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§1. Preliminaries.

There is given a real stationary process &(t, ), t € T=(—c0, c0), a €S,
on certain probability space (S, &, P), which is continuous in probability, i.e.

(h) lim P(160, @)—&(t, @) > =0,

for every ¢ > 0.

Consider a corresponding invariant measure g and flow {S;} over RT: (i)
x=,teT)—>Sx=(x, teT) for any real z, (ii) let A=, --,t,) be a
subset of T, A a Borel set in R4, put

A= {x: (xyy, oo+ 5 x) € A},
and define

#(ﬁ):P((EtP Tt Stn)e A) .
{S;} is a flow on (R7, B, ¢), where 3 is the completion under u of the s-algebra
generated by the cylinder sets A. When & satisfies a Lebesgue subspace
of RT can be taken such that it is S,-invariant. Define £ to be the space of
Lebesgue measurable real functions over 7, then £ C R?, the outer pu-measure
of 2 is equal to 1, and £ is a (strictly) S,-invariant subspace of R”. It is
important to observe that £ can be made into a complete metric separable
space which endowed with p becomes Lebesgue, and over which S, acts as a
shift, /(1) - S. /() =f(t+7), fe 2 (c.f.[3], § 2—§4). S, over (2, p) is understood
as a flow generated by £. One can also define, as its coordinate representation,
a stationary process (x,(w), w € £2, —oo <t < co0) over (£, p), which is equivalent
(in probability law) to the given &() [3].

Suppose that £(¢) has the finite second moment, E&(#)=0, and let its
correlation function and spectral measure be R(), o(dl),

(1.2) R@t= | 7 eitg(dy) .
Correspondingly to x, can be put in the form
(1.3) xw)= | ¥ eiB(d2), E| D)2 = o(d2) .

Let L*(y) be the set of square-integrable complex functions over (£, p),
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then when A ranges over all Borel subsets of R, the system {S3(A)} generates
L*(y), and so do the Baire functions of $(A) the space of p-measurable func-
tions.

From now on assume further that & is Gaussian. Then B(A) is complex
Gaussian, and fundamental concepts in the following analysis are 1t6’s multiple
Wiener integrals with respect to 8(d1). The integrals, roughly speaking,
are polynomials constructed on the products

(1.9) Bda)B2) -+ pdR), 1=n<oo.
When we make a summation of such products, two kinds of summation over
“ diagonals ” should be distinguished, symbolically writing

(a) 1k+2;1’=0 ‘B(dxk)ﬁ(dlz): <§<a|ﬁ(‘uk)lzy

—A=AS
—a=2g, y=a

(b) lk—%ﬂ B(dA)BldA) = a<12<b (B .
a=lg, 4y=b ==

(a) is asymptotically equal to 3} o(da,), whereas (b) to zero. So that when

—as=2p=a
we speak of the products we may impose the restriction that 2,+1;#0,
1<i+7j<mn, and accordingly the polynomial

(15) L= [y e s 2)BdR) -+ B(ddy)

means the multiple integral

[ [ fu s 2B - BdRy.

2422770, 1=i£f=n

Write now o™(d2)=0(d2)X -+ X0(d4,), A=Ay, =+, A,). The integral [1.5)
is well defined for fe L%(6™(d2)), and the followings are basic to computation
with polynomials [2].

1° (LD, Ilg)

(L6) =  f0glodn if m=n,
=0 if m#n,

where (&, ) = E&7D), & ne L (p).
Define a function

ZED= [ fQuee, AP - Bd2n)

YRR P

and corresponding orthogonal random measure of order n

Z(f, By= [ Fys(ut - +2)8(d2) - fdA),
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where yp is the characteristic function of a Borel subset B of R. The random
measures of different orders are orthogonal each other, i.e.
(Z,(f, B), Z,(8 C)=0

for m #n and any Borel sets B, C.
2° For a Borel set B

o.(f, BY= 12/, B)|?
a.mn

={ o@n | 1f@Ite"dh - ddal it + =)

where 0™ (dR) is the n-th convolution of o(d2), and o™(d2; -+ d2, | A+ -+ +2,=x)
is the measure induced by 6™(d2) on the hyper-plane A+ -+ +2A,=x.

