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Let $M$ be a compact regular contact manifold, then $M$ can be considered
as a prinicipal circle bundle over the symplectic manifold $ B=M/\xi$ . And we
can define a Riemannian metric in $M$ so that $M$ is a K-contact Riemannian
manifold. More special K-contact Riemannian manifold is a normal contact
Riemannian manifold or Sasakian manifold. With respect to this Riemannian
metric we study the properties of harmonic forms on $M$. When $M$ is a com-
pact regular K-contact Riemannian manifold the fibering $M\rightarrow B$ gives the
standard model to study the Betti numbers and harmonic forms. In particular
if $M$ is a compact regular normal contact Riemannian manifold, $M\rightarrow B$ is the
most typical, since $B$ is k\"ahlerian and a Hodge manifold. By these models,
we get some results on harmonic forms and Betti numbers of K-contact
Riemannian manifolds which are not necessarily regular. In \S 1, we give the
fundamental relations satisfied by the structure tensors, and next the relations
of the Betti numbers. In \S 3 and \S 4, the relations of harmonic forms on $M$

and $B$ are given. In \S 5, we devide K-contact Riemannian manifolds into two
classes according as $M$ is an $\eta$ -Einstein space or not, and study respective
cases. Manifolds are assumed to be of class $C^{\infty}$ and connected.

\S 1. Preliminary.

We denote by $\phi,$ $\xi,$
$\eta,$ $w$ and $g$ the structure tensors of an m-dimensional

$(m\geqq 3)$ contact Riemannian manifold $M$, where $\phi,$ $\xi,$
$\eta$ and $w$ are tensor fields

on $M$ of type $(1,1)$ , $(1,0)$ , $(0,1)$ and $(0,2)$ respectively and $g$ is the metric tensor.
They satisfy the following relations:

(1.1) $\phi\xi=0$ , $\eta(\xi)=1$ , $\phi^{2}u=-u+\eta(u)\xi$ ,

(1.2) $\eta(u)=g(u, \xi)$ , $g(\phi u, \phi v)=g(u, v)-\eta(u)\eta(v)$ ,

(1.3) $d\eta(u, v)=2g(u, \phi v)=2w(u, v)$

for any vector fields $u$ and $v$ on $M$. If we denote by $V$ and $\delta$ the Riemannian

*The author is partially supported by The Sakkokai Foundation.



Harmonic forms and Betti numbers 309

connection and codifferentiation with respect to $g$ , we have

(1.4) $\nabla_{\xi}\phi=0$ ,

(1.5) $\delta\eta=0$ , $\delta w=(m-1)\eta$ .
If $\xi$ is a Killing vector field, $i$ . $e$ . $M$ is a K-contact Riemannian manifold, we
have
(1.6) $\nabla_{u}\xi=-\phi u$ ,

(1.7) $R_{1}(u, \xi)=(m-1)\eta(u)$ , $R(u, \xi)v=(\nabla_{u}\phi)v$ ,

(1.8) $g(R(u, \xi)v,$ $\xi$) $=g(u, v)-\eta(u)\eta(v)$ ,

where $R(u, v)x=\nabla_{[u,v]}x-\nabla_{u}\nabla_{v}x+\nabla_{v}\nabla_{u}x$ and $R_{1}$ is the Ricci curvature tensor.
Further $M$ is normal, if the relation

(1.9) $(\nabla_{u}w)(v, x)=\eta(v)g(u, x)-\eta(x)g(u, v)$

holds good ([6], [9], [10], [11]).

Suppose that $M$ is a compact regular contact manifold and let $\pi;M\rightarrow B$

$=M/\xi$ be the fibering of $M$ ([1], [14]). We define an almost complex structure
$J$ and almost Hermitian metric $h$ on $B$ satisfying

(1.10) $ d\eta=2\pi^{*}\Omega$ , $\Omega(X, Y)=h(X, JY)$

for any vector fields $X$ and $Y$ on $B$ , where $\Omega$ is the fundamental 2-form.
Then by the metric $g$ and $(1,1)$-tensor $\phi$ defined by $g=\pi^{*}h+\eta\otimes\eta,$ $\phi X^{*}=(JX)^{*}$ ,
$M$ is a K-contact Riemannian manifold, where $X^{*}$ is the horizontal lift of $X$

with respect to the infinitesimal connection $\eta$ . This almost k\"ahlerian structure
on $B$ is k\"ahlerian if and only if the contact metric structure is normal ([5]).

