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Let [ be an odd prime number. The relative class number, the so-called
first factor A, of the class number of the cyclotomic field generated by a pri-
mitive ["+1-th root of unity over the rational number field is given by the well-
known formula (n=0):

" 1 -
h; = 2[*+1 1;_[ (— 7[,;;1* % my 1(7’7’1)) y

where m ranges over all integers satisfying 0 <m <™, (m,[)=1, and y over
all characters of the multiplicative group of integers mod [ with y(—1)= —1".
According to this formula, it can be observed that h; is divisible by h;. Let
L and M be totally imaginary quadratic fields over a totally real algebraic
number field L, and M,, respectively. Let further L and L, be subfields of
M and M, respectively. Can it be proved further that the relative class num-
ber of M/M,, i.e. the ratio of the class number of M to that of M, is divisible
by the relative class number of L/L, in such a case? (Both relative class
numbers of M/M, and L/L, are rational integers (cf. Chevalley [2].) The
main purpose of this paper is to consider this problem in more general cases.
The main results are as follows. Let E and F be finite extensions of a finite
algebraic number field %2 such that E is a Galois extension of 2 and EnF ==F.
We shall show that if there exists no non-trivial unramified abelian extension
of F' contained in the composite field EF, then for any prime number p prime
to the relative degree of F/k, the p-part of the relative class number of F/k
is less than or equal to the p-part of the relative class number of EF/E
({Theorem 1)). (In this paper, “ an unramified abelian extension of F” means a
subfield of the Hilbert’s class field over F.) As an interesting consequence of
this, we shall show that for any totally real algebraic number field L, of finite
degree and any rational integer n prime to the degree of L,, there are infinitely
many totally imaginary quadratic extensions L of L, so that the relative class

1) See Iwasawa [5], in which the class number formula is used in this formula:
the formula in Hasse is slightly different from this formula.
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number of each L/L, is divisible by »n (Theorem 2). Finally we obtain a
necessary and sufficient condition for the relative class number of F/k to
coincide with the relative class number of EF/E (Theorem 4).

Let p be any prime number. The Sylow p-subgroup of the absolute ideal
class group (in wide sense) of a finite algebraic number field 2 will be called
the p-class group of k whose order will be denoted by 4;, Let K be a Galois
extension of k. Then the Galois group of K/k acts on the p-class group of K
in an obvious way. Now, the subgroup of all ideal classes in the p-class group
of K which are left invariant under the Galois group of K/k will be called the
ambiguous p-class group of K with vespect to k.

Let K be a finite extension of degree m over 2 and p be any prime num-
ber prime to m. Let € and €, be the p-class groups of K and % respectively.
Let C be any ideal class in €, and let a be an ideal in C different from a
principal ideal. Suppose that a is principal in K. Then Ngza=a™ is principal
in 2 which contradicts the fact that a is contained in C. Therefore, no non-
principal ideal class in ¢, becomes a principal ideal class in € and hence, the
mapping ¢: €,— € induced by the injection of the ideal group of %2 into the
ideal group of K is an isomorphism. We shall again denote the image of @,
under the isomorphism ¢ by the same notation ¢,. Furthermore, the kernel
of the norm map Nk, : 6x— €, will be denoted by &;. Since m and p are
relatively prime, the norm map Ng, is surjective. Let ¢ be the product of
the norm map Ng, and the isomorphism ¢. Then we have Ker ¢ =8, We
see further that ®, does not contain non-principal ideal classes in €, There-
fore, € is the direct product of €, and K% Let K be a Galois extension of
k. Then we see that €, coincides with the ambiguous p-class group of K
with respect to k.

Thus the following lemma is proved:

LEMMA. Let K be a finite extension of k and p be any prime number
prime to the relative degree of K/k. Then the p-class group Cx of K is the
direct product of the p-class group €, of k and the kernel Rg; of the norm
map Ngp:Cx—Cr If K is a Galois extension of k, then the p-class group of
k coincides with the ambiguous p-class group of K with respect to k.

THEOREM 1. Let E and F be finite extensions of k such that E is a Galots
extension of k and ENF=kFk; let p be any prime number prime to the rela-
tive degree of F/k. Let further K denote the composite field EF. If there
exists no non-trivial unramified abelian extension of F contained in K, then

hep — Dgop
hep = hmp
ProOOF. Let G, €5 €, and 6, be the p-class groups of K, E, F and &
respectively. Let Rz and &5, denote the kernels of the norm map Ngp:Cx
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—@z and the norm map Ny, :6p—@, respectively. Then it follows from
Lemma

€)) Cr=Cg X Q% (direct), Cr=0C, X 8, (direct).

Since the norm is transitive, we see that the image of &,z under the norm
map Ngs is contained in &, Furthermore, we have Ng(€z) €, as each
ideal class in @y contains an ideal of E. Let C(K) and C(F) denote the ab-
solute ideal class groups (in the wide sense) of K and F respectively. By
class field theory, the index of Ng(C(K)) in C(F) is equal to the degree of
the maximal unramified abelian extension of F' contained in K. Therefore, we
have Ng(C(K))=C('). From this it follows that the norm map Ng;:Cr—C€p
is surjective. Using (1), we see further that the restriction of the norm map
Ngir to &g is also surjective. As the norm map Ng,; is homomorphism, we
have
Rpn: D=Rgz: D

and our assertion follows.

In the case p is any prime number prime to the relative degree of K/k,
we see at once that the norm map Ng,:€r— €5 is surjective, so that there
is no need for assuming that there exists no non-trivial unramified abelian
extension of F contained in K.