One has
1.8) o[, d)<a™(dA),
and if | f| is bounded away from zero, then
1.9 0,(fy d)~o™(dA),

where <o means that the measure v is absolutely continuous with respect to
the measure o, whereas t~o does t<o and o=<t.

Let S, be the one-parameter group of unitary operators on L*(y) generated
by the flow S, S,i(w)= h(S,w), h = L¥y), and H(h) be the closed linear manifold
spanned by (5,h, —oo <t < o).

3° If h=L(f), f= L*o™), then

HWy={[" ¢WZ.(f,dd: ¢ & LXa,(f, d)} .

Let k=1I,g), g< L¥o™), then a necessary and sufficient condition that
H(h) L H(k) (H(h) is orthogonal with H(k)) is that f 1 g as L*-functions on A,
<o +2,=x under the measure o™(d2y --+ d2,| A+ -+ A, =x), for almost all x
with respect to o™ (dx).

PRrROOF. Since

Toh= [ FRed-sintfda) - Bdly)

=[" evz,(f, ),
H(h) 1. H(k) if and only if

|7 ezr, anL|” s@zs db,

1.10) |~ eFDEEL( S, dDZTg dD)=0
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for every ¢ e L*o0,(f, d2)) and ¢ € L¥o,(g, d2)). (1.10) is equivalent to
(1.11) E(Z(f, B)Z.(g, B))=0

for every Borel set B. Since Z,(f, B) is linear in f, in view of (1.7), is
in turn equivalent to

§ 0" @D | FOBEOE - daal et - 42, =5) =0

for every B, which proves the requested statement.
Incidentally we may notify that [(1.11) is equivalent to the orthogonality
between the random measures:

(1.12) (Z(f, B), Z,(& C)=0

for any Borel sets B and C.
Let us define
L, =space of complex numbers,
L,=closed linear manifold spanned by
{L(f): fe Lo}, nz=l.
If
felo), 1fH|>0,
almost everywhere (¢(d1)), then
Ly=H), h=L(f).

Proposition 3° enables us to illustrate Girsanov’s construction of a Gaussian
process [17], for which S, has a continuous simple spectrum.

§2. The theorem.

Our main purpose is to prove the

THEOREM. There exists a real Gaussian stationary process with zero entropy
whose certain factor flow has a countable Lebesgue spectrum®,

ProoOF. Given an arbitrary ¢ >0, as in the time discrete case [5], there
exists a symmetric continuous singular measure o(dl) on R, o(R) < oo, such
that

oo 1
Rty=[ eto(dn=0(|t| "), |t|—co.
Suppose 0 <e<1/8, then R?< L*(—oo0, c0), since
Rity= [ o> (d)=0(]t| ),

* Shortly after sending the manuscript to the editor, the author was pointed out
by H. Totoki that D. Newton and W. Parry obtained a similar result in Ann. Math.
Statist., 4 (1966), 1528-1533, for the spectrum of an automorphism.
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and its transform

1 ¢ )
p(AD)= 5= j_w R(He #dt
satisfies

e-i,ut _ e—i/b:

@D (o= R dt = padx,

i.e. 6%(dA) is absolutely continuous. We shall prove that the Gaussian process
& in §1 with this o(d2) as its spectral measure is the required one; the entropy
of the corresponding flow is zero [4].

Define an infinite-dimensional stationary process with complex components

22) =g =[[_ehrngda)pda), 1<n < oo},

where B, runs over all closed intervals of the form B,={a<x=<b, c<y=<d}
with rationals q, b, ¢, d. As in §1, the corresponding flow 7, is built on a
Lebesgue space £, formed by Lebesgue measurable complex functions f(#),
—oo<t<oo, [3] This flow is a factor of S, The unitary operators T,
generated by T, are equivalent to §& generated by S, over the Hilbert space

H,=closed linear manifold determined by »{®,
1<n< oo, —co<t< 0.

