A singular flow with countable Lebesgue spectrum

By Gisiro MARUYAMA

(Received Jan. 31, 1967)

§ 1. Preliminaries.

There is given a real stationary process $\xi(t, \alpha)$, $t \in T \equiv (-\infty, \infty)$, $\alpha \in S$, on certain probability space (S, \mathcal{F}, P) , which is continuous in probability, i. e.

(1.1)
$$\lim_{t\to 0} P(|\xi(0,\alpha)-\xi(t,\alpha)|>\varepsilon)=0,$$

for every $\varepsilon > 0$.

Consider a corresponding invariant measure μ and flow $\{S_t\}$ over R^T : (i) $x = (x_t, t \in T) \to S_\tau x = (x_{t+\tau}, t \in T)$ for any real τ , (ii) let $\lambda = (t_1, \dots, t_n)$ be a subset of T, A a Borel set in R^{λ} , put

$$\widetilde{A} = \{x : (x_{t_1}, \cdots, x_{t_n}) \in A\}$$
,

and define

$$\mu(\widetilde{A}) = P((\xi_{t_1}, \dots, \xi_{t_n}) \in A)$$
.

 $\{S_t\}$ is a flow on (R^T, \mathcal{B}, μ) , where \mathcal{B} is the completion under μ of the σ -algebra generated by the cylinder sets \widetilde{A} . When ξ satisfies (1.1) a Lebesgue subspace of R^T can be taken such that it is S_t -invariant. Define Ω to be the space of Lebesgue measurable real functions over T, then $\Omega \subset R^T$, the outer μ -measure of Ω is equal to 1, and Ω is a (strictly) S_t -invariant subspace of R^T . It is important to observe that Ω can be made into a complete metric separable space which endowed with μ becomes Lebesgue, and over which S_τ acts as a shift, $f(t) \to S_\tau f(t) = f(t+\tau)$, $f \in \Omega$ (c. f. [3], § 2—§ 4). S_t over (Ω, μ) is understood as a flow generated by ξ . One can also define, as its coordinate representation, a stationary process $(x_t(\omega), \omega \in \Omega, -\infty < t < \infty)$ over (Ω, μ) , which is equivalent (in probability law) to the given $\xi(t)$ [3].

Suppose that $\xi(t)$ has the finite second moment, $E\xi(t)=0$, and let its correlation function and spectral measure be R(t), $\sigma(d\lambda)$,

(1.2)
$$R(t) = \int_{-\infty}^{\infty} e^{i\lambda t} \sigma(d\lambda).$$

Correspondingly to (1.2), x_t can be put in the form

(1.3)
$$x_t(\omega) = \int_{-\infty}^{\infty} e^{i\lambda t} \beta(d\lambda), E |\beta(d\lambda)|^2 = \sigma(d\lambda).$$

Let $L^2(\mu)$ be the set of square-integrable complex functions over (Ω, μ) ,

then when A ranges over all Borel subsets of R, the system $\{\beta(A)\}$ generates $L^2(\mu)$, and so do the Baire functions of $\beta(A)$ the space of μ -measurable functions.

From now on assume further that ξ is Gaussian. Then $\beta(A)$ is complex Gaussian, and fundamental concepts in the following analysis are Itō's multiple Wiener integrals [2] with respect to $\beta(d\lambda)$. The integrals, roughly speaking, are polynomials constructed on the products

$$\beta(d\lambda_1)\beta(d\lambda_2)\cdots\beta(d\lambda_n), \qquad 1\leq n<\infty.$$

When we make a summation of such products, two kinds of summation over "diagonals" should be distinguished, symbolically writing

(a)
$$\sum_{\substack{\lambda_k + \lambda_l = 0 \\ -a \le \lambda_k, \ \lambda_l \le a}} \beta(d\lambda_k) \beta(d\lambda_l) = \sum_{-a \le \lambda_k \le a} |\beta(d\lambda_k)|^2,$$

(b)
$$\sum_{\substack{\lambda_k - \lambda_l = 0 \\ a \le \lambda_k, \ \lambda_l \le b}} \beta(d\lambda_k) \beta(d\lambda_l) = \sum_{a \le \lambda_k \le b} (\beta(d\lambda_k))^2.$$

(a) is asymptotically equal to $\sum_{-a \le \lambda_k \le a} \sigma(d\lambda_k)$, whereas (b) to zero. So that when we speak of the products (1.4) we may impose the restriction that $\lambda_i \pm \lambda_j \ne 0$, $1 \le i \ne j \le n$, and accordingly the polynomial