As the Betti numbers of $M$ are topological property, they do not depend
on the Riemannian metric. Therefore throughout this peper we consider
contact manifolds with the associated Riemannian metric, although the word
‘ Riemannian ’ is unnecessary in the statements of the properties of the Betti
numbers.

Now the exact sequence of Gysin for our circle bundle is:

(1.11) $0\rightarrow H^{1}(B;R)H^{1}(M;R)\underline{\pi^{*}}\rightarrow H^{0}(B;R)\rightarrow^{L_{0}}$

$\rightarrow H^{2}(B;R)L_{0}\rightarrow H^{2}(M;\pi^{*}R)\rightarrow H^{1}(B;R)\rightarrow^{L_{1}}$ ...

... $ L_{p-z}\underline{\pi^{*}}\rightarrow H^{p}(B;R)H^{p}(M;R)\rightarrow H^{p-1}(B;R)\rightarrow L_{p-1}\ldots$

where $H^{p}(M;R)$ is the p-th cohomology group of $M$ with real coefficients and
$L_{p}$ sends $\alpha\in H^{p}(B;R)$ to $\Omega\wedge\alpha\in H^{p+2}(B;R)$ ([1], [2], [12]). We denote by
$b_{p}(M)=\dim H^{p}(M;R)$ the p-th Betti number of $M$. As $L_{0}$ is an isomorphism,
$\pi^{*}:$ $H^{1}(B;R)\rightarrow H^{1}(M;R)$ is an onto isomorphism. Thus we have:
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In a compact regular K-contact Riemannian manifold, we have

(1.12) $b_{1}(M)=b_{1}(B)$ .
If the structure in $M$ is normal, $B$ is k\"ahlerian and $L_{p}$ is an into iso-

morphism for $p\leqq(m-3)/2$, and $\pi^{*}$ is onto, so by this and the duality we have:
In a compact regular normal contact Riemannian manifold,

(1.12)i $b_{1}(M)=b_{1}(B)$ ,

(1.13) $b_{p}(M)=b_{p}(B)-b_{p-z}(B)$ , $2\leqq p\leqq(m-1)/2$ ,

(1.14) $b_{p}(M)=b_{p-1}(B)-b_{p+1}(B)$ , $(m+1)/2\leqq p<m$ .
Especially, as $H^{0}(B;R)\cong R$, we have

(1.15) $b_{2}(M)=b_{2}(B)-1$ .
As for $(1.12)^{\prime},$ $(1.13)$ and (1.14), it is known that $b_{p}(B)$ is even, if $p$ is odd,

and so we have:
If $p$ is odd $(\leqq(m-1)/2),$ $b_{p}(M)$ is even (or $0$).

If $p$ is even $(\geqq(m+1)/2),$ $b_{p}(M)$ is even (or $0$).
These two can be easily shown even if the structure is not necessarily

regular utilizing the last remark in [13], and also see [3].

\S 2. A lemma.

Let $M$ be a compact regular K-contact Riemannian manifold. We denote
by $(, )$ the local inner product of forms in $M$ and $B$ , and by $\langle$ , $\rangle_{M}$ or $\langle$ , $\rangle_{B}$

the global inner product in $M$ or $B$ respectively. Then we have

(2.1) $\langle$ , $\rangle_{M}=c_{1}\int_{M}(, )\eta\wedge(d\eta)^{n}$ ,

(2.2) $\langle$ , $\rangle_{B}=C_{2}\int_{B}$ $(, )\Omega^{n}$ ,

where $c_{1},$ $c_{2}$ are constant and $m=2n+1$ .
LEMMA 2.1. For any r-forms $\lambda$ and $\mu$ on $B$ , we have

