We also have a formula

(X, $E_{\xi,\eta}$) $=N(\xi^{1}, \eta)(\overline{\xi},\overline{\eta})M(X)\left(\begin{array}{l}\xi\\\eta\end{array}\right)$ .
Now let $X$ be a divisor on $E\times E$ with (X, $X$ ) $=2$ . Then either $X$ or -X

is linearly equivalent to a positive divisor $Y$ ([3], Lemma 4). Let $M(X)$ be
given by (2). On account of the relations $kl-\alpha\overline{\alpha}=1$ and (X, $E_{1,0}$) $=k$ , we
know that the former case occurs if and only if $k>0$ . Suppose $E\times E$ is the
Jacobian variety of some curve $C$ of genus 2, and $Y$ a theta divisor of it.
Then $Y$ is a positive divisor with $(Y, Y)=2$ and $Y$ itself is a curve of genus
2 isomorphic to $C$ . Hence we observe the set of all positive divisors $Y$ on
$E\times E$ with $(Y, Y)=2$ . The conditions $Y>0$ and $(Y, Y)=2ImeanY$ is non-
degenerate and $l(Y)=\frac{1}{2}(Y, Y)=1$ (Nishi [6] Th. 6 and Cor.). ($1(Y)$ means
the dimension of the complete linear system $|Y|$ determined by $Y.$) There-
fore, if $Y$ and $Y^{\prime}$ are two positive divisors on $E\times E$ such that $Y\equiv Y^{\prime}$ and
$(Y, Y)=2$ , then $Y^{\prime}$ is a translation of $Y$ . We know that to every matrix
$M=(\frac{k}{\alpha}$

$\alpha_{l}$), $k,$ $l\in Z,$ $\alpha\in 0,$ $k>0,$ $kl-\alpha\overline{\alpha}=1$ , there corresponds a positive divi-

sor $Y$ on $E\times E$ with $(Y, Y)=2$ such that $M(Y)=M$ ; and conversely. And by
each such matrix $M,$ $Y$ is determined up to translations. The base of our
calculation is the following

LEMMA (Weil [7], Satz 2). Let $A$ be an abelian variety of dimension 2,
and $Y$ be a positive divisor on $A$ such that $(Y, Y)=2$ . Then, either $Y$ is irre-
ducible and $A$ is the Jacobian variety of $Y$, the identity map of $Y$ being the
canonical mapping of $Y$ into its Jacobian variety; or $Y$ is a sum of two elliptic
curves, $Y=E_{1}+E_{2},$ $(E_{1}, E_{2})=1$ .

Now we consider an equivalence relation in the set of all positive divisors
$Y$ on $E\times E$ , with $(Y, Y)=2$ : two such divisors $Y$ and $Y^{\prime}$ are equivalent to
each other if and only if there exists an automorphism $\Lambda$ of $E\times E$ such that
$Y^{\prime}\equiv\Lambda^{-1}(Y)$ . In other words $Y$ and $Y^{\prime}$ are equivalent to each other if and
only if there exists a birational automorphism of $E\times E$ which maps $Y$ onto
$Y^{\prime}$ . We denote by $h_{1}$ the number of these equivalence classes (that $h_{1}$ is finite
was proved in [3], \S 5; but this will also be established later in \S 5). If $Y$ is
irreducible, then by WeiPs lemma, $Y$ is a non-singular curve of genus 2 and
$E\times E$ is the Jacobian variety of $Y,$ $Y$ being a theta divisor of $E\times E$ ; and two
such curves are birationally equivalent to each other if and only if they are
equivalent in the sense just mentioned above; we denote by $H$ the number of
equivalence classes which contain positive irreducible divisors $Y,$ $(Y, Y)=2$ .
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Finally we denote by $h_{2}$ the number of equivalence classes which contain
sums of two elliptic curves $E_{1}+E_{2},$ $(E_{1}, E_{2})=2$ . Then, by the Lemma we have
$H=h_{1}-h_{2}$ . Suppose an automorphism $\Lambda$ of $E\times E$ is given by the correspon-
dence: $E\times E\ni(x, y)\rightarrow(px+ry, qx+sy)\in E\times E$ , where $p,$ $q,$ $r,$ $s\in 0$ , and ps–qr
is a unit of $0$ . It is easy to see that the condition $Y^{\prime}\equiv\Lambda^{-1}(Y)$ is written in
the following form:

$M(Y^{\prime})=(\overline{\frac{p}{r}}$
$\overline{\frac{q}{s}})M(Y)\left(\begin{array}{ll}p & r\\q & s\end{array}\right)$ .

Now we observe the set of all matrices $M=(\frac{k}{\alpha}$
$\alpha_{l}$), where $k,$ $l$ are rationaR

integers, $\alpha\in 0,$ $k>0$ and $\det M=kl-\alpha\overline{\alpha}=1$ . We define an equivalence rela-
tion in this set: two matrices $M$ and $M^{\prime}$ are equivalent to each other (notation

$M\sim M^{\prime})$ , if and only if there exists a matrix $U=\left(\begin{array}{ll}p & r\\q & s\end{array}\right)$ , where $p,$ $q,$ $r,$ $ s\in I\rangle$

and $p_{S}$ – $qr$ is a unit of $0$ , such that $M^{\prime}={}^{t}\overline{U}MU$ . Then the number of these
equivalence classes is equal to $h_{1}$ .

\S 2. The number $h_{2}$ .
Two elliptic curves $E_{\alpha,\beta}$ and $E_{\gamma,\delta}$ on $E\times E$ are isomorphic to each other if

and only if two ideals $(\alpha, \beta)$ and $(\gamma, \delta)$ are in the same class ([3], Cor. of Prop.
3); and $E_{\alpha,\beta}=E_{\tau,\delta}$ if and only if $\alpha\delta-\beta\gamma=0$ ([3], Cor. 2 of Lemma 3). Suppose $\cdot$

two sums of elliptic curves $E_{1}+E_{2}$ and $E_{3}+E_{4}$ with $(E_{1}, E_{2})=(E_{3}, E_{4})=1$ are
equivalent. Then there exists a birational automorphism of $E\times E$ which maps
$E_{1}+E_{2}$ onto $E_{3}+E_{4}$ . Hence $E_{1}$ is isomorphic to one of the two elliptic curves
$E_{3}$ and $E_{4}$ . The elliptic curve $E_{1}$ (resp. $E_{2}$) is a translation of an abelian sub-
variety $E_{o,\beta}$ (resp. $E_{\gamma,\delta}$) of dimension 1 on $E\times E$ ; and we have $E_{1}+E_{2}\equiv E_{\alpha,\beta}$

$+E_{\gamma,\delta}$ . What we have just remarked implies that the classes of ideals $(\alpha, \beta)$

and $(\gamma, \delta)$ are determined by the equivalence classes of the divisor $E_{1}+E_{2}$ .
Now, since $(E_{a,8}, E_{\mathcal{T},\delta})=1$ , we have $N(\alpha, \beta)N(\gamma, \delta)=N(\alpha\delta-\beta\gamma)$ ; and this means
$(\alpha, \beta)(\gamma, \delta)=(\alpha\delta-\beta\gamma)$ . Hence, if the ideal $(\alpha, \beta)$ belongs to a class $C$ , say,
then the ideal $(\gamma, \delta)$ belongs to the class $C^{-1}$ . There is an isomorphism $f_{1}$ of
$E_{\alpha,\beta}\times E_{\gamma,\delta}$ onto $E\times E$ which is the identity map on $E_{\alpha,\beta}$ and on $E_{T,\delta}$ ([3], Cor.
of Prop. 6). Suppose $E_{\lambda},,’’+E_{\nu,\kappa}$ is another divisor with $(E_{\lambda,\mu}, E_{\nu,\kappa})=1$ , such
that $(\lambda, \mu)\in C,$ $(l)\kappa)\in C^{-1}$ . Then there is an isomorphism $\varphi$ of $E_{\alpha,\beta}\times E_{\mathcal{T},\delta}$ onto
$E_{\lambda,\mu}\times E_{\nu},,\overline{.}$ ; and an isomorphism $f_{2}$ of $E_{\lambda,\mu}\times E_{\nu,\kappa}$ onto $E\times E$ which is the iden-
tity map on $E_{\lambda,\mu}$ and on E.,.. The composed map $\Lambda=\prime_{2}\varphi c_{1}^{-1}$ then is an auto-
morphism of $E\times E$ which maps $E_{\sigma,\beta}$ (resp. $E_{\mathcal{T},\delta}$) onto $E_{\lambda_{fI}}$, (resp. $E_{\nu,\kappa}$). Hence
$E_{\alpha,\beta}+E_{\tau,\delta}$ is equivalent to $E_{\lambda,,x}+E_{\nu,\kappa}$ . On the other hand, for any elliptic curve
$E_{\alpha,\beta}$ on $E\times E$ there exists an elliptic curve $E_{\mathcal{T},\delta}$ such that $(E_{\alpha,\beta}, E_{\gamma,\delta})=1$ ([3],‘

Prop. 6). These facts imply that $h_{2}$ is equal to the number of pairs $\{C, C^{-1}\}$
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of ideal classes. Since the number of classes $C$ for which $C=C^{-1}$ , is $2^{t-1}$ ,

where $t$ is the number of distinct prime factors of the discriminant of the
principal order $0$ , we have

1
$h_{2}=_{2}--(h+2^{t- 1})$ ,

where $h$ is the number of ideal classes of the principal order $\mathfrak{o}$ .

