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1. Introduction.

Dixmier [T] has proposed a cohomology for Lie rings (that is, Lie alge-
bras over the ring of integers). In this paper we propose a cohomology for
Lie algebras over a ring in which the element 2 is invertible. First we con-
struct a complex over a Lie algebra and then define a cohomology. We then
show that the 0-cohomology module is isomorphic to the submodule of in-
variant elements of the module of coefficients, the 1-cohomology module is
the module of crossed homomorphisms of the Lie algebra into the module of
coefficients modulo the principal homomorphisms, and the 2-cohomology module
is in one-one correspondence with the set of equivalence classes of special {or
singular) extensions of the Lie algebra with the module of coefficients as
kernel. While trying to interpret the 3-cohomology module the task of show-
ing that every element of it is indeed an obstruction becomes too difficult
and it has not been possible to accomplish it.

There is a great similarity between the constructions and proofs given in
this paper and those given in [2], but they do need working out since the
structure of a Lie algebra, thanks to the Jacobi identity, is not as simple as
that of an associative algebra and one cannot be sure of the truth of a
theorem without a comprehensive proof. Those definitions which have not
been given here formally can be obtained from with obvious changes
(e. g. for an associative algebra substitute a Lie algebra).

2. Definition of cohomology.

Let K be a commutative ring with unit element 1 (+0) such that there
exists an element ke K for which 2k=1. Throughout this paper we shall
consider Lie algebras over the ring K. A differential graded Lie algebra over
the ring K is a graded K-module U= Y U, together with (i) a K-homomor-

nz0
phism UQU— U given by u;Qu;— [u,, u,], where u; € U,, u; U; and [u;, u,]
K
€ U4, satisfying the following relations:

2.1) Cu, u]=0, where u € U is homogeneous element of even degree;



276 U. SHUKLA

2.2) Cug u;]= (=1 [u,, u;], where u; € U, u; € Uj;

@3 (—D* g Luyy wed1+H(—D9Cuy, Cu, w01 +H(— 1 Ty, Tuy, u,J]1=0,

where u; € U;, u,e U;, u, € U,; and (ii) K-homomorphism d: U— U such that
(24) dd = Or d(Un) - Un-l; d[uz’ uj] - [duu uj]+(_1)z[ut' du]] ’

where u; € U;, u;e U;. We denote the restriction of d to U, by d,. (Actually
since there exists an element k< K such that 2k =1 the relation (2.1) follows
from but we shall find it convenient to retain it separately.)

A (left) U-representation of U is a K-module M together with a K-homo-
morphism U(%M*»M given by u@m—u - m, where u € U, m e M such that

U (U m)—(—=D¥%u, - (u; - m)="[u,, u;]-m,

where u; € U;, u;= U; and me M. For brevity we call M a (left) U-module.
Let g be a Lie algebra. We shall construct a differential graded Lie al-
gebra U= 3> U, and a homomorphism of differential graded Lie algebras

n0

¢:U—q (the differential and the grading in g being trivial) such that

(i) the sequence of K-modules ~--—+U,,ii—n>U,,_1—>---——>Ulil+ U(,—ig*»O is

exact, and

(ii) there is a map o¢:9q— U, for which o(x, y]) =[o(), 6(y)], where

x, yeq and eo =identity map.

Let X, be a set in one-to-one correspondence with ¢ and let a multiplica-
tion be defined in X, such that the product of any two elements in X, is the
element in X, which corresponds to the product of their images in g. Let
K(X,) be the K-free module with X, as base. The multiplication in X, induces
on K(X,) the structure of a non-associative algebra. The one-to-one corres-
pondence X,—3 induces a K-homomorphism of non-associative algebras
£:K(X,)—g. The inverse map g— X, gives a map d:¢— K(X,) such that
&5 = identity map. We define sets X, -+, X,, -~ by induction over n. Suppose
we have defined the sets X, X,, ---, X,, and an exact sequence of K-modules