(2.3) $\langle\pi^{*}\lambda, \pi^{*}\mu\rangle_{M}=c\langle\lambda, \mu\rangle_{B}$ , $c=constant$ .
PROOF. We denote by $S_{i},$ $i=1,$ $\cdots$ , $k$ the disjoint images of local cross

sections such that, $\pi S_{i}$ are open and connected, $\pi S_{i}\cap\pi S_{j}=\emptyset$ if $i\neq j$ and
$\bigcup_{i}\overline{\pi S_{i}}=B$ . For each $i$ we take an arbitrary trajectory $T_{i}$ of $\xi$ which intersects
$S_{i}$ . The length 1 of $T_{i}$ is the same constant for each trajectory on $M$. Then

$\langle\pi^{*}\lambda, \pi^{*}\mu\rangle_{M}=2^{n}c_{1}\int_{M}(\pi^{*}\lambda, \pi^{*}\mu)\eta$ A $(\pi^{*}\Omega)^{n}$

$=2^{n}c_{1}\sum_{i}\int_{s_{i}}\int_{\tau_{i}}\eta\wedge(\pi^{*}\lambda, \pi^{*}\mu)(\pi^{*}\Omega)^{n}$
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$=2^{n}c_{1}l\sum_{i}\int_{s\iota}\pi^{*}((\lambda, \mu)\Omega^{n})$

$=2^{n}c_{1}c_{2}^{-1}l\langle\lambda, \mu\rangle_{B}$ ,

completing the proof for $c=2^{n}c_{1}c_{2}^{-1}l$ .

\S 3. A compact regular $K$-contact Riemannian manifold.

In this section corresponding to (1.12), we prove
PROPOSITION 3.1. Let $\pi:M\rightarrow B$ be the fibering of a compact regular K-

contact Riemannian manifold M. Then for any harmonic l-form $\lambda$ on $B,$ $\pi^{*}\lambda$

is harmonic. Conversely any harmonic l-form $\alpha$ on $M$ is written as $\alpha=\pi^{*}\lambda$

for some harmonic l-form $\lambda$ on $B$ .
PROOF. Let $\lambda$ be a harmonic l-form on $B$ , then $\alpha=\pi^{*}\lambda$ is closed. To

prove that $\alpha$ is coclosed, let $X$ be the vector field in $B$ associated with $\lambda$ by
the Riemannian metric $h$ . And denote by $x*$ the horizontal lift of $X$, then
$x*$ is easily seen to be associated with $\alpha$ with respect to $g$ . As $\lambda$ is coclosed,
$X$ is incompressible vector field, $i$ . $e$ . $L(X)(\Omega^{n})=0$ , where $L(X)$ is the Lie
derivation by $X$. Now we have

$L(X^{*})$( $\eta$ A $(d\eta)^{n}$) $=(i(X^{*})d\eta)$ A $(d\eta)^{n}+2^{n}\eta$ A $(L(X^{*})(\pi^{*}\Omega)^{n})$ .
The first term of the right hand side is an m-form and

$i(\xi)[(i(X^{*})d\eta)\wedge(d\eta)^{n}]=0$

holds, so it vanishes. As for the second term, we have

$L(X^{*})(\pi^{*}\Omega^{n})=\pi^{*}(L(X)\Omega^{n})=0$ ,

and $X^{*}$ is an incompressible vector field, namely $\alpha$ is coclosed and hence
harmonic.

Conversely let $\alpha$ be a harmonic l-form on $M$, then $L(\xi)\alpha=0$ , since $\xi$ is a
Killing vector field. By the Theorem below, $\alpha$ is orthogonal to $\eta$ , and we
have a l-form $\lambda$ on $B$ such that $\alpha=\pi^{*}\lambda$ . By the fact that $\pi^{*}$ is an isomorphism
for differential forms, we have $d\lambda=0$ from $\pi^{*}d\lambda=d\pi^{*}\lambda=d\alpha=0$ . Next by
Lemma 2.1, we have

$c\langle\delta\lambda, \mu\rangle_{B}=c\langle\lambda, d\mu\rangle_{B}=\langle\pi^{*}\lambda, \pi^{*}d\mu\rangle_{M}$

$=\langle\pi^{*}\lambda, d\pi^{*}\mu\rangle_{M}=\langle\delta\pi^{*}\lambda, \pi^{*}\mu\rangle_{M}$

$=\langle\delta\alpha, \pi^{*}\mu\rangle_{M}=0$

for any O-form $\mu$ on $B$ . Thus $\delta\lambda=0$ and $\lambda$ is harmonic.
THEOREM 3.2. Any harmonic l-form $a$ in a compact K-contact Riemannian

manifold is orthogonal to $\eta,$
$i$ . $e$ . $i(\xi)\alpha=0$ .