\S 3. Quaternion algebra.

In the rest of this paper we shall determine the number $h_{1}$ . In this sec-
tion we shall establish a correspondence between the classes of matrices des-
cribed at the end of \S 1 and the classes of right ideals of some orders of a
quaternion algebra. We observe a quaternion algebra $K=Q+Q\sqrt{-m}+QI$

$+Q\sqrt{-m}I$, where $I^{2}=-1$ and $I\sqrt{-m}=-\sqrt{-m}I$, over the field $Q$ of rational
numbers. By an order in the quaternion algebra $K$, we understand, as usual,

a subring of $K$, which contains the ring $Z$ of rational integers and is a free
Z-module of rank 4. If $S$ is a free Z-module of rank 4 contained in $K$, then
the set $R=\{\xi\in K|S\xi\subset S\}$ makes an order in $K$, which we call the right order
of $S$ . For an order $R$ in $K$, by a right R-ideal we shall mean, in this paper,
only such a free Z-module $S$ of rank 4 in $K$, whose right order is equal to

$R^{2)}$ . Now, to every matrix $M=(\frac{k}{\alpha}$
$\alpha_{l}$), $k,$ $l\in Z,$ $\alpha\in \mathfrak{v},$ $k>0,$ $kl-\alpha\overline{\alpha}=1$ , we

make correspond a right o-module

$A=ko+(\alpha+I)0$

in $K$, where $\mathfrak{o}$ is the principal order of $Q(\sqrt{-m})$ . $A$ is then a free Z-module
of rank 4, and the right order $R$ of $A$ is equal to $0+\frac{1}{2}(1+\sqrt{-m}+I)0$ if $m\equiv 2$

$(mod 4)$ and $k\equiv l\equiv 0(mod 2);R$ is equal to $0+I\mathfrak{o}$ in other cases. To see this,

suppose $\lambda+I\mu(\lambda, \mu\in Q(\sqrt{-m}))$ belongs to $R$ . Since $ k(\lambda+I\mu)=k(\lambda-\alpha\mu)+(\alpha$

$+I)k\mu$ , we have $\lambda^{\prime}=\lambda-\alpha\mu\in 0$ . Consequently $(\alpha+I)\mu(=-\lambda^{\prime}+\lambda+I\mu)$ must
belong to $R$ . Since for any $\omega\in \mathfrak{o}$ we have $ k\omega(\alpha+I)\mu=k(\omega-\overline{\omega})\alpha\mu+(\alpha+I)k\overline{\omega}\mu$

and $(\alpha+I)\omega(\alpha+I)\mu=-kl\overline{\omega}\mu+(\alpha+I)(\omega\alpha+\overline{\omega}\overline{\alpha})\mu$ , we see $(\alpha+I)\mu$ belongs to $R$ if
and only if $\mu((\omega_{0}-\overline{\omega}_{0})\alpha, k, 1, \omega_{0}\alpha+\overline{\omega}_{0}\overline{\alpha}, \alpha+\overline{\alpha})\subset 0$ , where $\omega_{0}=\sqrt{-m}$ if $m\equiv 1$ or

2 $(mod 4);\omega_{0}=_{2}^{1}--(1+\sqrt{-m})$ if $m\equiv 3(mod 4)$ . Since $kl-\alpha\overline{\alpha}=1$ , this is equi-

valent to the condition $\mu(\omega_{0}-\overline{\omega}_{0}, k, l, 2)\subset 0$ . Noticing that the congruence

2) For the orders $R$ with which we shall mostly concern in this paper, this defini-
tion of right R-ideals proves to be equivalent to that of Eichler (see \S 5). His definition
is: a right R-ideal is $\cap\mu_{p}R(p)\cap K$ where $\mu_{p}’ s$ are regular elements and $\mu_{p}R(p)=R(p)$

but for a finite number $pof$ primes $p$ .
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$\alpha\overline{\alpha}+1=-0(mod 4)$ is impossible if $m\equiv 1(mod 4)$ , we have the desired result.
We shall say two matrices $M$ and $M^{\prime}$ are properly equivalent to each other

if there exists a matrix $U$ of determinant 1, with elements in $\mathfrak{o}$ , such that
${}^{t}\overline{U}MU=M^{\prime}$ . For two properly equivalent matrices $M$ and $M^{\prime}$ , putting

$M^{\prime}=\left(\begin{array}{ll}k^{\prime} & \alpha^{\prime}\\\overline{\alpha}^{/} & l^{\prime}\end{array}\right)$ , $U=\left(\begin{array}{ll}p & r\\q & s\end{array}\right)$ , $ps-qr=1$ ,

we have the following relation:

( $\overline{\frac{p}{r}}$

$\overline{\frac{q}{s}}$) $\left(\begin{array}{ll}k & \alpha+I\\\overline{\alpha}-I & l\end{array}\right)\left(\begin{array}{ll}p & r\\q & s\end{array}\right)=\left(\begin{array}{ll}k^{/} & \alpha^{\prime}+I\\-\overline{\alpha}’ I & l’\end{array}\right)$ .

Since $kl=(\overline{\alpha}-I)(\alpha+I)$ , we also have the relation:

(3) $\rho(k, \alpha+I)\left(\begin{array}{ll}p & r\\q & s\end{array}\right)=(k^{\prime}, \alpha^{\prime}+I)$ .

where $\rho=\overline{p}+k^{-1}\overline{q}(\overline{\alpha}-I)$ . This means that the two right R-ideals $A=k\mathfrak{o}$

$+(\alpha+I)0$ and $A^{\prime}=k^{\prime}o+(\alpha^{\prime}+I)0$ are in the same class: $\rho A=A^{\prime}$ . Conversely,

if two right R- ideals $A,$ $A^{\prime}$ in the same class are associated with matrices $M$

and $M^{\prime}$ respectively, we have a relation of the form (3) with $\rho\in K,$ $\rho\neq 0$ , and
$ps-qr$ a unit of $0$ . Then we have the relation:

$k\rho\overline{\rho}\left(\begin{array}{ll}p & \overline{q}\\\overline{r} & \overline{s}\end{array}\right)\left(\begin{array}{ll}k & \alpha+I\\\overline{\alpha}-I & l\end{array}\right)-\left(\begin{array}{ll}p & r\\q & s\end{array}\right)=k^{\prime}\left(\begin{array}{ll}k^{\prime} & \alpha^{\prime}+I\\-\overline{\alpha}’ I & l\end{array}\right)$ .

Comparing the coefficients of $I$, we see that $k\rho\overline{\rho}(ps-qr)=k^{\prime}$ . This means that
ps–qr is a positive rational number, and consequently is equal to 1. Hence
the two matrices $M$ and $M^{\gamma}$ are properly equivalent.

Now we shall show that if $R=0+Io$ or $R=0+\frac{1}{2}(1+\sqrt{-m}+I)0$ (the latter

is aamitted only in the case $m\equiv 2(mod 4))$ , then every class of right R-ideals
contains a right ideal of the form $A=ko+(\alpha+I)0$ . We begin with

LEMMA 1. Every right o-module $S$ contained in $K$ is of the form $(\ddagger+(\gamma+I)\mathfrak{L}$ ,

where $\mathfrak{a},$

$\mathfrak{L}$ are o-ideals in $Q(\sqrt{-m})$ and $\gamma$ is an element of $Q(\sqrt{-m})$ .
PROOF. Put $\mathfrak{a}=S\cap Q(\sqrt{-m})$ and $\mathfrak{L}=\{y|x, y\in Q(\sqrt{-m}), x+Iy\in S\}$ . Then

{$\ddagger,$

$\mathfrak{L}$ are o-ideals in $Q(\sqrt{-m})$ . There exist two elements $\gamma_{1}+I\beta_{1},$ $\gamma_{2}+I\beta_{2}$ of $S$

such that $(\beta_{1}, \beta_{2})=\mathfrak{L}$ . Whenever two elements $2_{1},2_{2}\in 0$ satisfy the equation
$\beta_{1}\lambda_{1}+\beta_{2}\lambda_{2}=0$ , we have $\gamma_{1}\lambda_{1}+\gamma_{2}\lambda_{2}\in \mathfrak{a}$ . Hence for any element $t\in \mathfrak{L}^{-1}$ , we have
$(\gamma_{1}\beta_{2}-\gamma_{2}\beta_{1})t\in \mathfrak{a}$ ; and this means $\gamma_{1}\beta_{2}-\gamma_{2}\beta_{1}\in 0\mathfrak{L}$ . There exist two elements $\alpha_{1}$

and $\alpha_{2}$ of $!\mathfrak{a}$ such that $\gamma_{1}\beta_{2}-\gamma_{2}\beta_{1}=\alpha_{2}\beta_{1}-\alpha_{1}\beta_{2}$ , so that $(\gamma_{1}+\alpha_{1})\beta_{2}-(\gamma_{2}+\alpha_{2})\beta_{1}=0$ .
Since $\gamma_{1}$ (resp. $\gamma_{2}$) may be replaced by $\gamma_{1}+\alpha_{1}$ (resp. $\gamma_{2}+\alpha_{2}$), the proof is com-
pleted.