(1.5)
$$I_n(f) = \int f(\lambda_1, \dots, \lambda_n) \beta(d\lambda_1) \dots \beta(d\lambda_n)$$

means the multiple integral

$$\int_{\lambda_1 \pm \lambda_j \neq 0, \ 1 \leq i \neq j \leq n} f(\lambda_1, \cdots, \lambda_n) \beta(d\lambda_1) \cdots \beta(d\lambda_n).$$

Write now $\sigma^n(d\lambda) = \sigma(d\lambda_1) \times \cdots \times \sigma(d\lambda_n)$, $\lambda = (\lambda_1, \dots, \lambda_n)$. The integral (1.5) is well defined for $f \in L^2(\sigma^n(d\lambda))$, and the followings are basic to computation with polynomials [2].

1°
$$(I_n(f), I_n(g))$$

(1.6)
$$= \int_{\mathbb{R}^n} f(\lambda) \overline{g(\lambda)} \sigma^n(d\lambda) \quad \text{if} \quad m = n ,$$

$$= 0 \quad \text{if} \quad m \neq n ,$$

where $(\xi, \eta) = E(\xi \overline{\eta}), \ \xi, \eta \in L^2(\mu)$.

Define a function

$$Z_n(f, \lambda) = \int_{\lambda_1 + \dots + \lambda_n \leq \lambda} f(\lambda_1, \dots, \lambda_n) \beta(d\lambda_1) \dots \beta(d\lambda_n)$$

and corresponding orthogonal random measure of order n

$$Z_n(f, B) = \int f(\lambda) \chi_B(\lambda_1 + \cdots + \lambda_n) \beta(d\lambda_1) \cdots \beta(d\lambda_n),$$

where χ_B is the characteristic function of a Borel subset B of R. The random measures of different orders are orthogonal each other, i. e.

$$(Z_n(f, B), \overline{Z_m}(g, C)) = 0$$

for $m \neq n$ and any Borel sets B, C.

2° For a Borel set B

$$\sigma_n(f, B) \equiv ||Z_n(f, B)||^2$$

(1.7)

$$= \int_{\mathbb{R}} \sigma^{n*}(dx) \int_{\mathbb{R}^n} |f(x)|^2 \sigma^n(d\lambda_1 \cdots d\lambda_n | \lambda_1 + \cdots + \lambda_n = x)$$

where $\sigma^{n*}(d\lambda)$ is the n-th convolution of $\sigma(d\lambda)$, and $\sigma^{n}(d\lambda_{1} \cdots d\lambda_{n} | \lambda_{1} + \cdots + \lambda_{n} = x)$ is the measure induced by $\sigma^{n}(d\lambda)$ on the hyper-plane $\lambda_{1} + \cdots + \lambda_{n} = x$.

One has

(1.8)
$$\sigma_n(f, d\lambda) < \sigma^{n*}(d\lambda),$$

and if |f| is bounded away from zero, then

(1.9)
$$\sigma_n(f, d\lambda) \sim \sigma^{n*}(d\lambda),$$

where $\tau < \sigma$ means that the measure τ is absolutely continuous with respect to the measure σ , whereas $\tau < \sigma$ does $\tau < \sigma$ and $\sigma < \tau$.

Let \widetilde{S}_t be the one-parameter group of unitary operators on $L^2(\mu)$ generated by the flow S_t , $\widetilde{S}_t h(\omega) = h(S_t \omega)$, $h \in L^2(\mu)$, and H(h) be the closed linear manifold spanned by $(\widehat{S}_t h, -\infty < t < \infty)$.

3° If
$$h = I_n(f)$$
, $f \in L^2(\sigma^n)$, then

$$H(h) = \left\{ \int_{-\infty}^{\infty} \varphi(\lambda) Z_n(f, d\lambda) : \varphi \in L^2(\sigma_n(f, d\lambda)) \right\}.$$

Let $k = I_n(g)$, $g \in L^2(\sigma^n)$, then a necessary and sufficient condition that $H(h) \perp H(k)$ (H(h) is orthogonal with H(k)) is that $f \perp g$ as L^2 -functions on $\lambda_1 + \cdots + \lambda_n = x$ under the measure $\sigma^n(d\lambda_1 \cdots d\lambda_n | \lambda_1 + \cdots + \lambda_n = x)$, for almost all x with respect to $\sigma^{n*}(dx)$.