‘{n d-]_ €
K(X;) — K(Xp-p)— -+ = K(X) - K(X) —g—0

such that (i) K(X,) is a K-free module with X, as base (0= p=n) and (ii) X,
is a set in one-to-one correspondence with the kernel N,_, of the K-homomor-
phism d,—,: K(X,-) = K(X,-,) for 2<p=<n, while X, is a set in one-to-one
correspondence with the kernel N, of the K-homomorphism &: K(X,)—g. Let
X,+; be a set in one-to-one correspondence with the kernel N, of the K-
homomorphism d,: K(X,) — K(X,_,). Let K(X,.) be the K-free module with
Xn+, as base. The kernel N, being a K-submodule of K(X,) the bijective map
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Xp41— N, induces a K-homomorphism K(X,,,)— N, which when composed
with the inclusion map N,— K(X,) gives a K-homomorphism d,.,: K(X,+,)
— K(X,) such that the sequence

dn+1 dn dy e
K(Xp41) — K(Xp) — K(X,_ ) — -+ — K(X) — K(Xo) —¢—0

is exact.
The direct sum 3 K(X,) is a K-free differential graded module. We shall
nz0

define inductively maps
Xy X X;— Xy (1=0,;=20

(the image of (x;, x;) being denoted by [x;, x,]) which when extended by K-
linearity give to X K(X,) the structure of a K-free non-associative differential
nz0

graded algebra. For =0, j=0 the map X, x X,— X, has already been de-
fined. Suppose that the maps have been defined for i+j <n such that

2.5 d-i+j[xir x]= [d.x,, 2]+ (=D, d_jxj] .

We take d,=0. In order to define the map for i4+j=n+1, consider the ex-
pression

[d_ixix x4+ (=D [x, d_jxj] e K(X,).

It is annulled by d, and so belongs to N,. The element in X,,, which corres-
ponds to it under the one-to-one correspondence X,.,—N, is defined to be
the product [x;, x;]. By this definition the relation[2.5)is true for i4j=n-1.
We observe that K(X,) is not only a K-free module but also a K(X,)-module.

Let X be the sum set 3 X,. Then 3> K(X,)=K(X), the K-free module

nzo nz0

with X as base; indeed it is a K-free differential graded non-associative al-
gebra. Let p be the two-sided ideal generated by the following elements
3(0), [x2py X2p], L2021+ (DY [x;, 1], and (—D[xy, x5 2I]+H(—D9Txy, (x4
x ]+ (=D xy, (x5, 2,17, where x,,€ X,,(020), x,€ X, x;€ X, x, € X,.  The
quotient algebra U= K(X)/p is a differential graded Lie algebra. If U, de-
notes the image of K(X,) under the canonical map K(X)— K(X)/p, we have
U= Y U, with maps d,: U,—U,_; (n=1), d,=0 induced by d, (n=0). The

nzo
homomorphism &: K(X,)—g¢ yields a Lie algebra homomorphism ¢: U,—¢g and

the map G:¢— K(X,) gives a map o¢:g— U, which is such that ¢({x, y])
=[o(x), 0(y)] for x, yeg and e¢s =identity map. We can also define maps
so:Kere— U, and s,_,: Ker d,_,— U, (n >1) with the help of the bijective maps
Xpn—Nyp_; (n=1) such that d;s, and d,s,-, are identity maps.

Let us define with Dixmier [1, p. 63] the algebra G(U) of the graded
K-module U. We recall that G(U) is the (associative) quotient algebra of the
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tensor algebra (over K) of U by the two-sided ideal generated by the ele-
ments of the form

u@v+(—D®v@u, where ue U, ve Ug;

and w@w, where w is a homogeneous element of even degree in U. Every
element of G(U) is a K-linear combination of the elements of the form
Uyl oo Uy, uy€ Uy, 1=1=n, where <{u,|--|u,y denotes the image of
U@ - Qu, in G(U). The image of the unit element 1 of K in G(U) is de-
noted by ). In particular {u) denotes the image in G(U) of the homogeneous
element u of U. Indeed U can also be identified with its image in G(U).
We say that the elemznt {u,|---|u,) is of degree a,+ --- +a, and order n.
We define the total degree of {u,|--|u,)y in G(U) to be the sum of the de-
gree and the order, namely, n+a;+ - +a,. We ndte that G(U) possesses a
unit element, namely, {» which is taken to be of zero degree and zero order.
If u (resp. v) is a homogeneous element of G(U) of degree a (resp. 5) and
order a’ (resp. §’) we have

vluy = (=Dt ujvy.