LEMMA 2. Let $S\subset K$ be a right o-module and a free Z-module of rank 4.
Then there exists an element $\rho\neq 0$ of $K$ such that $\rho S\cap Q(\sqrt{-m})=0$ .
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PROOF. We write $S$ in the form stated in Lemma 1: $S=\mathfrak{a}+(\gamma+I)\mathfrak{L}$ . If
$\rho_{1}=\lambda+I\mu$ is an element of $K$, then $\rho_{1}S=\mathfrak{a}_{1}+(\gamma_{1}+I)\mathfrak{L}_{1}$ , with $\mathfrak{L}_{1}=(\mu \mathfrak{a}, (\mu\gamma+\overline{\lambda})\mathfrak{L})$ .
Since $S$ is a free Z-module of rank 4, we have $\mathfrak{a}\neq 0,$ $\mathfrak{L}\neq 0$ . Hence we can find
two elements $\lambda^{\prime},$

$\mu^{\prime}$ of $Q(\sqrt{-m})$ such that ( $\mu^{\prime}(\ddagger\lambda^{\prime}\mathfrak{L})=0$ . Taking $\lambda=\overline{\lambda}^{\prime}-\overline{\mu}^{\prime}\overline{\gamma}$ ,

$\mu=\mu^{\prime}$ , we have $\rho_{1}S=\mathfrak{a}_{1}+(\gamma_{1}+I)0$ , say. Then $\rho=(\gamma_{1}+I)^{-1}\rho_{1}$ has the desired
property.

LEMMA 3. A right o-module $S=0+(\gamma+I)\mathfrak{L}$ is a right $0+Io$-module if and
only if $\mathfrak{L}\neq 0,$ $\mathfrak{L}^{-1}\subset 0,$ $\mathfrak{L}=\overline{\mathfrak{L}},$

$\gamma\in 0$ , and $\gamma\overline{\gamma}+1\in \mathfrak{L}^{-1}$ .
PROOF. For any element $\omega\in 0$ , we have $col=-\gamma\overline{\omega}+(\gamma+I)\overline{\omega}$ ; and for any

element $\beta\in \mathfrak{L},$ $(\gamma+I)\beta I=-(1+\gamma\overline{\gamma})\overline{\beta}+(\gamma+I)\overline{\gamma}\overline{\beta}$ . Hence $SI\subset S$ if and only if
$\gamma\in 0,0\subset \mathfrak{L},$ $(1+\gamma\overline{\gamma})\overline{\mathfrak{L}}\subset 0$ , and $\overline{\gamma}\overline{\mathfrak{L}}\subset \mathfrak{L}$ . These relations imply $\gamma\overline{\gamma}\overline{\mathfrak{L}}\subset \mathfrak{L}$ and
$(1+\gamma\overline{\gamma})\overline{\mathfrak{L}}\subset \mathfrak{L}$ , so that $\mathfrak{L}\subset \mathfrak{L}$ ; consequently $\overline{\mathfrak{L}}=\mathfrak{L}$ . Thus we see the conditions
stated in this Lemma are necessary. Sufficiency is obvious.

Let $S=0+(\gamma+I)\mathfrak{L}$ be a right $0+Io$-module in $K$. By Lemma 3 we can put
$\mathfrak{L}^{-1}=k\mathfrak{a}_{0}$ and $\gamma\overline{\gamma}+1=kla_{0}$ , where $k,$ $1$ are positive rational integers; $\mathfrak{a}_{0}$ is primi-
tive ambiguous ideal in $0$ , and $a_{0}$ is the norm of $\mathfrak{a}_{0}$ : $\mathfrak{a}_{0}=a_{0}Z+(r+\omega_{0})Z$ with
$r\in Z$. The right order of $S$ is given by

LEMMA 4. The notation being as above, the right order $R=\{\xi|\xi\in K, S\xi\subset S\}$

of a right $\mathfrak{o}+Io$ -module $S$ is equal to $0+-2-(\gamma+I)\mathfrak{a}_{0}^{-1}1$ if $m\equiv 2(mod 4)$ and $k\equiv l$

$\equiv 0(mod 2);0+(\gamma+I)(\ddagger_{0}^{-1}$ otherwise.
PROOF. Suppose $\xi=x+(\gamma+I)y$ with $x,$ $y\in Q(\sqrt{-m)}$ is an element of $R$ .

Since $1\in S$ , we have $\xi\in S$ ; and consequently $x\in 0$ and $(\gamma+I)y\in R$ . Therefore
$R$ is of the form $0+(\gamma+I)\mathfrak{C}$ , where $\mathfrak{C}$ is an o-ideal in $Q(’-m)$ . For any ele-
ment $\omega\in 0$ we have $\omega(\gamma+I)=(\omega-\overline{\omega})\gamma+(\gamma+I)\overline{\omega}$ ; and for any element $\beta\in k^{-1}\mathfrak{a}_{0}^{-1}$

we have $(\gamma+I)\beta(\gamma+I)=-(\gamma\overline{\gamma}+1)\overline{\beta}+(\gamma+I)(\beta\gamma+\overline{\beta}\overline{\gamma})$ . Then $\mathfrak{C}$ is the greatest

subset of $Q(\sqrt{-m})$ satisfying the relations: $(\omega_{0}-\overline{\omega}_{0})\gamma \mathfrak{C}\subset \mathfrak{o},$ $\mathfrak{C}\subset k^{-1}\mathfrak{a}_{0}^{-1},$ $(\gamma\overline{\gamma}$

$+1)k^{-1}\mathfrak{a}_{0}^{-1}\mathfrak{C}\subset \mathfrak{o},$ $T_{\gamma}(k^{-1}\mathfrak{a}_{0}^{-1}\gamma)\mathfrak{C}\subset k^{-1}\mathfrak{a}_{0}^{-1}$ . $Hencewehaveanequality\mathfrak{C}^{-1}=((\omega_{0}-\overline{\omega}_{0})\gamma$ ,
$k\mathfrak{a}_{0},$ $l\mathfrak{a}_{0},$ $(r_{0}T_{r}(\mathfrak{a}_{0}^{-1}\gamma))$ . Now we know $\gamma\in 0$ (Lemma 3), and $\mathfrak{C}^{-1}\subset \mathfrak{o}$ . The relation
$\gamma\overline{\gamma}+1=kla_{0}$ implies $\gamma$ is relatively prime to $\mathfrak{C}^{-1}$ . Hence we have $\omega_{0}-\overline{\omega}_{0}\in \mathfrak{C}^{-1}$ .
For any two elements $\alpha,$ $\alpha^{\prime}\in \mathfrak{a}_{0}$ we have a congruence $\alpha^{\prime}(\alpha\gamma+\overline{\alpha}\overline{\gamma})a_{0}^{-1}$

$\equiv(\alpha^{\prime}+\overline{\alpha}^{\prime})\alpha\gamma a_{0}^{-1}(mod \mathfrak{C}^{-1})$ . Thus from the above equality we have a formula
$\mathfrak{C}^{-1}=(\omega_{0}-\overline{\omega}_{0}, k\mathfrak{a}_{0}, l\mathfrak{a}_{0}, \mathfrak{a}_{0}T_{r}(\mathfrak{a}_{0}^{-1}))$ . Now, if $m\equiv 3(mod 4)$ , then $\omega_{0}-\overline{\omega}_{0}=\sqrt{-m}\in \mathfrak{a}_{0}$

and $T_{r}(0_{0}^{-1})=(1)$ . Hence by this formula $\mathfrak{C}^{-1}=\mathfrak{a}_{0}$ . If $m\equiv 1(mod 4)$ , then
$\omega_{0}-\overline{\omega}_{0}=2\sqrt{-m}\in \mathfrak{a}_{0}$ and $T_{\gamma}(\mathfrak{a}_{0}^{-1})=(1)$ or (2); and, since the congruence $\gamma\overline{\gamma}+1\equiv 0$

$(mod 4)$ is impossible, we have $(k, 1,2)=1$ . Hence $\mathfrak{C}^{-1}=\mathfrak{a}_{0}$ . If $m\equiv 2(mod 4)$ ,

then $\omega_{0}-\overline{\omega}_{0}=2\sqrt{-m}\in 2_{t\ddagger_{0}}$ and $T_{r}(\mathfrak{a}_{0}^{-1})=(2)$ . Hence we have $\mathfrak{C}^{-1}=(k, l, 2)(\ddagger_{0}$ .
This settles our assertion.