PROOF. Since

$$T_t h = \int f(\lambda) e^{i(\lambda_1 + \dots + \lambda_n)t} \beta(d\lambda_1) \cdots \beta(d\lambda_n)$$

= $\int_{-\infty}^{\infty} e^{i\lambda t} Z_n(f, d\lambda)$,

 $H(h) \perp H(k)$ if and only if

$$\int_{-\infty}^{\infty} \varphi(\lambda) Z_n(f, d\lambda) \perp \int_{-\infty}^{\infty} \psi(\lambda) Z_n(g, d\lambda),$$

i.e.

(1.10)
$$\int_{-\infty}^{\infty} \varphi(\lambda) \overline{\psi(\lambda)} E(Z_n(f, d\lambda) \overline{Z_n(g, d\lambda)}) = 0$$

for every $\varphi \in L^2(\sigma_n(f, d\lambda))$ and $\psi \in L^2(\sigma_n(g, d\lambda))$. (1.10) is equivalent to (1.11) $E(Z_n(f, B)\overline{Z_n(g, B)}) = 0$

for every Borel set B. Since $Z_n(f, B)$ is linear in f, in view of (1.7), (1.11) is in turn equivalent to

$$\int_{B} \sigma^{n*}(dx) \int_{B^{n}} f(x) \overline{g(x)} \sigma^{n}(d\lambda_{1} \cdots d\lambda_{n} | \lambda_{1} + \cdots + \lambda_{n} = x) = 0$$

for every B, which proves the requested statement.

Incidentally we may notify that (1.11) is equivalent to the orthogonality between the random measures:

$$(2_n(f, B), \overline{Z_n(g, C)}) = 0$$

for any Borel sets B and C.

Let us define

 $L_0 =$ space of complex numbers,

 $L_n =$ closed linear manifold spanned by

$$\{I_n(f): f \in L^2(\sigma^n)\}$$
, $n \ge 1$.

If

$$f\!\in L^2\!\left(\sigma
ight)$$
 , $\mid f\!\left(\lambda
ight)\mid>0$,

almost everywhere $(\sigma(d\lambda))$, then

$$L_1 = H(h)$$
, $h = I_1(f)$.

Proposition 3° enables us to illustrate Girsanov's construction of a Gaussian process [1], for which \tilde{S}_t has a continuous simple spectrum.

§ 2. The theorem.

Our main purpose is to prove the

Theorem. There exists a real Gaussian stationary process with zero entropy whose certain factor flow has a countable Lebesgue spectrum*.

PROOF. Given an arbitrary $\varepsilon > 0$, as in the time discrete case [5], there exists a symmetric continuous singular measure $\sigma(d\lambda)$ on R, $\sigma(R) < \infty$, such that

$$R(t) = \int_{-\infty}^{\infty} e^{i\lambda t} \sigma(d\lambda) = O(|t|^{-\frac{1}{2} + \varepsilon}), \qquad |t| \to \infty.$$

Suppose $0 < \varepsilon < 1/8$, then $R^2 \in L^2(-\infty, \infty)$, since

$$R^2(t) = \int_{-\infty}^{\infty} e^{i\lambda t} \sigma^{2*}(d\lambda) = O(|t|^{-1+2\varepsilon})$$
 ,

^{*} Shortly after sending the manuscript to the editor, the author was pointed out by H. Totoki that D. Newton and W. Parry obtained a similar result in Ann. Math. Statist., 4 (1966), 1528-1533, for the spectrum of an automorphism.

and its transform

$$p(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{\infty} R^2(t) e^{-i\lambda t} dt$$

satisfies

(2.1)
$$\sigma^{2*}(\mu) - \sigma^{2*}(\lambda) = \int_{-\infty}^{\infty} R^2(t) \frac{e^{-i\mu t} - e^{-i\lambda t}}{-it} dt = \int_{\lambda}^{\mu} p(x) dx,$$

i.e. $\sigma^{2*}(d\lambda)$ is absolutely continuous. We shall prove that the Gaussian process ξ in §1 with this $\sigma(d\lambda)$ as its spectral measure is the required one; the entropy of the corresponding flow is zero [4].