Let L, be a totally real algebraic number field and let n be any rational
integer prime to the degree of [,. Itis well known that there exists infinitely
many imaginary quadratic number fields, each with class number divisible by
a given rational integer (cf. Ankeny and Chowla or Nagell [6]). There-
fore, we know that there are infinitely many imaginary quadratic number
fields M so that the class number of each M is divisible by » and M, L, are
independent over the rational number field P, i.e. M L,=P. Let L denote
the composite field L,M. Then there exists no non-trivial unramified abelian
extension of L, contained in L. Applying to the extension L/P,
namely putting L=K, L,=F and M =E, we have for any prime factor p of n

hiop = ZL"’ and so hM,pg——%Lﬁ’—.
M:p Lo p

Hence the relative class number of L/L,? is divisible by n, because the class
number of M is divisible by n.

Thus we have the following

THEOREM 2. Let L, be any totally real algebraic number field of finite
degree and let n be any rational integer prime to the degree of L,. Then there
are infinitely many totally imaginary quadratic extensions L of L, so that the

2) The class number of L is divisible by that of L, (cf. Chevalley [2]).
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relative class number of each L/L, is divisible by n.

Let p be an odd prime number and let h; denote the first factor of the
class number of the cyclotomic field P,, (n =0) generated by a primitive p"+!-th
root of unity over the rational number field P. Then we can show another
application of [Theorem 1l.

THEOREM 3. Let K be a Galois extension of degree p™(p—1) over P which
contains the cyclotomic field P, and let K, denote the maximal real subfield
of K. Assume that there exists exactly one ramified prime divisor of Py, which
is further fully ramified for the extension K/Py, Then the class number of
K is divisible by p if and only if the relative class number of K/K, is divisible
by p.

In particular, the class number of the cyclotomic field P, is divisible by p
if and only if the first factor hy is divisible by p.

ProOF. First, from the assumption, we see that K is a quadratic exten-
sion of its maximal real subfield K, and from a theorem of Chevalley [2], that
the relative class number of K/K, is a rational integer. The “if ” part is
clear. We prove the converse. It can be readily verified that the assumptions
of Theorem 4 in [7] are satisfied for the extension K/P., with degree p” and
hence, the class number of P, is divisible by p, under the assumption that
the class number of K is divisible by p. Then we know by Kummer’s theo-
rem that the first factor hy is divisible by p (cf. Hasse [4, §37]). Hence the
relative class number of K/K, is divisible by p, as we see from Theorem 1.

In the excluding case where p=2, it is well known that the class number
of the cyclotomic field P,, is odd and we know further that the class number
of K is odd (cf. Hasse [4, Satz 38] and [7, Theorem 3]).

For example, we consider the splitting field K of a binomial equation

x—p=0

with respect to P, then K is a Galois extension of degree p(p—1) over P con-
taining P,. Let p be a prime divisor of p in P,. As the prime number p is
fully ramified for the extension P,/P, i.e. (p)=p?"!, the prime divisor p is
also fully ramified for the extension K/P,, by Satz 9 in Hasse [3, Ia, §117.
Furthermore, we see that no prime divisor of P, other than p is ramified for
K/P«,. Hence the splitting field K falls under the stated conditions in Theo-
rem 3. The class number of K is divisible by p if and only if the relative
class number of K/K, is divisible by p, where K, denotes the maximal real
subfield of K.

THEOREM 4. The assumptions being the same as in Theorem 1, let Sg/p
denote the kernel of the norm map Ngp: €x— 6, where €y and €, denote the
p-class groups of K and F respectively. Then hg,,/hg,=hpp/hs,, if and only
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if each ideal class in Rz contains an ideal of E.

ProOOF. Let € €, K%z and R, denote the same notations as in the
proof of Theorem 1. Then, as we have seen in the proof of Theorem 1, we
have

(1.1) (‘SK = (‘SE X RK/E (direct)
(1.2) @F - (Sk X z@p/}c (direct) .

Let C be any ideal class in ;. Using (1.1), we can write C=C, - C, with an
ideal class C, in €z and C, in K%,z Then we have 1= Ng;C = Ng;zC, + Ng,zC,,
in which NgC, is contained in €, and Ng,C, is contained in &z;. Thus we
get Ng»C,=1 by (1.2), that is, C, is contained in Q. Let & be the kernel
of the restriction of the norm map Nk, to Rxz: & =R®xzN fx» Then the
ideal class C, is contained in £. Now suppose that h,,/hg,=hp,p/hsp Then,
from (1.1) and (1.2), it follows that (Rgz:1) is equal to (Rp;:1). Therefore,
the restriction of the norm map Ng, to &z is an isomorphism so that 8 =1
and hence, the ideal class C, mentioned above is necessarily the principal ideal
class. Thus we have C=C,. This means that R, is contained in € as
asserted in our theorem. Conversely, suppose that &4, is contained in €.
Then & is contained in €z From (1.1), it then follows that § =1, because &
is contained in 84z Since the restriction of the norm map Ng,» to 8%z is
surjective, K%,z is isomorphic with &z, Our assertion is thus completely
proved.

In the case p is any prime number prime to the relative degree of K/k,
there is no need for assuming that there exists no non-trivial unramified
abelian extension of F' contained in K, because the norm map Ny, is surjec-
tive.

When K is a Galois extension over E the p-class group of E coincides
with the ambiguous p-class group of K with respect to E, as we see from
Lemma. Therefore, Theorem 4 can be expressed in the following way :

The assumptions being the same as in Theorem 1, assume further that K
is a Galois extension over E. Then hg,,/hgp,=hp,p/hip, if and only if Sgr is
contained in the ambiguous p-class group of K with respect to E.
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