Now suppose $S$ be a free Z-module of rank 4 contained in $K$, whose right
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order is $\mathfrak{o}+Io$ or $0+-2-(1+\sqrt{-m}+I)01$ (the latter is admitted only in the case

$m\equiv 2(mod 4))$ . Since $\mathfrak{o}+Io\subset 0+\frac{1}{2}(1+\sqrt{-m}+I)\mathfrak{o},$ $S$ is in any case a right $0+$

Io-module and Lemma 1-4 are applicable to $S$ . By Lemmas 2 and 3 there exists
a regular element $\rho\in K$ such that $\rho S$ is of the form $\mathfrak{o}+(\gamma+I)k^{-1}\mathfrak{a}_{0}^{-1}$ ; and by

Lemma 4 the right order of $S$ is equal to $\circ+(\gamma+I)\mathfrak{a}_{0}^{-1}$ or $\mathfrak{o}+\frac{1}{2}(\gamma+I)\mathfrak{a}_{0}^{-1}$ (the

latter is possible only if $m=2(mod 4))$ . It is easy to see that if the right

order of $S$ is $0+Io$ , then the former holds; if $0+-2-(1+\sqrt{-m}+I)01$ then the

latter. In either case we have $\alpha_{0}=0$ . (Notice that since $\mathfrak{a}_{0}$ is an primitive

integral ideal of $0,$ $\mathfrak{a}_{0}$ can not be equal to $--021$ or 20.) Thus, for an order

$R=0+Io$ or $\mathfrak{o}+-2-(1+\sqrt{-m}+I)01$ every class of right R-ideals contains an ideal

of the form $A=k\rho S=k\mathfrak{o}+(\gamma+I)\mathfrak{o}$ . Therefore there is a one-to-one correspon-
dence between proper classes of matrices $M$ described above and classes of

right R-ideals ($R=0+Io$ or $0+--(1+\sqrt{-m}+I)0$)$21$ . If $m\neq 1$ or 3, the principal

order $0$ of $Q(\sqrt{-m)}$ contains only two units, namely $\pm 1$ ; hence one class of
matrices $M$ consists of one or two proper classes. In the former case, in this
paper, the class of matrices $M$ or the corresponding right R-ideals will be
called singular. We denote by $H^{\prime}$ the number of proper classes of matrices

$M$, where $M=\left(\begin{array}{ll}k & \alpha\\\overline{\alpha} & l\end{array}\right)$ , le, $l\in Z,$ $\alpha\in 0,$ $k>0,$ $kl-\alpha\overline{\alpha}=1$ ; and by $H^{\prime/}$ the number

of singular classes of matrices $M$. We have then $h_{1}=\frac{1}{2}(H^{\prime}+H^{\prime\prime})(m\neq 1,3)_{\infty}$

Also we denote by $H^{\prime}(R)$ (resp. $H^{\prime\prime}(R)$) the number of classes (resp. singular
classes) of right R-ideals. In the case $m\not\equiv 2(mod 4)$ we have $H^{\prime}=H^{\prime}(R)$ ,

$H^{\prime\prime}=H^{\prime/}(R)$ where $R=\mathfrak{o}+Io$ ; and in the case $m\equiv 2(mod 4)$ we have $H^{\prime}$

$=\sum_{R}H^{\prime}(R),$ $H^{\prime\prime}=\sum_{R}H^{\prime\prime}(R)$ where the sums extend over two orders $R=0+I\mathfrak{o}_{1}$

and $R=0+\frac{1}{2}(1+\sqrt{-m}+I)0$ .

\S 4. $p$ -adic extension.

Let $Q(p)$ be the field of $p$ -adic numbers and $z(p)$ the ring of $p$ -adic integers.
We denote by $R(p)$ (resp. $A(p)$) the $p$ -adic extension of an order $R$ (resp. an
ideal $A$) $:R(p)=R\bigotimes_{Z}Z(p)$ (resp. $A(p)=A\bigotimes_{Z}Z(p)$). Also we put $K(p)=K\bigotimes_{Q}Q(p)$ .
If $R$ is an order in the quaternion algebra $K$, then $R(p)$ is an order in $K(p)$ ,
$i$ . $e$ . a subring of $K(p)$ , which contains $Z(p)$ and is a free $Z(p)$ -module of rank 4.
We shall understand, in this paper, by a right $R(p)$-ideal a free $Z(p)$ -module of
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rank 4 in $K(p)$ , whose right order is equal to $R(p)$ . We can easily see that if
$A$ is a right R-ideal, then $A(p)$ is a right $R(p)$ -ideal. Let $[\lambda_{1}, \lambda_{2}, \lambda_{3}, \text{\‘{A}}_{4}]$ be a
Z-basis of an order $R$ in $K$. By the discriminant of $R$ we understand
$D=\det(T_{r}(\overline{\lambda}_{i}\lambda_{j}))$ , where $\overline{\lambda}_{i}$ means the conjugate of $\lambda_{i}$ in the quaternion algebra
$K$. By the level of an order $R$ we understand the positive rational integer

$q=n(\tilde{R})^{-1}$

where $\tilde{R}$ means the complementary ideal of $R$ and $n(\tilde{R})$ the greatest common
divisor of the norms of elements of R. (The comlpementary ideal $\tilde{R}$ of $R$ is
one which has a Z-basis $[\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}]$ such that $T_{r}(\overline{\lambda}_{\iota}\mu_{j})=1$ if $i=j;=0$ if
$i\neq j.)$ The $p$ -component of $D$ (resp. q) is equal to the discriminant (resp. the
level) of the p-adic extension $R(p)$ . It is known that if $p\Vert q$ (i. e. $q\equiv 0(mod p)$

and $q\not\equiv O$ $(mod p^{2}))$ , then $p^{2}\Vert D$ ([1] \S 2). For the orders $R=\mathfrak{o}+Io$ and

$R=\mathfrak{v}+^{1}-2-(1+\sqrt{-m}+I)0$ (the latter is admitted only in the case $m\equiv 2(mod 4)$),

by a simple calculation we know that $q=m$ if a) $m\equiv 3(mod 4)$ , or b) $m\equiv 2$

$(mod 4)$ and $R=\mathfrak{o}+\frac{1}{2}(1+\sqrt{-m}+I)0$ ; and that $q=4m$ if c) $m\equiv 1(mod 4)$ , or
d) $m\equiv 2(mod 4)$ and $R=0+Io$ . And $D=q^{2}$ (though the prime $p=2$ does not
satisfy the above condition). It is known that if $K(p)=K\bigotimes_{Q}Q(p)$ is a division

algebra, then $p|q$ . We denote by $q_{1}$ the product of all and different such
primes $p$ . By a simple calculation we know that an odd prime factor $p$ of $q$

divides $q_{1}$ if and only if $p\equiv 3(mod 4)$ ; and $2|q_{1}$ if and only if $m\equiv 1(mod 4)$

or $m\equiv 2(mod 8)$ . We put $q=q_{1}q_{2}$ . Now let $p$ be an odd prime and $p|q_{1}$ .
Since we have $p\Vert q$ by the above result, $R(p)$ is the (unique) maximal order of
the division algebra $K(p)$ ; and every right ideal of $R(p)$ is two-sided and prin-
cipal, and is a power of the unique prime ideal $\pi R(p)$ where $\pi$ is a prime
element in $R(p)$ . Next let $p$ be an odd prime, $p|q_{2}$ . Then we have $p\Vert q$ by
the above result, and we know ([1] \S 2) that $R(p)$ is isomorphic to an order of
2 by 2 matrices with components in $Z(p)$ , the left-lower component being
divisible by $p$ :

$R(p)\cong\left(\begin{array}{ll}Z(p) & z(p)\\pZ(p) & Z(p)\end{array}\right)$ .

We shall show that every right $R(p)$ -ideal $A(p)$ is of the form $A(p)=\mu R(p)$

with $\mu$ a regular element in $K(p)$ . Represent all elements of $R(p)$ by 2 by 2
matrices through the above isomorphism. It is easy to see that the set of the
first rows of all elements of $A(p)$ then make a left $R(p)$ -module of the form
either $(p^{a}Z(p), p^{a}Z(p))$ or $(p^{a+1}Z(p), p^{a}Z(p))$ . The former is generated by $(p^{\alpha}, o)$ ;
and the latter by $(0, p^{a})$ . Similarly, the set of the second rows of those ele-
ments of $A(p)$ , of which the first rows are zeros, makes a left $R(p)$-module
generated by either $(\rho^{b}, 0)$ or $(0, p^{b})$ . And $A(p)$ is the direct sum of these two
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type of left $R(p)$ -modules. Among the 4 possible combinations, however, the
former-former one or the latter-latter one gives a maximal order (instead of
$R(p))$ as the right order. The former-latter one or the latter-former one gives
$R(p)$ as the right order; and $A(p)$ then is equal to $\mu R(p)$ where

$\mu=\left(\begin{array}{ll}p^{a} & 0\\c & p^{b}\end{array}\right),$ $cmod p^{b+1}$ , or $\mu=(p^{b}0$ $p_{c}^{a}$), $cmod p^{b}$ ,

respectively. Therefore in this case our definition of right $R(p)$ -ideals is equi-
valent to that of Eichler. We know that every two-sided ideal of $R(p)$ is a
power of the two-sided ideal $\pi R(p)$ , where $\pi=\left(\begin{array}{ll}0 & 1\\p & 0\end{array}\right)([1] \S 2)$ . Remark that

the ideal $\pi R(p)$ is invariant under the canonical involution of $K(p)(i.e$ . equal
to its conjugate). Next let $p$ be a prime, $pI^{\prime}q$ . Then $R(p)$ is a maximal order
in $K(p)$ , isomorphic to the order of all 2 by 2 matrices with components in
$Z(p)$ . We can see in like manner that our definition of right-ideals is equivalent
to that of Eichler; and every right $R(p)$ -ideal is uniquely written in the form

$\left(\begin{array}{ll}p^{a} & 0\\c & p^{b}\end{array}\right)R(p),$ $cmod p^{b}$ .