Define an infinite-dimensional stationary process with complex components

$$(2.2) \eta_t = \left\{ \eta_t^{(n)} = \iint_{B_n} e^{i(\lambda_1 + \lambda_2)t} \beta(d\lambda_1) \beta(d\lambda_2), \ 1 \leq n < \infty \right\},$$

where B_n runs over all closed intervals of the form $B_n = \{a \le x \le b, c \le y \le d\}$ with rationals a, b, c, d. As in § 1, the corresponding flow T_t is built on a Lebesgue space Ω , formed by Lebesgue measurable complex functions f(t), $-\infty < t < \infty$, [3]. This flow is a factor of S_t . The unitary operators \widetilde{T}_t generated by T_t are equivalent to \hat{S}_t generated by S_t over the Hilbert space

 $H_\eta\!=\!{
m closed}$ linear manifold determined by $\eta_t^{\scriptscriptstyle (n)}$,

$$1 \le n < \infty$$
, $-\infty < t < \infty$.

By the definition of η_t , H_η is nothing but the closure of the linear space of all even degree polynomials in $\beta(d\lambda)$, i.e.

$$(2.3) H_{\eta} = \sum_{n=0}^{\infty} \bigoplus L_{2n}.$$

For every $n \ge 1$, there exists a sequence of $L^2(\sigma^{2n})$ — functions f_{n0} , f_{n1} , f_{n2} , \cdots $(f_{n0} \equiv 1)$ such that

(2.4)
$$L_{2n} = \sum_{k=0}^{\infty} \bigoplus H(h_{nk}), \ h_{nk} = I_{2n}(f_{nk}),$$

and from §1 one obtains an orthogonal system of random measures

$$Z_{2n}(f_{nk}, d\lambda)$$
, $1 \leq n < \infty$, $0 \leq k < \infty$,

which satisfy

(2.5)
$$\sigma_{2n}(f_{n0}, d\lambda) = \sigma^{2n*}(d\lambda) < d\lambda,$$

$$\sigma_{2n}(f_{nk}, d\lambda) < \sigma^{2n*}(d\lambda) < d\lambda, \qquad 1 \le k < \infty.$$

Since $\sigma^{2*}(d\lambda) = p(\lambda)d\lambda$, if we take $p_0(\lambda) = \min(1, p(\lambda))$, we have

$$\sigma^{4*}(d\lambda)/d\lambda \ge \int_{-\infty}^{\infty} p_0(\lambda-\mu)p_0(\mu)d\mu$$
.

The right-hand member is continuous in λ , and for $\lambda = 0$ it is equal to

$$\int_{-\infty}^{\infty} p_0(-\mu) p_0(\mu) d\mu = \int_{-\infty}^{\infty} (p_0(\mu))^2 d\mu > 0.$$

So that there exists a constant $c_0 > 0$ such that

$$\sigma^{4*}(d\lambda)/d\lambda \ge c_0 > 0$$

almost everywhere around the origin, say for $|\lambda| \leq \lambda_0$, $\lambda_0 > 0$, and similarly

(2.6)
$$\sigma^{4n^*}(d\lambda)/d\lambda > 0 \quad \text{for} \quad |\lambda| \leq n\lambda_0.$$

By the carrier of $Z_{2n}(f_{nk}, d\lambda)$ is meant that of $\sigma_{2n}(f_{nk}, d\lambda)$, the complement of the maximal open set G such that $\sigma_{2n}(f_{nk}, G) = 0$, and will be denoted as $\operatorname{Car} Z_{2n}(f_{nk}, d\lambda)$. From $Z_{2n}(f_{n0}, d\lambda)$, $1 \leq n < \infty$, we first define an orthogonal set of random measures

$$\widetilde{Z}_n(d\lambda)$$
, $1 \le n < \infty$, with $\operatorname{Car} \widetilde{Z}_n = (-\infty, \infty)$.

To do this make up the defect of $Z_2(f_{10}, d\lambda)$ by $Z_4(f_{20}, d\lambda)$, i.e. define a measure

(2.7)
$$Z^{(1)}(A) = Z_2(f_{10}, A) + Z_4(f_{20}, A \cap G), \quad A \text{ Borel },$$

where G is the complement of $\operatorname{Car} Z_2(f_{10}, d\lambda)$. Then by (2.6)

$$\operatorname{Car} Z^{\scriptscriptstyle{(1)}} \supset [-\lambda_0, \lambda_0].$$

There remains also the residual measure $Z'_4(f_{20}, d\lambda)$ of $Z_4(f_{20}, d\lambda)$, where $Z'_4(f_{20}, A) = Z_4(f_{20}, A) - Z_4(f_{20}, G \cap A)$. Next, in the same way, make up $Z^{(1)}$ by means of $Z_6(f_{30}, d\lambda)$ to have a measure $Z^{(2)}$, then by (2.6)

Car
$$Z^{(2)} \supset [-\lambda_0, \lambda_0]$$
.

