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Let $l$ be an odd prime number. The relative class number, the so-called
first factor $h_{n}^{-}$ of the class number of the cyclotomic field generated by a pri-
mitive $l^{n+1}$ -th root of unity over the rational number field is given by the well-
known formula $(n\geqq 0)$ :

$h_{n}^{-}=2l^{n+1}\prod_{\chi}(-\frac{1}{2l^{n+1}}\sum_{m}m\chi^{-1}(m))$ ,

where $m$ ranges over all integers satisfying $0\leqq m<l^{n+1},$ $(m, l)=1$ , and $\chi$ over
all characters of the multiplicative group of integers $mod l^{n+1}$ with $\chi(-1)=-1^{1)}$ .
According to this formula, it can be observed that $h_{n}^{-}$ is divisible by $h_{0}^{-}$ . Let
$L$ and $M$ be totally imaginary quadratic fields over a totally real algebraic
number field $L_{0}$ and $M_{0}$ , respectively. Let further $L$ and $L_{0}$ be subfields of
$M$ and $M_{0}$ respectively. Can it be proved further that the relative class num-
ber of $M/M_{0},$ $i$ . $e$ . the ratio of the class number of $M$ to that of $M_{0}$ is divisible
by the relative class number of $L/L_{0}$ in such a case ? (Both relative class
numbers of $M/M_{0}$ and $L/L_{0}$ are rational integers (cf. Chevalley [2]).) The
main purpose of this paper is to consider this problem in more general cases.
The main results are as follows. Let $E$ and $F$ be finite extensions of a finite
algebraic number field $k$ such that $E$ is a Galois extension of $k$ and $E\cap F=k$ .
We shall show that if there exists no non-trivial unramified abelian extension
of $F$ contained in the composite field $EF$ , then for any prime number $p$ prime
to the relative degree of $F/k$ , the $p$ -part of the relative class number of $F/k$

is less than or equal to the $p$-part of the relative class number of $EF/E$

\langle Theorem 1). (In this paper, “ an unramified abelian extension of $F$ means a
subfield of the Hilbert’s class field over $F.$) As an interesting consequence of
this, we shall show that for any totally real algebraic number field $L_{0}$ of finite
degree and any rational integer $n$ prime to the degree of $L_{0}$ , there are infinitely
many totally imaginary quadratic extensions $L$ of $L_{0}$ so that the relative class

1) See Iwasawa [5], in which the class number formula is used in this formula:
the formula in Hasse [3] is slightly different from this formula.
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number of each $L/L_{0}$ is divisible by $n$ (Theorem 2). Finally we obtain a
necessary and sufficient condition for the relative class number of $F/k$ to
coincide with the relative class number of $EF/E$ (Theorem 4).

Let $p$ be any prime number. The Sylow $p$-subgroup of the absolute ideal
class group (in wide sense) of a finite algebraic number field $k$ will be called
the p-class group of $k$ whose order will be denoted by $h_{k,p}$ . Let $K$ be a Galois
extension of $k$ . Then the Galois group of $K/k$ acts on the $p$-class group of $K$

in an obvious way. Now, the subgroup of all ideal classes in the $p$-class group
of $K$ which are left invariant under the Galois group of $K/k$ will be called the
ambiguous p-class group of $K$ with respect to $k$ .

Let $K$ be a finite extension of degree $m$ over $k$ and $p$ be any prime num-
ber prime to $m$ . Let $\mathfrak{C}_{K}$ and $\mathfrak{C}_{k}$ be the $p$-class groups of $K$ and $k$ respectively.
Let $C$ be any ideal class in $\mathfrak{C}_{k}$ and let $ c\iota$ be an ideal in $C$ different from a
principal ideal. Suppose that $\mathfrak{a}$ is principal in $K$. Then $N_{K/k}\mathfrak{a}=\mathfrak{a}^{m}$ is principal
in $k$ which contradicts the fact that $\alpha$ is contained in $C$ . Therefore, no non-
principal ideal class in $\mathfrak{C}_{k}$ becomes a principal ideal class in $\mathfrak{C}_{K}$ and hence, the
mapping $\varphi:\mathfrak{C}_{k}\rightarrow \mathfrak{C}_{K}$ induced by the injection of the ideal group of $k$ into the
ideal group of $K$ is an isomorphism. We shall again denote the image of $\mathfrak{C}_{k}$