Every two-sided $R(p)$ -ideal is of the form $p^{a}R(p)$ . Finally let $p=2$ . We shall
prove the following

LEMMA 5. Every right $R(2)$ -ideal is equal to a principal ideal $\mu R(2)$ with
a regular element $\mu$ in $K(2)$ .

PROOF. In the case a) $m\equiv 3(mod 4)$ , we have $p=2l^{\prime}q$ and hence the

Lemma is true. In the case b) $m\equiv 2(mod 4)$ and $R=\mathfrak{o}+-2-(1+\sqrt{-m}+I)01$ we
have $p=2\Vert q(q=m)$ ; then we can prove the Lemma in the same way as in
the case of odd $p,$ $p\Vert q$ . We shall treat the case c) $m\equiv 1(mod 4)$ and the case
d) $m\equiv 2(mod 4)$ and $R=0+Io$ . In either case the order $R$ is equal to $0+Io$

and the rational prime 2 ramifies in $0$ . Suppose $S$ is a right $R(2)$ -ideal. We
denote by 0(2) the 2-adic extension of the principal order $0$ of $Q(\sqrt{-m})$ . Since
$S$ is a right $o(2)+Io(2)$-module in $K(2)$ and a free $Z(2)$-module of rank 4, and
since every ideal of $\mathfrak{d}(2)$ is a power of the prime ideal $\pi 0(2)$ where $\pi$ is a prime

element in $\mathfrak{d}(2)$ , we can put $S=\pi^{t}(\mathfrak{o}(2)+(\gamma+I)\pi^{-s}\mathfrak{v}(2)),$ $\gamma\in Q(2)(\sqrt{-m})$ . The con-
ditions $SI\subset S$ means, as in Lemma 3, that $\gamma\in 0(2),$ $s\geqq 0$ , and $\pi^{s}|\gamma\overline{\gamma}+1$ . Then
we see, as in the proof of Lemma 4, that the right order of $S$ is of the form
$\mathfrak{o}(2)+(\gamma+I)\pi^{-u}o(2)$ and the ideal $\pi^{-u}o(2)$ is determined by the equality $\pi^{u}n(2)$

$=((\omega_{0}-\overline{\omega}_{0})\gamma, (\gamma\overline{\gamma}+1)\pi^{-s},$ $\pi^{s},$ $\pi^{s}T_{\gamma}(\pi^{-s}\gamma o(2)))$ . Since, by our assumption, the right

order of $S$ is $R(2)=o(2)+Io(2),$ $u$ ought to be $0$ . Since $2|\omega_{0}-\overline{\omega}_{0}(=2\sqrt{-m})$ and
$\pi^{s}T_{r}(\pi^{-s}\gamma o(2))\subset\pi \mathfrak{o}(2)$ , this means that $\pi^{s}$ or $(\gamma\overline{\gamma}+1)\pi^{-s}$ is a unit of $\mathfrak{v}(2)$ . In the
former case we have $S=\pi^{t}R(2)$ ; and in the latter case we have $S=\pi^{t}(\overline{\gamma}-I)^{-1}R(2)$ .
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Hence our assertion ls proved.
By Lemma 5 we know that, also for the prime $p=2$ , our definition of

right $R(2)$ -ideals is equivalent to that of Eichler. Next we shall determine the
two-sided $R(2)$-ideals and the number of integral right $R(2)$-ideals with given
norm. At the end of our proof of Lemma 5, we have seen that, in the case
c) or d), every right $R(2)$ -ideal is written in the form $\pi^{t}R(2)$ or $\pi^{t}(\overline{\gamma}-I)^{-1}R(2)$

where $\gamma\in 0(2)$ and $\pi$ is a prime element of $o(2)$ . First in the case c), if $\overline{\gamma}-l$

is not a unit of $R(2)$ , then, putting $\gamma=a+b\sqrt{-m},$ $a,$ $b\in Z(2)$ , one of the two
elements $a$ and $b$ is odd and the other is even; hence $(1+I)(\overline{\gamma}-I)^{-1}$ or
$(\sqrt{-m}+I)(\overline{\gamma}-I)^{-1}$ is a unit of $R(2)$ . We can see that three right $R(2)$-ideals
$A=\pi R(2)=(1+\sqrt{-m})R(2),$ $B=(1+I)R(2),$ $C=(\sqrt{-m}+I)R(2)$ are two-sided3\rangle

and satisfy the following relations: $A^{2}=B^{2}=C^{2}=2R(2),$ $AB=BC=CA$ and
$BA=CB=AC$ . Consequently we know that every right $R(2)$ -ideal is two-sided
and can be written uniquely in one of the three forms: $A^{n},$ $A^{n}B,$ $A^{n}C$ . Remark
that the ideals $A,$ $B,$ $C$ are invariant under the canonical involution of $K(2)_{r}$

respectively; the ideal $AB$ is (two-sided and yet) not invariant under the
canonical involution. Now we consider the case d) $m\equiv 2(mod 4)$ and $R=0+Io$ .
It is easy to see that the two right ideals $A=\sqrt{-m}R(2)$ and $B=(1+I)R(2)$

are two-sided and satisfy the relations: $A^{2}=B^{2}=2R(2),$ $AB=BA$ . Let
$S=\alpha R(2)$ , where $\alpha=a+bI+c\sqrt{-m}+d\sqrt{-m}I\in R(2)$ , be an integral right $R(2)-$

ideal. If $a\not\equiv b(mod 2)$ , then a is a unit of $R(2)$ and $S=R(2)$ . If $a\equiv b\equiv\circ i$

$(mod 2)$ , then $\alpha$ is factorized as follows: $\alpha=\alpha^{\prime\sqrt{-m}},$ $\alpha^{\prime}\in R(2)$ . If $a\equiv b\equiv 1$

$(mod 2)$ and $c\equiv d(mod 2)$ , then $\alpha$ is factorized as follows: $\alpha=\alpha^{\prime}(1+I),$ $\alpha^{\prime}\in R(2)$ .
In what follows, those elements $\alpha=a+bI+c\sqrt{-m}+d\sqrt{-m}I$ of $R(2)$ which
satisfy the condition: $a\equiv b\equiv 1(mod 2),$ $c\not\equiv d(mod 2)$ , will be called primitive.
If $\alpha\in R(2)$ is primitive, then $c+dI$ is a unit of $R(2)$ and $\alpha^{\prime}=\alpha(c+dI)^{-1}$ is also
primitive and has the form $\alpha^{\prime}=a^{\prime}+b^{\prime}I+’-m$ . Suppose $\alpha=a+bI+\sqrt{-m}$

and $\alpha‘=a^{\prime}+b^{\prime}I+\sqrt{-m}$ are two primitive elements of $R(2)$ and $\alpha$ is not a zero-
divisor and $ 2^{s}\Vert\overline{\alpha}\alpha$ . Since $\overline{\alpha}\alpha^{\prime}=(a-bI-\sqrt{-m})(a^{\prime}+b^{\prime}I+\sqrt{-m})=aa^{\gamma}+bb^{\prime}+m$

$+(ab^{\gamma}-ba^{\prime})I+(a-a^{\gamma})\sqrt{-m}+(b-b^{\prime})\sqrt{-m}I,$ $\alpha^{\prime}\in\alpha R(2)$ if and only if $a\equiv a^{\prime},$ $b\equiv b^{\prime}$

$(mod 2^{s})$ . And the last congruences imply $a^{2}+b^{2}+m\equiv a^{\prime 2}+b^{\prime 2}+m(mod 2^{S+1})$ ;
consequently $\alpha^{\prime}=\alpha\epsilon$ , where $\epsilon$ is a unit of $R(2)$ . Hence we have $\alpha R(2)=\alpha^{\prime}R(2)$

if and only if $a\equiv a^{\prime},$ $b\equiv b^{\gamma}(mod 2^{s})$ . On the other hand, if $\alpha=a+bI+\sqrt{-m}$

is any primitive element of $R(2)$ , then $\alpha^{\prime\prime}=\alpha\sqrt{-m}(1+I)^{-1}=-\frac{1}{2}m+\frac{1}{2}mI$

$+-2-(a-b)\sqrt{-m}-\frac{1}{2}(a+b)\sqrt{-m}I1$ is also a primitive element of $R(2)$ ; and we

3) In fact $R(2)$ is the unique order of level 4 in $K(2)$ , in this case. But this is not
necessary in what follows.
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have $a\wedge-mR(2)=a^{\prime\prime}(1+I)R(2)$ . An integral ideal $aR(2),$ $\alpha\in R(2)$ , will be called
primitive if $\alpha$ is primitive and is not a zero-divisor. Since the product of a
primitive element and a unit of $R(2)$ is also primitive, the definition of a pri-
mitive ideal is independent of the choice of $\alpha$ . Now, in the case $m\equiv 2(mod 8)$ ,

for any primitive element $\alpha=a+bI+\sqrt{-m}$ we have $\alpha\overline{\alpha}=a^{2}+b^{2}+m\equiv 4$ (mod

8). Hence, corresponding to 4 primitive elements $a=\pm 1\pm I+\sqrt{-m}$ there exist
just 4 primitive ideals $C_{i}(i=1,2,3,4)$ , say, with norm 4. And every integral
right $R(2)$-ideal is uniquely expressible in one of the forms: $A^{n},$ $BA^{n},$ $C_{i}A^{n}$