If U* denotes the sum of U, for n even and U~ denotes the sum of U, for
n odd, then
GU)=EU*)QSWU),

where E(U*)=G(U™) is the exterior algebra of the K-module U* and S(U-)
= G(U~) is the symmetric algebra of the K-module U-.

Let M be a (left) g-module. The K-linear combination of the elements of
the form (u,| - |u,), ;€ Uqyyy 1 =1, -+, n form a sub-K-module of G(U) which
we denote by Ug,,.,«ne For n=0 we take K instead of Ua,,.ap Let

HomK (G(U): M) = ( E SHomK (Ua1,--~,a'n, M)
T

the sum being taken over all finite monotonic increasing sequences of non-
negative integers (ay, ---, a,) including the case n=0. The degree, the order
and the total degree in G(U) induce degree, order and total degree in
Homg (G(U), M). We define a differential 6 in Hom, (G(U), M) such that for
f € Homg (G(U), M) we have

(2.6) Ofuy| e |y = <—1>"+‘[i‘;“1 (— L)t rai=tf gy | oo |dug) - iy >

+ 3 D e el o ] )
= % D QT ] ] 1] 0],

1=i<j=n
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where ¢;;= ; (apa+D. peil, -, i—=1,14+1, -, j—1},g= {i,j} and 4, means
p<q
that u; has to be omitted.
It can be verified that 66f=0. Indeed we can write 6 =4,+0d,, where

n

0uf Syl oo gy = (=)™ Z (=DM 01 f Cuy | oo [ dug| e | ),

i=1
0o oty -+ 14> = (= 1™ L 55 (=1 eudf oty o |84] 10

— 2 (D% Qug udlug 18] e 1] e Jug )]

Isi<jsn

and verify that 03=0, 02=0 and 0,0, = —0,0,.
DEFINITION. The graded cohomology module H* (Hom, (G(U), M)) is called

the cohomology module of the Lie algebra g with ceefficients in the g-module
M. We write

H™(g, M)= H*(Homy (G(U), M)).

3. Interpretations of H°(, M) and H(g, M).

We write o(x)=(x) for xeg and s;,(n)=(n) for ne Kerd,, etc. An
element n € Kere is of the form 3 k(x;), where bk, € K, x,=g and 3 k,x,=0.

i i

An element n e Kerd, is of the form 3 k,(n,), where k;€ K, n;e Kere and
2 kn;=0. ]
7

A 0-cochain is an element of Homg (K, M) and so may be identified with
an element of M. If fe M, then 6f € Homy (U, M) and
3.1 0f{(x)y=x-f, where xeg and (x)eU,.

To avoid cumbersome notation we shall write {x) instead of <{(x)}, {x,]x,)
instead of {(x)|(x,)> etc. If f is a 0O-cocycle, we have x- /=0 for every
xeg. A O-coboundary being the zero element of M it follows that H°g, M)
is isomorphic to the sub-K-module of M consisting of the invariani elements
of M.

A 1l-cochain is an element fe& Homg (U, M) and df< Homy (U,,, M)
+Homy (U,, M) such that

(32) 5f<x1|x2> = _x1f<xz>+x2f<x1>'{'f<|:xh X2:|> ’
@3.3) 5f<n>=;kif<xi>,

where x;, x,, x; €9, k;€ K and Y kux;=0. It should be noted that we have

made use of the relation [ox,, ox,]=0[x,, x,] in expressing the coboundary
of over {x|x,). If f is a l-cocycle and if ¢:g— M is the restriction of



%80 U. SHUKLA

f:Uy— M to g, we have
® e(Lx1, x,]) = %,0(x,) — X,0(xy)
and

(ii) ?kix,:()::tt ;kZQ(x‘L)ZO.

Moreover, if f=0g where g& M, then
o(x)=xg, where rxeg.

Hence H'(g, M) is the K-module of the crossed homomorphisms of g into M
reduced modulo the principal homomorphisms.