under the isomorphism $\varphi$ by the same notation $\mathfrak{C}_{k}$ . Furthermore, the kernel
of the norm map $N_{K/k}$ : $\mathfrak{C}_{K}\rightarrow \mathfrak{C}_{k}$ will be denoted by $ff_{K/k}$ . Since $m$ and $p$ are
relatively prime, the norm map $N_{K/k}$ is surjective. Let $\psi$ be the product of
the norm map $N_{K/k}$ and the isomorphism $\varphi$ . Then we have $Ker\psi=p_{K/k}$ . We
see further that $f8_{K/k}$ does not contain non-principal ideal classes in $\mathfrak{C}_{k}$ . There-
fore, $\mathfrak{C}_{K}$ is the direct product of $\mathfrak{C}_{k}$ and $ff_{K/k}$ . Let $K$ be a Galois extension of
$k$ . Then we see that $\mathfrak{C}_{k}$ coincides with the ambiguous $p$-class group of $K$

with respect to $k$ .
Thus the following lemma is proved:
LEMMA. Let $K$ be a finite extension of $k$ and $p$ be any prime number

prime to the relative degree of $K/k$ . Then the p-class group $\mathfrak{C}_{K}$ of $K$ is the
direct product of $ihe$ p-class group $\mathfrak{C}_{k}$ of $k$ and the kernel $f\partial_{K/k}$ of the norm
map $N_{K/k}$ : $\mathfrak{C}_{K}\rightarrow \mathfrak{C}_{k}$ . If $K$ is a Galois extension of $k$ , then the p-class group of
$k$ coincides with the ambiguous p-class group of $K$ with respect to $k$ .

THEOREM 1. Let $E$ and $F$ be finite extensions of $k$ such that $E$ is a Galois
extension of $k$ and $E_{\cap}F=k$ ; let $p$ be any prime number prime to the rela-
tive degree of $F/k$ . Let further $K$ denote the composite field $EF$ . If there
exists no non-trivial unramified abelian extension of $F$ contained in $K$, then

$\frac{h_{F.p}}{h_{k,p}}\leqq\frac{h_{K.p}}{h_{E.p}}$ .

PROOF. Let $\mathfrak{C}_{K},$ $\mathfrak{C}_{E},$ $\mathfrak{C}_{F}$ and $\mathfrak{C}_{k}$ be the $p$-class groups of $K,$ $E,$ $F$ and $k$

respectively. Let $ff_{K/E}$ and $f\S_{F/k}$ denote the kernels of the norm map $N_{K/E}$ : $\mathfrak{C}_{K}$
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$\rightarrow \mathfrak{C}_{E}$ and the norm map $N_{F/k}:\mathfrak{C}_{F}\rightarrow \mathfrak{C}_{k}$ respectively. Then it follows from
Lemma

(1) $\mathfrak{C}_{K}=\mathfrak{C}_{E}\times\Omega_{K/E}$ (direct), $\mathfrak{C}_{F}=\mathfrak{C}_{k}\times\theta_{F/k}$ (direct).

Since the norm is transitive, we see that the image of $f8_{K/E}$ under the norm
map $N_{K/F}$ is contained in $f8_{p/k}$ . Furthermore, we have $N_{K/F}(\mathfrak{C}_{E})\subset \mathfrak{C}_{k}$ , as each
ideal class in $\mathfrak{C}_{E}$ contains an ideal of $E$ . Let $C(K)$ and $C(F)$ denote the ab-
solute ideal class groups (in the wide sense) of $K$ and $F$ respectively. By
class field theory, the index of $N_{K/F}(C(K))$ in $C(F)$ is equal to the degree of
the maximal unramified abelian extension of $F$ contained in $K$. Therefore, we
have $N_{K/F}(C(K))=C(F)$ . From this it follows that the norm map $N_{K/F}$ : $\mathfrak{C}_{K}\rightarrow \mathfrak{C}_{F}$

is surjective. Using (1), we see further that the restriction of the norm map
$N_{K/F}$ to $\theta_{K/E}$ is also surjective. As the norm map $N_{K/F}$ is homomorphism, we
have

$(\theta_{F/k}:1)\leqq(ff_{K/E}:1)$

and our assertion follows.
In the case $p$ is any prime number prime to the relative degree of $K/k$ ,

we see at once that the norm map $N_{K/F}$ : $\mathfrak{C}_{K}\rightarrow \mathfrak{C}_{F}$ is surjective, so that there
is no need for assuming that there exists no non-trivial unramified abelian
extension of $F$ contained in $K$.