PROOF. As $\alpha$ is a harmonic form and $\xi$ is a Killing vector field, $ i(\xi)\alpha$ is
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constant. Put $\gamma=\alpha-(i(\xi)a)\eta$ and operate $\Delta=d\delta+\delta d$ to $\gamma$ , then one gets $\Delta\gamma$

$=-(i(\xi)\alpha)\Delta\eta$ . By (1.5) we get $\Delta\eta=\delta d\eta=2(m-1)\eta$ Therefore we have

(3.1) $\Delta\gamma=-2(m-1)(i(\xi)a)\eta$ .
However $\gamma$ is orthogonal to $\eta$ , and so $\langle\Delta\gamma, \gamma\rangle=0$ . This implies that $\gamma$ is
harmonic and (3.1) shows $i(\xi)\alpha=0$ .

\S 4. A compact regular normal contact Riemannian manifold.

S. Tachibana got the following ([13])
PROPOSITION 4.1. For any harmonic r-form $\alpha$ on a compact normal contact

Riemannian manifold $M$, we have $i(\xi)\alpha=0$ if $r\leqq(m-1)/2$ .
Corresponding to (1.13), we have
PROPOSITION 4.2. Let $\pi$ : $M\rightarrow B$ be the fibering of a compact regular normal

contact Riemannian manifold $M$, then for any harmonic r-form $\alpha$ on $M$ there
exists a harmonic r-form $\lambda$ on $B$ such that $\alpha=\pi^{*}\lambda$ , provided $r\leqq(m-1)/2$ .

PROOF. The second part of the proof of Proposition 3.1 is valid if we
replace Theorem 3.2 by Proposition 4.1.

\S 5. $K$-contact $\eta$-Einstein spaces.

A contact Riemannian manifold $M$ is said to be an $\eta$ -Einstein space if the
Ricci curvature tensor $R_{1}$ is of the form:
(5.1) $ R_{1}=ag+b\eta\otimes\eta$

for some scalar field $a$ and $b$ . When an $\eta$ -Einstein space $(m>3)$ is a K-contact
Riemannian manifold, $a$ and $b$ become always constant.

Denoting by $R$ the scalar curvature, first we have
THEOREM 5.1. In a compact K-contact $\eta$ -Einstein space, if $a>0$ or equi-

valently $R>m-1$ then $b_{1}(M)=0$ .
PROOF. By Theorem 3.2 any harmonic l-form $a$ on a compact K-contact

Riemannian manifold is orthogonal to $\eta$ . So $R_{1}(\alpha, \alpha)=ag(\alpha, a)$ holds. By the
theory of harmonic forms (for example [16]) we see that if $R_{1}$ is positive
definite for $\alpha$ there is no harmonic l-form on a compact orientable Riemannian
manifold. Thus we have $b_{1}(M)=0$ , if $a>0$ . Transvecting (5.1) with $g^{-1}$ and
$\xi$, we have $a=(R-m+1)(m-1)^{-1}$ .

We generalize this in the case $m>3$ to the
THEOREM 5.2. In a compact K-contact $\eta$ -Einstein space $M$, if a=contact

$>-2$ , then $b_{1}(M)=0$ .
PROOF. If we can change the Riemannian metric $g$ to $\overline{g}$ such that the

Ricci curvature tensor $R_{1}$ for $\overline{g}$ is positive definite, we have $b_{1}(M)=0$ . Thus
Theorem 5.2 follows from



Harmonic forms and Betti numbers 313

PROPOSITION 5.3. Any K-contact $\eta$ -Einstein space (a=constant>-2) is
considered as an Einstein space by changing the metric.