4. Interpretation of H2(g, M).

A 2-cochain is an element fe Homg (U, , M)+Hom, (U, M). Then
of € Homg (U, 0,6, M)+Homg (U,,;, M)+Homg (U,, M). We have

4.1 0f x| x5 | XD = x, /<%, | Xg) =X J <X | XD+ 25 [ | 20D — [ 200 %50 ] X5
HCx, 22, > —f 20, x5 12,3,
“4.2) 5f<x|n>:—Zi3k¢f<x|xi>—xf<n>+f<[x' nl;

4.3) 5f<n’>=§}k§f<n;>»

where x, x5, x5, x €9, n=2ki(xy), ks k, x,=q such that Skx,=0 and n’
i 1
= ki(ny), k€ k, n; ker ¢ such that 3 kin,=0.
] ]

If f is a 2-cocycle, it determines two maps

71:aXg—M
72: No— M
satisfying the following identities.
4.4 7:1(x, x)=0
4.5 71(xy X)) = —7.(xy, X)),
4.6) X371 (e, Xo)— 2,710, Xg) 2371 (0, x)— 7. (x5, X2, %5)
+riCxn %1, %) —71(Cxs, %3], %) =0,
@n ikira(x, x) = —xp,(W+7.Lx, 0],
4.8 2 kirs(np=0,

where x,, x,, X, x, x;, n and n, are as before.
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Let &, be the set of all pairs (m, x), where me M, x =g. We define addi-
tion, multiplication and scalar multiplication by elements of K as follows:

4.9) (my, x)+(my, X2) = (My+my+ 7%y, X5), X,+%5) 5
(4.10) [(my, x)), (Mg, x2)]= (xymy— xomy+7.(x4, X5), (X1, X21) 5
(4.11) k(m, x) = (km+71,(k, x), kx),

where by 7,(x;, x,) we mean 7,((x,+x,)—(x)—(x,)) and by 7,(k, x) we mean
7((BX)—k(X)); x,, x,, x€q, me M, k= K. After proving the associative law
for the addition defined above the relations and [(411) can be combined
into a single relation

4.12) ; ky(ms, x)= (‘; kymy+7y,(n), Z@ kixy),

where k;e K, mye M, x;< g and n= (X k;x)— Zk(x) € N,

We shall show that with these operations &, is a Lie algebra. We have

to verify the following relations.
L &+p=n+¢,

E+PD+HL=E+10,
L&, n+L1=L§ n]1+0& (7,
Lé+n L1=[& 1+ L1,
[£,61=0,
L&, Oy, 0+, [L, £114+0C C6. »11=0,
Lk, n]1=FLE, 7],
L&, kpl= k(& 7],
kl(k2$) - (klkz)f s
k(E+n)=kE+ky,

1. (ki t+k)s =RiE+RoE,
where &, 9, { <&, and &, ky, ke K.

Let &=(my, x,), p=(m,, x,) and {=(m,, x;), where m,, m,, mye M and
X1, X,, X, €¢. The relation §+n=y+¢ is trivially verified. To verify (2) we
have

© XN W

p—t
e

{(m,, x)+(m,, x)} +(my, x,) = (m1+m2+7’2(x1» X5), X1+ X,)+(myg, xg)

= (ml—{—mz-l—m3+r2(x1, x2)+72(x1+x2+x3)» X1+ X+ %)
and

(m,, xl)+{(mzr x2)+(m3: x} = (my, x1>+.(m2+ms+7’2(x2’ X3), x2+xa)

= (m,+my+my+7,(x,, x3)+72(x1, Xyt Xy), XX+ x5)

We have to show that
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72((r1 ) — () — (1)) + 7200y + X+ 2) — (2, + 2,) — ()
= 7o((Xa+25) — (6) — (X)) 47 o((x1 2 2x9) — () — (X2 x5))
But this follows from by taking
ny=(xFx)—(x)— (%), M= (x,-F x4 x)—(x;Fx,)—(x,),
ny =X+ x)—(X)—(xs), 1y = (2 x9)—(x)— (x4 %)

and k=1, ki=1, ki=—1, kij=—1.
To verify (3) we have

L(my, x1), (M, x,)+(mg, x)]=[(m,, x)), (m,+ Mg+ 72Xy, X3), Xa+X5)]