Let $L_{0}$ be a totally real algebraic number field and let $n$ be any rational
integer prime to the degree of $L_{0}$ . It is well known that there exists infinitely
many imaginary quadratic number fields, each with class number divisible by
a given rational integer (cf. Ankeny and Chowla [1] or Nagell [6]). There-
fore, we know that there are infinitely many imaginary quadratic number
fields $M$ so that the class number of each $M$ is divisible by $n$ and $M,$ $L_{0}$ are
independent over the rational number field $P,$ $i$ . $e$ . $M_{\cap}L_{0}=P$ . Let $L$ denote
the composite field $L_{0}M$. Then there exists no non-trivial unramified abelian
extension of $L_{0}$ contained in $L$ . Applying Theorem 1 to the extension $L/P$ ,
namely putting $L=K,$ $L_{0}=F$ and $M=E$ , we have for any prime factor $p$ of $n$

$h_{L_{0}p}\leqq\frac{h_{L.p}}{h_{M.p}}$ and so $h_{Mp}\leqq\frac{h_{L,p}}{h_{L_{0}.p}}$ .

Hence the relative class number of $L/L_{0^{2)}}$ is divisible by $n$ , because the class
number of $M$ is divisible by $n$ .

Thus we have the following
THEOREM 2. Let $L_{0}$ be any totally real algebraic number field of finite

degree and let $n$ be any rational integer prime to the degree of $L_{0}$ . Then there
are infinitely many totally imaginary quadratic extensions $L$ of $L_{0}$ so that the

2) The class number of $L$ is divisible by that of $L_{0}$ (cf. Chevalley [2]).
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relative class number of each $L/L_{0}$ is divisible by $n$ .
Let $p$ be an odd prime number and let $h_{n}^{-}$ denote the first factor of the

class number of the cyclotomic field $P_{(n)}(n\geqq 0)$ generated by a primitive $p^{n+1}$ -th
root of unity over the rational number field $P$ . Then we can show another
application of Theorem 1.

THEOREM 3. Let $K$ be a Galois extension of degree $p^{n}(p-1)$ over $P$ which
contains the cyclotomic field $P_{(0)}$ and let $K_{0}$ denote the maximal real subfield
of K. Assume that there exists exactly one ramified prime divisor of $P_{(0)}$ which
is further fully ramified for the extension $K/P_{(0)}$ . Then the class number of
$K$ is divisible by $p$ if and only if the relative class number of $K/K_{0}$ is divisible
by $p$ .

In particular, the class number of the cyclotomic field $P_{(n)}$ is divisible by $p$

if and only if the first factor $h_{n}^{-}$ is divisible by $p$ .
PROOF. First, from the assumption, we see that $K$ is a quadratic exten-

sion of its maximal real subfield $K_{0}$ and from a theorem of Chevalley [2], that
the relative class number of $K/K_{0}$ is a rational integer. The ” if” part is
clear. We prove the converse. It can be readily verified that the assumptions
of Theorem 4 in [7] are satisfied for the extension $K/P_{(0)}$ with degree $p^{n}$ and
hence, the class number of $P_{(0)}$ is divisible by $p$ , under the assumption that
the class number of $K$ is divisible by $p$ . Then we know by Kummer’s theo-
rem that the first factor $h_{0}^{-}$ is divisible by $p$ (cf. Hasse [4, \S 37]). Hence the
relative class number of $K/K_{0}$ is divisible by $p$ , as we see from Theorem 1.

In the excluding case where $p=2$ , it is well known that the class number
of the cyclotomic field $P_{(n)}$ is odd and we know further that the class number
of $K$ is odd (cf. Hasse [4, Satz 38] and [7, Theorem 3]).

For example, we consider the splitting field $K$ of a binomial equation

$x^{p}-p=0$

with respect to $P$ , then $K$ is a Galois extension of degree $p(p-1)$ over $P$ con-
taining $P_{(0)}$ . Let $\mathfrak{p}$ be a prime divisor of $p$ in $P_{(0)}$ . As the prime number $p$ is
fully ramified for the extension $P_{(0)}/P,$ $i$ . $e$ . $(p)=\mathfrak{p}^{p-1}$ , the prime divisor $\mathfrak{p}$ is
also fully ramified for the extension $K/P_{(0)}$ by Satz 9 in Hasse [3, Ia, \S 11].
Furthermore, we see that no prime divisor of $P_{(0)}$ other than $\mathfrak{p}$ is ramified for
$K/P_{(0)}$ . Hence the splitting field $K$ falls under the stated conditions in Theo-
rem 3. The class number of $K$ is divisible by $p$ if and only if the relative
class number of $K/K_{0}$ is divisible by $p$ , where $K_{0}$ denotes the maximal real
subfield of $K$.