PROOF. For a constant $\beta>-1$ , put

\langle 5.2) $\overline{g}=g+\beta\eta\otimes\eta$ ,

then denoting by $W$ the difference of the components of the Riemmanian
connections by $\overline{g}$ and $g$, we have

\langle 5.3) $W=-\beta(\phi\otimes?_{7}+\eta\otimes\phi)$

by ([15], (4.6)) and by using the relations in \S 1. And by ([15], (6.3)) the Ricci
curvature tensors are given by

$\overline{R}_{1}=R_{1}-2\beta g+(2m\beta+(m-1)\beta^{2})\eta\otimes\eta$ .
Thus by (5.1) and (5.2), we obtain

$\overline{R}_{1}=(a-2\beta)\overline{g}+(b+(2m-a)\beta+(m+1)\beta^{2})\eta\otimes\eta$

Contracting (5.1) with $\xi$ , we have $a+b=m-1$ . Therefore if $\beta=(a-m+1)(m+1)^{-1}$ ,

we have $\overline{R}_{1}=(a+2)(m-1)(m+1)^{-1}\overline{g}$ . Here note that this $\beta$ satisfies the required
condition $\beta>-1$ , since $a+2>0$ .

When $a$ is not constant (then $m=3$), we assume regularity and get Theorem
5.5 below.

PROPOSITION 5.4. In the fibering $\pi$ : $M\rightarrow B$ of a regular K-contact Riemann-
ian manifold $M,$ $M$ is an $\eta$ -Einstein space if and only if $B$ is an Einstein
almost kahlerian manifold.

PROOF. First we notice the following identities:

\langle 5.4) $[X^{*}, Y^{*}]=[X, Y]^{*}+\eta([X^{*}, Y^{*}])\xi$ ,

\langle 5.5) $\nabla_{x*}Y^{*}=(/\nabla_{X}Y)^{*}+2^{-1}\eta([X^{*}, Y^{*}])\xi$ ,

(5.6) $\nabla_{x*}\xi=\nabla_{\xi}X^{*}$ , $([X^{*}, \xi]=0)$ ,

where $/\nabla$ is the Riemannian connection by $h$ ([8]). Then we have

\langle 5.7) $R(X^{*}, Y^{*})Z^{*}=(^{\prime}R(X, Y)Z)^{*}+2w(X^{*}, Y^{*})\phi Z^{*}$

$+w(X^{*}, Z^{*})\phi Y^{*}-w(Y^{*}, Z^{*})\phi X^{*}$

$-2^{-1}\{\eta([X^{*}, (/\nabla_{Y}Z)^{*}]-[Y^{*}, (’\nabla_{X}Z)^{*}])$

$+X^{*}\cdot\eta([Y^{*}, Z^{*}])-Y^{*}\cdot\eta([X^{*}, Z^{*}])-\eta([[X, Y]^{*}, Z^{*}])\}\xi$ .
From (5.7) and (1.8), it follows that

\langle 5.8) $g(R(X^{*}, Z^{*})Y^{*},$ $Z^{*}$) $=h(\prime R(X, Z)Y,$ $Z$ ) $\cdot\pi-3\Omega(X, Z)\Omega(Y, Z)\cdot\pi$ ,

\langle 5.9) $g(R(X^{*}, \xi)Y^{*},$ $\xi$) $=h(X, Y)\cdot\pi$ .
One can derive (5.8) also from the curvature relation in [7]. Now take locally
an orthonormal basis $e_{1}$ , $\cdot$ .. , $e_{n},$ $e_{n+1}=Je_{1}$ , $\cdot$ .. , $e_{2n}=Je_{n}$ in $B$ , put $Z^{*}=e_{i}^{*}$ in (5.8),
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sum for $i$ and add the result to (5.9), then we get

(5.10) $ R_{1}(X^{*}, Y^{*})=\prime R_{1}(X, Y)\cdot\pi-2h(X, Y)\cdot\pi$ .
Here notice that if $m=3$ $a$ is not necessarily constant on $M$, but we see $L(\xi)a$

$=0$ , since $\xi$ is a Killing vector field. In fact, the Lie derivatives of (5.1) are
$(L(\xi)a)g+(L(\xi)b)\eta\otimes?\int=0$ . Transvecting this with a vector which is orthogonal
to $\xi$ we get $L(\xi)a=0$ . Thus if $M$ is an $\eta$ -Einstein space (5.1), then $/R_{1}=(a+2)h$

holds in $B$ . Conversely if $R_{1}=(m-1)^{-1\prime}Rh$ , then we have $R_{1}(X^{*}, Y^{*})=$