Continuing this way one has

$$\widetilde{Z}_1(A) = \lim_{n \to \infty} Z^{(n)}(A)$$
.

 \widetilde{Z}_1 is an orthogonal random measure with $\operatorname{Car} \widetilde{Z}_1 = (-\infty, \infty)$. After these procedures, there remain residual measures $Z'_{2n}(f_{n0}, d\lambda)$ of $Z_{2n}(f_{n0}, d\lambda)$, $n \ge 2$, with

Car
$$Z'_{4n} \supset [(n-1)\lambda_0, (n-1)\lambda_0]$$
, $n \ge 2$.

So that, we can apply the same procedure as above to $Z'_{2n}(f_{n0}, d\lambda)$, $n \ge 2$. One obtains an orthogonal random measure

$$\widetilde{Z}_2(d\lambda)$$
 with $\operatorname{Car} \widetilde{Z}_2 = (-\infty, \infty)$.

Continuing this way we get a requested orthogonal set of random measures \widetilde{Z}_n , $1 \leq n < \infty$.

Rearrange \widetilde{Z}_n , $1 \leq n < \infty$, into a double sequence \widetilde{Z}_{mn} , $1 \leq m$, $n < \infty$, and $Z_{2n}(f_{nk}, d\lambda)$, $1 \leq n$, $k < \infty$, into a simple sequence $\widetilde{Z}_{m0}(d\lambda)$, $1 \leq m < \infty$, and then put them together into the array (orthogonal set of ramdom measures)

(2.8)
$$\widetilde{Z}_{m,n}, \qquad 0 \leq n < \infty, \qquad m = 1, 2, \cdots.$$

Now apply the making up procedures to each row in (2.8), getting a sequence of random measures with common carrier $(-\infty, \infty)$. Then collecting these we finally obtain an orthogonal set of random measures $Z_n(d\lambda)$, $1 \le n < \infty$, with $\operatorname{Car} Z_n = (-\infty, \infty)$, $\sigma_n(d\lambda) = \|Z_n(d\lambda)\|^2 < d\lambda$; therefore $\sigma_n(d\lambda) \sim d\lambda$. By the above construction $h \in H_{\eta} \ominus L_0$ is represented as

$$h = \sum_{n=0}^{\infty} \int_{-\infty}^{\infty} \varphi_n(\lambda) Z_n(d\lambda)$$
 , $\varphi_n \in L^2(\sigma_n)$,

$$\|h\|^2 = \sum_{n=1}^{\infty} \|\varphi_n\|_n^2$$
, $\|\varphi_n\|_n^2 = \int_{-\infty}^{\infty} |\varphi_n(\lambda)|^2 \sigma_n(d\lambda)$,

and

$$\hat{S}_t h = \sum_{n=1}^{\infty} \int_{-\infty}^{\infty} \varphi_n(\lambda) e^{i\lambda t} Z_n(d\lambda)$$
.

Therefore \widetilde{S}_t is isomorphic with unitary operators

$$\{\varphi_n(\lambda), 1 \leq n < \infty\} \rightarrow \{\varphi_n(\lambda)e^{i\lambda t}, 1 \leq n < \infty\}$$

over

$$\sum_{n=1}^{\infty} \bigoplus L^{2}(\sigma_{n}(d\lambda)), \sigma_{n}(d\lambda) \sim d\lambda.$$

This proves the theorem.

Tokyo University of Education

References

- [1] I. V. Girsanov, On spectra of dynamical systems generated by stationary Gaussian processes, Dokl. Akad. Nauk SSSR, 119 (1958), 851-853.
- [2] K. Itō, Complex multiple Wiener integral, Japan. J. Math., 22 (1952), 63-86.
- [3] G. Maruyama, Transformations of flows, J. Math. Soc. Japan, 18 (1966), 303-330.
- [4] M.S. Pinsker, Dynamical systems with completely positive or zero entropy, Dokl. Akad. Nauk SSSR, 133 (1960), 1025-1026.
- [5] A.C. Schaeffer, Fourier-Stieltjes coefficients of a function of bounded variation, Amer. J. Math., 61 (1939), 934-940.