THEOREM 4. The assumptions being the same as in Theorem 1, let $ff_{K/F}$

denote the kernel of the norm map $N_{K/F}$ : $\mathfrak{C}_{K}\rightarrow \mathfrak{C}_{F}$ , where $\mathfrak{C}_{K}$ and $\mathfrak{C}_{F}$ denote the
p-class groups of $K$ and $F$ respectively. Then $h_{K.p}/h_{E.p}=h_{Fp}/h_{k,p}$ if and only
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if each ideal class in $\Omega_{K/F}$ contains an ideal of $E$ .
PROOF. Let $\mathfrak{C}_{E},$ $\mathfrak{C}_{k},$ $9_{K/E}$ and $9_{F/k}$ denote the same notations as in the

proof of Theorem 1. Then, as we have seen in the proof of Theorem 1, we
have

(1.1) $\mathfrak{C}_{K}=\mathfrak{C}_{E}\times P_{K/E}$ (direct)

(1.2) $\mathfrak{C}_{F}=\mathfrak{C}_{k}\times\beta\S_{F/k}$ (direct).

Let $C$ be any ideal class in $\theta_{K/F}$ . Using (1.1), we can write $C=C_{1}\cdot C_{2}$ with an
ideal class $C_{1}$ in $\mathfrak{C}_{E}$ and $C_{2}$ in $ff_{K/E}$ . Then we have $1=N_{K/F}C=N_{K/F}C_{1}\cdot N_{K/F}C_{2}$ ,

in which $N_{K/p}C_{1}$ is contained in $\mathfrak{C}_{k}$ and $N_{K/F}C_{2}$ is contained in $ff_{F/k}$ . Thus we
get $N_{K/F}C_{2}=1$ by (1.2), that is, $C_{2}$ is contained in $f\partial_{K/F}$ . Let $\Omega$ be the kernel
of the restriction of the norm map $N_{K/F}$ to $R_{K/E}$ : $R=l8_{K/E}\cap ff_{K/F}$ . Then the
ideal class $C_{2}$ is contained in $P_{\vee}$ . Now suppose that $h_{Kp}/h_{E.p}=h_{F.p}/h_{k,p}$ . Then,
from (1.1) and (1.2), it follows that $(\theta_{K/E}$ : 1 $)$ is equal to $(\theta_{F/k}$ : 1 $)$ . Therefore,
the restriction of the norm map $N_{K/F}$ to $\theta_{K/E}$ is an isomorphism so that $\Omega=1$

and hence, the ideal class $C_{2}$ mentioned above is necessarily the principal ideal
class. Thus we have $C=C_{1}$ . This means that $ff_{K/F}$ is contained in $\mathfrak{C}_{E}$ , as
asserted in our theorem. Conversely, suppose that $\theta_{K/F}$ is contained in $\mathfrak{C}_{E}$ .
Then St is contained in $\mathfrak{C}_{E}$ . From (1.1), it then follows that $\theta=1$ , because $\theta$

is contained in $B_{K/E}$ . Since the restriction of the norm map $N_{K/F}$ to $9_{K/E}$ is
surjective, $ff_{K/E}$ is isomorphic with $8_{F/k}$ . Our assertion is thus completely
proved.

In the case $p$ is any prime number prime to the relative degree of $K/k$ ,

there is no need for assuming that there exists no non-trivial unramified
abelian extension of $F$ contained in $K$, because the norm map $N_{K/F}$ is surjec-
tive.

When $K$ is a Galois extension over $E$ the $p$-class group of $E$ coincides
with the ambiguous $p$-class group of $K$ with respect to $E$, as we see from
Lemma. Therefore, Theorem 4 can be expressed in the following way:

The assumptions being the same as in Theorem 1, assume further that $K$

is a Galois extension over E. Then $h_{K.p}/h_{E,p}=h_{F.p}/h_{k,p}$ if and only if $\theta_{K/F}$ is
contained in the ambiguous p-class group of $K$ with respect to $E$ .
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