$(m-1)^{-1}(\prime R-2m+2)h(X, Y)\cdot\pi$ , where $/R$ is the scalar curvature of $’\nabla$ . This
and (1.7) give

(5.11) $ R_{1}=(m-1)^{-1}(\prime R-2m+2)g+(m-1)^{-1}(m^{2}-1-/R)\eta\otimes\eta$ .
From (5.11) we have the relation of the scalar curvatures:

(5.12) $R=\prime R-(m-1)$ .
THEOREM 5.5. If $M$ is a compact regular K-contact $\eta$ -Einstein space and

if $a>-2$ , then $b_{1}(M)=0$ .
PROOF. By $R_{1}=(a+2)h$ , we have $b_{1}(B)=0$ . And by (1.12), $b_{1}(M)=0$ .
This theorem is needed only when $a$ is not constant $(m=3)$ .
In a compact k\"ahlerian manifold $B$ , if the scalar curvature $\prime R$ is constant,

$/H$ defined by $\prime H(X, Y)=\prime R_{1}(X, JY)$ for vector fields $X$ and $Y$ on $B$ is harmonic.
And if $B$ is not Einstein we have $b_{2}(B)\geqq 2$ . This fact and Proposition 5.4
suggest us the following

THEOREM 5.6. Let $M$ be a compact normal contact Riemannian manifold
$(m>3)$ which is not $\eta$ -Einstein. If the scalar curvature $R$ is constant, then
$b_{2}(M)\geqq 1$ .

PROOF. We define a tensor $H$ by

(5.13) $H(u, v)=(m-1)R_{1}(u, \phi v)+(m-1-R)w(u, v)$

for any vector fields $u$ and $v$ on $M$. We can deduce from ([9], Lemma 4.4)
that $H$ is harmonic. And $H=0$ if and only if $M$ is an $\eta$ -Einstein space.

COROLLARY 5.7. In a compact normal contact Riemannian manifold $M$

$(m>3)$ , if the scalar curvature is constant and $b_{2}(M)=0$ , then $M$ is an $\eta-$

Einstein space.
For a regular normal contact Riemannian manifold, which is of positive

curvature and of constant scalar curvature, see [4].

Corresponding to (1.15) we state
PROPOSITION 5.8. Assume that $\pi$ : $M\rightarrow B$ is the fibering of a compact

regular normal contact Riemannian manifold $M(m>3)$ which is not an $\eta-$

Einstein space. If the scalar curvature $R$ is constant, we have $b_{2}(B)\geqq 2$ . $b_{2}(B)$

$=2$ holds if and only if $b_{2}(M)=1$ , and in this case any harmonic 2-form $\alpha$

on $M$ is of the form $rH$, for real number $r$ .
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REMARK 5.9. Assume $m=3$ and that the scalar curvature $R$ is constant
in a compact normal contact Riemannian manifold $M$. Then $M$ is an $\eta$ -Einstein
space.

PROOF. Even if $m=3,$ $H$ defined by (5.13) is harmonic. Clearly $H(u, \xi)=0$

and $i(\xi)H=0$ . Let $*H$ be the dual l-form determined by the volume element,
then we must have $i(\xi)(*H)\neq 0$ . However $*H$ is a harmonic form and we
have $i(\xi)(*H)=0$ since $1\leqq(3-1)/2$ . So $H=0$ , and $M$ is an $\eta$ -Einstein space.

However precisely we have
THEOREM 5.10. Assume $m=3$ , then any K-contact Riemannian manifold

$M$ is an $\eta$ -Einstein space.
PROOF. Let $p$ be an arbitrary point of $M$ and take a small coordinate

neighborhood $U$ so that $\xi$ is regular in $U$ and we have a fibering $ U\rightarrow U/\xi$ .
$ U/\xi$ is a 2-dimensional Riemannian manifold and hence always an Einstein
space by a classical result. So, if we apply Proposition 5.4, $U$ and also $M$ is
an $\eta$-Einstein space.
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