By the definition of #, H, is nothing but the closure of the linear space of
all even degree polynomials in §(d2), i.e.

(23) Hn == né()@ LG .

For every n =1, there exists a sequence of L2(¢™)— functions fp,, fuir fuer
«- (fuo=1) such that

2.4 Ly, = §O@H<hnk>, M = Ton fri) »

and from §1 one obtains an orthogonal system of random measures

ZZn(fnk:dz): 1§7’l<00, O§k<00,
which satisfy

(2.5) 050l o dA) = 0¥ (dD)<dA,
Oonl S A< ([dD<dA, 1=k<co.
Since o%(d2) = p(Ad1, if we take p,(1)= min (1, p(2)), we have
o @D/daz [ pGa—mpedp.

The right-hand member is continuous in 4, and for A=0 it is equal to
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- o—mpiwap=[" (srdp>0.

So that there exists a constant ¢, >0 such that

o (dA))di=c,>0
almost everywhere around the origin, say for |1|< 4, 4, >0, and similarly
(2.6) o*™(d2)/dA>0 for (2| ni,.

By the carrier of Z,,(f.i, d2) is meant that of 6,,(f.:, d1), the complement
of the maximal open set G such that ¢,,(f.,» G)=0, and will be denoted as
Car Z,,(fors dA). From Z,,(frne dA), 1 <n < co, we first define an orthogonal set
of random measures

Z(d», 1<n<oo, with CarZ,=(—o0, c0).
To do this make up the defect of Z,(fi,, dA) by Z,(f20, d2), i.e. define a measure
2.7 Z0(A)=Zy(fror A+ Zfos ANG), A Borel,
where G is the complement of Car Z,(f,, d1). Then by
Car Z(l) D [‘_20, Zo] .

There remains also the residual measure Zi(fy, d2) of Z(fs, d2), where
(faer A= Z(f20o A)—Z (S50 GN A). Next, in the same way, make up Z® by
means of Z,(fy, d2) to have a measure Z®, then by
Car Z® D[ —2y Ao] -
Continuing this way one has ‘

Z,(A) = lim Z®(A).

Zl is an orthogonal random measure with Car 21:(—00, co). After these
procedures, there remain residual measures Zj,(f,o d2) Of Zp(fne d2), B =2,
with

Car Z,, D[(n—D2A, (n—1)A,], n=2.
So that, we can apply the same procedure as above to Z;,(fue dA), n=2. One
obtains an orthogonal random measure

Z(d2) with Car Z,=(—oc0, c0).
Continuing this way we get a requested orthogonal set of random measures
Zn, 1< n<co.
Rearrange Z,, 1 <n < oo, into a double sequence Z,, 1<m, n<co, and
Zon(Frir d2), 1<, k< oo, into a simple sequence Z,,(d1), 1 <m < oo, and then
put them together into the array (orthogonal set of ramdom measures)

28) Zmns 0=n<oco, m=12..-.
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Now apply the making up procedures to each row in [2.8), getting a sequence
of random measures with common carrier (—oo, o). Then collecting these we
finally obtain an orthogonal set of random measures Z,(d1), 1 <n < oo, with
Car Z, =(—o0, o0), 0,(d) = Z,(dA)|2<dA; therefore o,(dA)~dA. By the above
construction h € H,©O L, is represented as

h=3{" A0Z,aD,  ¢ue L¥on,

1A= Sllealt,  leali=]" leaDI*au@n),
and

Sh=3 [~ ouDez,@h).

Therefore S, is isomorphic with unitary operators

{9071,(/2)’ 1 =n< OO} - {@n(Z)eMt, 1 =n< OO}
over

é ® LA(0(d D), o.(dD)~d2.

This proves_the theorem.
Tokyo University of Education
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