\langle$1\leqq i\leqq 4;n=0,1,$ 2, ). In the case $m\equiv 6(mod 8)$ , for any integer $s\geqq 3$ , the
congruence $x^{2}+y^{2}+m\equiv 2^{s}(mod 2^{s+\iota})$ has $2^{s}$ solutions $x,$ $y(mod 2^{s})$ (notice that,
for any element $a\in Z(2),$ $a\equiv 1(mod 8)$ , the congruence $x^{2}\equiv a(mod 2^{S+1})$ has
just 2 solutions $xmod 2^{s}$); and corresponding to the $2^{s}$ primitive elements
$x+yI+\sqrt{-m}$ there exist just $2^{s}$ primitive ideals with norm $2^{s}$ . Denoting by
$C_{i}(i=1,2,3, \cdots)$ all the primitive ideals of $R(2)$ , every integral right $R(2)$-ideal
is uniquely expressible in one of the forms: $A^{n},$ $BA^{n},$ $C_{i}A^{n}(i=1,2,3,$ $\cdots$ ;
$n=0,1,2$, $\cdot$ ..). Finally, in the case $m\equiv 2$ or 6 $(mod 8)$ , we determine the two-
sided ideals of $R(2)$ . For any primitive element $\alpha=a+bI+\sqrt{-m}\in R(2)$ which
is iot a $z$ero-divisor, $\alpha I\overline{\alpha}$ is not divisible by 4 (because, putting $alct=a^{\prime}+b^{\prime}I$

$+c^{\prime}\sqrt{-m}+d^{\prime}\sqrt{-m}I$, we have $c^{\prime}=2b$), so that $aR(2)\overline{\alpha}(\ddagger R(2)a\overline{\alpha}$ , i. e. $aR(2)$

a $R(2)a$ . Therefore there exist no primitive two-sided ideals; every two-sided
ideal of $R(2)$ is expressible in one of the two forms: $A^{n}\cdot BA^{n}$ . Remark that
every two-sided $R(2)$ -ideal is invariant under the canonical involution of $K(2)$ .

The zeta-function of the order $R(p)$ is defined by $\zeta_{p}(s)=\sum_{7-0}^{\infty}a_{n}p^{-2ns}$, where
$a_{n}$ is the number of integral right $R(p)$-ideals with norm $p^{n}$ . Then we have
in the case c), $\zeta_{2}(s)=(1+2\cdot 2^{-2s})(1+2^{-2s}+4^{-2s}+ )=(1+2^{1-2s})(1-2^{-2s})^{-1}$ ; in the
case d) and $m\equiv 2(mod 8),$ $\zeta_{2}(s)=(1+2^{-2s}+4\cdot 4^{-2s})(1+2^{-2s}+4^{-2s}+ )=(1+2^{-2s}$

$+4^{1-2s})(1-2^{-2s})^{-1}$ ; in the case d) and $m\equiv 6(mod 8),$ $\zeta_{2}(s)=(1+2^{-2s}+S\cdot S^{-2s}$

$+16\cdot 16^{-2s}+$ )$(1+2^{-2s}+4^{-2s}+ )=(1-2^{-2s}-2\cdot 4^{-2s}+8^{1-2s})(1-2^{1-2s})^{-1}(1-2^{-2s})^{-1}$ .

\S 5. The number $H^{\prime}(R)$ .
In this section we shall determine the class number $H^{\prime}(R)$ of the order $R$

along the line of Eichler’s paper [1] ($R$ is $0+Io$ or $0+-2-(1+\sqrt{-m}+I)01$ . (The

latter is admitted only in the case $m\equiv 2(mod 4))$ . Since in the cases c) and
d) (see \S 4) the level $q$ of the order $R$ has a square factor 4, some modifications
are necessary. Let $A$ be any right R-ideal. It has been proved in \S 4 that
for every rational prime $p$ , the $p$-adic extension $A(p)$ of $A$ is a principal ideal
$\alpha_{p}R(p)$ with a regular element $\alpha_{p}$ . Since $A$ is a free Z-module contained in
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$K,$ $A$ is equal to the intersection of all $p$ -adic extensions of it: $A=\cap\alpha_{p}R(p)\cap K$

$p$

where $a_{p}$ is a unit of $R(p)$ except for a finite number of primes $p$ . Conversely,
any expression $\cap\alpha_{p}R(p)\cap K$, where $\alpha_{p}’ s$ are regular elements in $K(p)$ , and but

$p$

for a finite number of primes $p,$ $\alpha_{p}’ s$ are units of $R(p)$ , gives a right $R$ -ideaI

(in our sense). Therefore, for the orders $R=0+Io$ and $R=0+\frac{1}{2}(1+\wedge-m+I)0$,

our definition of right R-ideals is equivalent to that of Eichler. Next, if $B$ is
a left R-ideal in our sense, then the $p$ -adic extensions are also principal ideals
$R(p)\beta_{p}$ with regular elements $\beta_{p}$ (notice that the conjugate $\overline{B}$ of $B$ is a right
R-ideal); and $B=\cap R(p)\beta_{p}\cap K$. The left orders of right R-ideals $A$ and the

$p$

right orders of left R-ideals $B$ are of the form $R^{\prime}=\bigcap_{p}\gamma_{p}R(p)\gamma_{p}^{-1}\cap K$
; we denote

by $\Omega$ the set of these orders. It is easy to see that for any order $ R^{\prime}\in\Omega$ our
definition of right (or left) ideals is equivalent to that of Eichler. Hence the
totality of ideals whose right and left orders belong to $\Omega$ makes a groupoid
with the proper multiplication. Now two orders $R^{\prime}$ and $R^{\prime\prime}$ are said to have
the same type if there exists a regular element $\mu$ of $K$ such that $R^{\prime\prime}=\mu R^{\prime}\mu^{-1}$

Let $R_{\nu}(1)=1,$ $\cdots$ , $T$ ) represent all different types of orders of $\Omega$ . The left
orders of right R-ideals in the same ideal class have the same type. If two right
R-ideals $A^{\prime}$ and $A^{\prime\prime}$ have the same left order $R_{\nu}$ , then $A^{\prime\prime}=BA^{\prime}$ with a two-sided
$R_{\nu}$ -ideal $B$ . Let $B_{\nu\lambda}(\lambda=1, H_{\nu})$ be a set of representatives of all classes of
two-sided $R_{\nu}$ -ideals. Then we have

$H^{\prime}(R)=\sum_{\nu=1}^{T}H_{\nu}$ .

Now the zeta function $\zeta(s)$ of $R(\zeta(s)=\sum_{A}N(A)^{-2s}$, where the sum extends over
all integral right R-ideal $A$ and $N(A)$ denotes the norm of $A$) is equal to the
product of ‘ local ’ zeta functions $\zeta_{p}(s)$ of $R(p)$ . Since the residue of $\zeta(s)$ at

$s=1$ is equal to $q^{-1}\pi^{2}\sum_{\nu=1}^{T}(H_{\nu}/e_{\nu})$ , where $2e_{\nu}$ is the number of units of $R_{\nu}$ , the

so-called mass $M=\sum_{\nu=1}^{T}(H_{\nu}/e_{\nu})$ is expressed explicitly in a ‘ finite” form:

$M=\frac{1}{12}\prod_{p1q_{1}}(p-1)\prod_{p1q_{2}}(p+1)$ in the case a), b), or c); the coefficient $\frac{1}{12}$ is replaced

by $\frac{1}{6}$ in the case d) (cf. [2]). To obtain a formula for the number $H^{\prime}(R)$

and $H^{\prime\prime}(R)$ , we need to show the following Lemma which corresponds to Satz
7 of [1]:

LEMMA 6. Let $R_{1}$ and $R_{2}$ be two orders of $\Omega$ . Leto be an order (of rank
2 as a Z-module) in a quadratic number field contained in the quaternion alge-

bra $K$, isomorphic to one of the 4 orders: $\mathfrak{o}_{1}=[1, \sqrt{-1}],$ $0_{2}=[1, -21(1+\sqrt{-3})]$ ,



A class number associated with the product 39

$0_{3}=[1, \sqrt{-m}],$ $\mathfrak{o}_{4}=[1, \frac{1}{2}(1+\sqrt{-m})]$ ($0_{4}$ appears only in the case $a$)). Let $0$ be
optimally embedded in $R_{i}(i=1,2),$ $i$ . $e$ , denoting by $Q(\mathfrak{d})$ the quadratic field
generated by $0$ over $Q,$ $0=R_{i}\cap Q(0)(i=1,2)$ . Then there exists an ideal $a$ of
$0$ (a having $0$ as its order) such that $R_{2}a=\mathfrak{a}R_{1}$ . And conversely if $\mathfrak{o}$ is optimally
embedded in the order $R_{1}$ and if $\mathfrak{a}$ is an o-ideal, then $\mathfrak{o}$ is optimally embedded
in the left order of $\mathfrak{a}R_{1}$ .

PROOF. The second part can be proved as in the proof of Satz 7 [1].
For the first part the assertion as well as assumption are reduced to those for
the p-adic extensions. The case in which the level of the orders $R_{i}(p)$ is
square-free, the result is known ([1] Satz 7). Hence we have only to consider
the case c) $m\equiv 1(mod 4)$ or d) $m\equiv 2(mod 4)$ and $R=0+I\mathfrak{o};p=2$ ; and
$\mathfrak{o}\cong[1, \sqrt{-1}]$ or $[1, \sqrt{-m}]$ (notice that, since $T_{r}(\frac{1}{2}(1+\sqrt{-3}))=1,$

$\mathfrak{o}_{2}$ can not
be embedded in $R(2))$ . In case c), since every right $R(2)$-ideal is two-sided, we have
$R_{1}(2)=R_{2}(2)anditsufficestotake\mathfrak{a}(2)=o(2)$ . We consider the case d). Since R(2),
$R_{1}(2),$ $R_{2}(2)$ are of the same type, by transforming $R_{1}(2)$ and $R_{2}(2)$ by a suitable
element we may assume $R_{1}(2)=R(2)$ ; and that there exists a regular element
$a\in K(2)$ such that $R_{2}(2)=aR(2)a^{-1}$ . By the observation in \S 4 we may assume
that $a=1$ or $\alpha$ is a primitive element of the form : $a=a+bI+\sqrt{-m}\in R(2)$ .
In the case $0\cong 0_{1}$ let $J=yI+z\sqrt{-m}+u\sqrt{-m}I$ be the element of $\mathfrak{o}$ which cor-
responds to $\sqrt{-1}$ . Then we have $y^{2}+mz^{2}+mu^{2}=1$ and hence $y\equiv 1,$ $z\equiv u\equiv 0$

$(mod 2)$ . Suppose $\alpha\neq 1$ . Since $a\equiv b\equiv 1(mod 2)$ , we have blJa $\equiv 2y(b+aI)\sqrt{-m}$

$\not\equiv 0(mod 4)$ . This implies $0\subseteq[R(2)$ , a contradiction. Therefore $\alpha$ can not be a
primitive element; hence we have $R_{2}(2)=R(2)$ . Next if $0\cong \mathfrak{o}_{3}$ and $J=yI$

$+z\sqrt{-m}+u\sqrt{-m}I$ corresponds to $\sqrt{-m}$ , then we have $y^{2}+mz^{2}+mu^{2}=m$ and
hence $y\equiv 0(mod 2)$ and $z-uI$ is a unit of $R(2)$ . The congruence $\overline{\alpha}J\alpha$

$\equiv 2(1+I)(z-uI)\sqrt{-m}\not\equiv O(mod 4)$ implies that $a$ can not be a primitive ele-
ment; consequently $R_{2}(2)=R(2)$ . Hence the assertion.

Now the Lemma is proved, so that Eichler’s deduction ([1] Satz 10) applies.
to our case. Let $R_{\nu}(1\leqq\iota)\leqq T)$ be an order which represents a type of orders.
of $\Omega$ . We fix a positive rational integer $n$ and observe all elements $\alpha_{j}(1\leqq j$

$\leqq c_{\nu})$ with norm $n$ in $R_{\nu}$ . With every element $a$ in this set we associate
$s=T_{r}(\alpha)$ and the order $0_{\nu}=R_{\nu}\cap Q(\alpha)$ , where $Q(a)$ is the field generated by $\alpha$

over $Q$ . Then $Q(\alpha)$ is a quadratic field and $\alpha$ , a determine the same $s$ and $0_{\nu}$ ,

excepting the case $n=a^{2},$ $a\in Z,$ $a=\pm a$ . Let $\{0,\}$ be the set of mutually non-
isomorphic orders $0_{f}$ of imaginary quadratic number fields, $0_{f}\supset Z[\xi],$ $\xi^{2}-s\xi+n$

$=0$ . We denote by $g_{\nu}(0_{c})the$ number of orders in $R_{\nu}$ which are isomorphic to
$\mathfrak{d}_{c}$ and optimally embedded in R. (the value $g_{\nu}=0$ is admitted). We further
denote by $\pi_{\nu\nu}(n)$ the number of integral principal right $R_{\nu}$ -ideals with norm $n$ .
Then we have
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$\sum_{\nu=1}^{T}H_{\nu}\pi_{\nu\nu}(n)=\sum_{\nu=1}^{T}(H_{\nu}c_{\nu}/2e_{\nu})=(M)+\sum_{s}\sum_{\nu=\perp}^{T}(H_{\nu}g_{\nu}(0_{\vee},)/e_{\nu})$ ,

where the left hand side is the trace of an “ Anzahlmatrix “ $P(n)$ (cf. [1]), $2e_{\mu}$

is the number of units of the order $R_{\nu}$ , and $(M)$ is equal to the mass $M$ if $n$

$is$ a square number; $(M)=0$ otherwise. Now, under the assumption that the
analogue of Lemma 6 holds for the orders $0_{c}$ , we can prove in the same way
as in [1] Satz 10 the following equality (also cf. [5]):

(4) $\sum_{\nu=1}^{T}(H_{\nu}g_{\nu}(0,)/e_{\nu})=\prod_{p}N_{p}(0_{c})\cdot 2w(\mathfrak{o}^{\prime}h(\mathfrak{o}_{-\frac{)}{f)}}$

where $h(0_{c})$ is the number of ideal classes of the order $0,,$ $2w(0,)$ is the
number of units of the order $0.,$ , and $N_{p}(0_{c})$ is defined as follows: if
$R(p)$ contains an order $0^{\gamma}$ isomorphic to $o_{c}(p)$ such that $0^{\prime}$ is optimally
embedded in $R(p)$ , then $N_{p}(0,)$ is equal to the index of the group of those
two-sided ideals which are the product of an $0^{\prime}$ -ideal and the order $R(p)$ ,

in the group of all two-sided ideals of $R(p)$ ; if $R(p)$ contains no such order
$0^{\prime}$ , then $N_{p}(\mathfrak{o},)=0$ . Now we put $n=1$ . Then every element $a$ mentioned
above is equal to $\pm 1$ or satisfies the equation $\alpha^{2}-s\alpha+1=0,$ $s^{2}-4<0$ . Hence

we have only two orders $\mathfrak{o}_{1}=[1, \sqrt{-1}]$ and $0_{2}=[1, --(1+\sqrt{-3})]21$ to observe

as $0$ . Then by Lemma 6 the above assumption is satisfied. Since $\pi_{\nu\nu}(1)=1$ ,

the above equality (4) gives $H^{\prime}(R)$ . We have, by [1] Satz 10, $N_{p}=1$ if $pI^{\prime}q$

$(=q_{1}q_{2});N_{p}=1-\{\frac{0_{f}}{p}\}$ if $p||q,$ $p|q_{1}$ ; $N_{p}=1+\{\frac{0_{C}}{p}\}$ if $p\Vert q,$ $p|q_{2}$ , The symbol

$\{\frac{\mathfrak{d}}{p}\}$ is defined as follows:

$\{\frac{0}{p}\}=\{(\frac{k}{p})1otherwiseifpispri_{;}me$

to the conductor of $0$ ,

where $k$ is the quadratic field generated by $\mathfrak{o}$ over $Q$ and $(\frac{k}{p})$ is the Artin

symbol. Since in the cases c) and d) $q$ has a square factor 4, for the value of
$N_{2}$ the following supplement is necessary:

Value of $N_{2}$

$\frac{\overline{casec)}-}{cased)}-|^{\frac{0}{3}}\frac{}{2}1|^{\frac{\mathfrak{d}}{}}\frac{0}{0}2|^{\frac{0_{3}}{3}}\frac{}{2}|$

The table is readily verified using the results of \S 4. Recalling the fact that
an odd prime factor $p$ of $q=q_{1}q_{2}$ divides $q_{1}$ if $p\equiv 3(mod 4)$ , and divides $q_{2}$ if
$p\equiv 1(mod 4)$ , we have the following formulas:

case a) $m\equiv 3(mod 4),$ $m>3$ ,
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$H^{\prime}(R)=\frac{1}{12}\prod_{p1q_{1}}(p-1)\prod_{\downarrow p1q_{2}}(p+1)+2^{t-2}+\frac{1}{3}\prod_{p1q_{1}}(1-(\frac{-3}{p}))\prod_{p1q_{2}}(1+(\frac{-3}{p}))$ ,

case b) $m\equiv 2(mod 4),$ $m>2,$ $R=0+\frac{1}{2}(1+\sqrt{-m}+I)0$ ,

$H^{\prime}(R)=\frac{1}{12}\prod_{p1q_{1}}(p-1)\prod_{p1Q2}(1+2^{t- 3}+^{1}3(\frac{-3}{p})),$

case c) $m\equiv 1(mod 4),$ $m>1,$ $H^{\prime}(R)=\frac{1}{12}\prod_{p1q_{1}}(p-1)\prod_{p1q_{2}}(p+1)+3\cdot 2^{\iota- 3}$ ,

case d) $m\equiv 2(mod 4),$ $m>2,$ $R=0+Io$ ,

$H^{\prime}(R)=_{6}^{1}--\prod_{p1q_{1}}(p-1)\prod_{p1q_{2}}(p+1)+2^{t-2}$ ,

where $t$ is the number of distinct prime factors of the discriminant of the

principal order $0$ of $Q\sqrt{-m}$).

\S 6. The number of singular classes.

Every class $C$ of right R-ideal ($R=0+Io$ or $R=\mathfrak{o}+\frac{1}{2}(1+\sqrt{-m}+I)0,$ $m\equiv 2$

$(mod 4))$ contains a right R-ideal of the form $A=k\mathfrak{o}+(\alpha+I)0$ where $k\in Z$.
$\alpha\in 0,$ $k>0,$ $k|\alpha\overline{\alpha}+1$ (\S 3). It is easy to see that the class $C$ is singular if and
only if two right R-ideals $A$ and $A^{\prime}=ko+(a-I)0$ are equivalent. Since
$A^{\prime}=\sqrt{-m}-1A\sqrt{-m}$, the condition is equivalent to the equivalence of two

right ideals $A$ and $A\sqrt{-m}$.
LEMMA 7. Let $m>3$ . A right R-ideal $A$ belongs to a singular class if

and only if the left order of $A$ contains an element $\lambda$ satisfying the equation
$i^{2}+m=0$ .

PROOF. Suppose $A$ belongs to a singular class. Then there exists an ele-

ment $\lambda\in K$ such that $\lambda\cdot A=A\sqrt{-m}$ . We have $\lambda\overline{\lambda}=m$ ; and the element $\lambda$

belongs to the left order $R^{\prime}$ , say, of $A$ . Now we have $\overline{\lambda}A\sqrt{-m}=\overline{\lambda}\lambda A=Am$

and hence $\overline{\lambda}A=A\sqrt{-m}=\lambda A$ . Therefore there exists a unit $\epsilon$ of $R^{\prime}$ such that
$\overline{i}=\lambda\epsilon$ . We have $Q(\epsilon)\subset Q(\lambda)$ . If $\epsilon$ does not belong to $Q$ , then we have $Q(\epsilon)$

$=Q(\lambda)$ . Since $K$ is a definite quaternion algebra, $Q(\epsilon)$ is an imaginary quadratic
field and $\epsilon$ satisfies the following equation: $\epsilon^{2}-a\epsilon+1=0,$ $a=0$ or $\pm 1$ . We can
put $\overline{2}=x+y\epsilon$ , with $x,$ $\gamma\in Z$, and the above relation implies that $ x=\gamma$ . Then
we have $m=\text{\‘{A}}\overline{\lambda}=x^{2}N(1+\epsilon)$ . Since $N(1+\epsilon)=1,2$ , or 3, and since we are
assuming $m$ is square-free and $m>3$ , this is impossible. Hence $\epsilon\in Q,$ $i$ . $e$ .
$\epsilon=\pm 1$ , If $\epsilon=1$ then $\lambda\in Z$ and $m$ is a square number. This is impossible.
Therefore we have $\epsilon=-1$ and \‘A satisfies the equation $\lambda^{2}+m=0$ . Con-
versely suppose the left order $R^{\prime}$ of $A$ contains an element $\lambda$ which satisfies
the equation $\lambda^{2}+m=0$ . Then $\lambda R^{\prime}(p)=R^{\prime}(p)\lambda$ for all $p$ (\S 4), so that $\lambda R^{\prime}=R^{\prime}\lambda$ .
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$A^{-1}\lambda A$ is an integral two-sided R-ideal with norm $m$ . In the case a),

b), or c), there exists no such an ideal of $R$ except $R\sqrt{-m}$, and hence we
have $\lambda A=A\sqrt{-m}$ . In the case d), there exist just two such ideals $R\sqrt{-m}$

and $B$ , say, where the 2-adic extension $B(2)$ of $B$ is $(1+I)R(2)$ . By Lemma 5
there exists an element $C\in K(2)$ such that $A(2)=CR(2)$ . The element $C^{-1}\lambda C$

belongs to the 2-adic extension of $A^{-1}2A$ . Putting $C^{-1}\lambda C=x+yI+z\sqrt{-m}$

$+u\sqrt{-m}I,$ $x,$ $y,$ $z,$ $u\in Z(2)$ , we have $T_{\gamma}(C^{-1}\lambda C)=2x=0,$ $n(C^{-1}\lambda C)=y^{2}+mz^{2}+mu^{2i}$

$=m$ . If $C^{-1}\lambda C\in(1+I)R(2)$ , then $y\equiv 0,$ $z\equiv u(mod 2)$ and consequently $y^{2}+mz^{Z}$

$+mu^{2}\equiv 0(mod 4)$ . Since $m\not\equiv O(mod 4)$ , this is impossible. Hence the 2-adic
extension of $A^{-1}2A$ is $R(2)\sqrt{-m}$ ; and we have $A^{-1}\lambda A=R\sqrt{-m}$. This com-
pletes the proof.

LEMMA 8. Let $R^{\prime}$ be the left order of some righ R-ideal (i. e. $ R^{\prime}\in\Omega$). If
$R^{\prime}$ contains an element $\lambda$ satisfying the equation $\lambda^{2}+m=0$ , then for any unit $\epsilon$

of $R^{\prime},$ \‘A\mbox{\boldmath $\epsilon$} satisfies the equation $\lambda^{2}+m=0$ ; and every root $\mu\in R^{\prime}$ of this equation
is obtained in this way.

PROOF. This is easily seen from the proof of Lemma 7.
Now let $R_{1},$

$\cdots,$ $R_{T}$ be a set of orders representing the all different types.
of orders of $\Omega$ . Suppose an order $R_{\nu}$ contains an element $\lambda$ which satisfies the
equation $\lambda^{2}+m=0$ . Then by Lemma 8, the number of roots $\mu(\in R_{\nu})$ of this
equation is equal to the number $2e_{\nu}$ of units of $R_{\nu}$ . With every root $\mu\in R_{\nu}$

of this equation we associate an order $0_{J}=R_{\nu}\cap Q(\mu)$ . Then every order $0_{\mu}$

corresponds to just two roots $\pm\mu$ ; and $0_{1}$ is isomorphic to $0_{3}=[1, \sqrt{-m}]$ or
$0_{4}=[1, \frac{1}{2}(1+\sqrt{-m})]$ (the latter case may occur only in the case $a$)). Hence

we have the equality $e_{\nu}=g_{\nu}(0_{3})+g_{\nu}(0_{4})$ in the case a), and $e_{\nu}=g_{\nu}(0_{3})$ in the case
b), c), or d). If an order $R_{\nu}$ does not contain such an element $\lambda$ , then of course
we have $g_{\nu}(0_{3})=g_{\nu}(0_{4})=0$ . Now we have an expression of $H^{\prime\prime}(R):H^{\prime\prime}(R)|$

$=\sum_{c=3,4}\sum_{1\leqq\nu\leqq T}(H_{\nu}g_{\nu}(0_{c})/e_{\nu})$ . On account of Lemma 6 we can apply the formula (4)

in \S 5 to this expression. Using the values of $N_{p}$ in \S 5, and noticing that
$h(0_{3})=(2-\chi(2))h(0_{4})$ , where $\chi$ is the Artin symbol for $Q(\sqrt{-m})/Q$ , we have the
following results: the number $H^{\prime\prime}(R)$ of singular classes of the order $R$ is
$\frac{1}{2}(3-\chi(2))h(0_{4})$ in the case a); $\frac{1}{2}h(0_{3})$ in the case b); $\frac{3}{2}h(0_{3})$ in the case c);

$h(\mathfrak{o}_{3})$ in the case d) $(m>3)$ .

\S 7. Class number formulas.

We summarize our calculations in the following formulas for $H$ which is
introduced at the beginning of this paper. We have:

I. If $m\equiv 3(mod 4)$ and $m>3$ , then
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$H=\frac{1}{24}\prod_{p1q_{1}}(p-1)\prod_{p1q_{2}}(p+1)$

$+\frac{1}{6}\prod_{p1q_{1}}(1-(\frac{p}{3}))\prod_{p1q_{2}}(1+(-3p-))+\frac{1}{4}(1-(-1))^{\frac{1}{8}(m^{2}-1)}-2^{\ell- 3}$ .

II. If $m\equiv 1(mod 4)$ and $m>1$ , then

$H=_{84}^{11}--\prod_{p1q_{1}}’(p-1)\prod_{p1q_{2}}’(p+1)+--h-2^{t- 4}$ .

III. If $m\equiv 2(mod 8)$ and $m>2$ , then

$H=\frac{7}{24}\prod_{p1p_{1}}’(p-1)\prod_{p1q_{2}}\prime_{1}\}(p+1)$

$+-3^{-\prod_{1}(1-(\frac{p}{3}))_{\wedge}\gamma}1p|\zeta’\backslash \prod_{p1q_{2}}(1+(\frac{p}{3}))+\frac{1}{4}h-2^{t- 4}$ .

IV. If $m\equiv 6(mod 8)$ , then

$H=_{84}^{31}--\prod_{p1q_{1}}(p-1)\prod_{p1q_{2}}’(p+1)+--h-2^{t- 4}$ .

where $\Pi^{\prime}$ indicates that the product extends over only odd prime factors of
$q_{i}$ ($i=1$ or 2), $i$ . $e$ . the first product extends over all prime factors $p\equiv-1$

$(mod 4)$ of $m$ , and the second over all prime factors $p\equiv 1(mod 4)$ of $m;h$ and
$t$ are the class number and the number of distinct prime factors of the principal

order of $Q(\sqrt{-m})$ ; and $(-3p-)$ is the Legendre symbol. In the excluded cases

$m=0,1,2,3$ , we know $H=0,0,1,0$ , respectively [3].
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