= (X1 M+ 2,y + X172 (Xa, Xg)— Koty — X310+ 71(%y, XaH25), [ X, X2, 1)
and

LGy, x0), (Mg, x)THL(0my, x,), (g, %5)]
= (xymy—xymy 1 (%y, %5), [ Xy, %o )4 (Xymg—xgmy+-7,(xy, x5), [xy, x51)
= (x;My— Xymy+x,my— Xgmy +7,(xy, X,)F7.(%5, X5)
+ra([xs 21, Dry 2,1, [x, 234D, 250

We have to show that

217 2%z, Xo)+71(X0 X H20) = 110y, %)+ 7100y, 2+ 720, 21, [y, %,D)
or what is the same thing

71(x0 %o x)—71(x0 X)—71(Xy, Xg) = —x,72(%, X)+7o([xy, 2,7, (3, x50) -

But this follows from by taking x=x, and n=(x,+x,)—(x,)—(x,). The
relation (4) can be verified in a similar manner.

The relation (5) follows from the fact that y,(x, x) = f{x!x>=0. To verify
Jacobi’s identity we calculate

LOmny, x2), [(my, x5), (M, x)1] = [(my, 1,), (xamy—x3my+71(%s, Xa), [ X, X5])]
= (X Xy My~ X, XMy —[ X5, Xy I+ 247, (X,, Xg)
+71(xy, [ 250, [, [, 2,10
Permuting circularly and adding we see that Jacobi’s identity is satisfied if
X7 1(%z X)Xy 1 (Xgy XD+ X571 (X1, XD+ 71 (%1, [Xe, X, D+

TI(XZ’ [xsr xl])+r1<x3: [x1: x2:|)+r2<n) = 0 ’
where

n=(0)—(x;, [x5 251D —xa L5, 2, 3D~ (1, [x1, £,1D =0
since (0)=0(0) =p and
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(€1, L2 2, ]D+(Cxa, Lxss I D+ s [x0 2.1
=[ox, [ox,, 0x,11+[0x,, [0x;, 0x,]]+[0x5, [0x,, 0x,]]ED.
This means 7,(n)=0. Also
x171(Xgs Xt Xo7 1 (X XD+ 257 1(2y, )+ 71(xy, [Xgy x5+ 7:(, (2, 2, 1)
(s [xy, 2,0) = 27,0, x3)— 2,710y, X))+ X57:(%y, ) —7:([ X1, X2, X5)
+7.:(Cx1 x50, x)—71:([x1 %], x,) =0 by virtue of
To verify (7) we note that
Lk(my, x), (my, x)] = [(km,+7,(k, x1), kx1), (M, X,)]

= (kxymy—Rx;m;— x,75(R, x)+7.(kxy, x,), [kxy, x,7)
and

k[ (my, x,), (m,, x)]= k(xlmz—x2m1+71(x1, x5), [ %y, %20)
= (kxlmz_kx2m1+ka(x1: x2)+r2(k, Lxy, 2.0, k[xu x]).
So we have to show that

—xzfz(k: x)+7.(kxy, x,) = ky.(x,, xz)"‘)’z(k’ Lxy, %2 1)

or what is the same thing

71(Rxy, X)— Ry (X1, X5) = Xo75(R, X))+ 72(R, [X1, X5])
that is

_krl(xzr xl)—{_rl(le kx)= —xzrz((kxx)_k(x1))+?’z(_([kx1r X, D+R(xy, x,0) .

This is a consequence of by taking x=x, and n=(kx)—k(x,).

The relation (8) can be verified in a similar manner.

The relations (9), (10) and (11) can be verified in a straight-forward
fashion. We have shown in this way that &, is a Lie algebra, the element
(0,0) being the zero of &, If we define a: M—¢&, and B:€,—¢g by a(m)
=(m, 0) and B(m, x)=1x, we have an exact sequence of Lie algebras

a B
0—>M——+€f—>g——>0 ’
where M has the trivial multiplicative structure. We observe that

[(m,, xy), (m, 0)] = (x;m, 0)

showing that the exact sequence induces on M the given g-module structure.

Let f/ be a 2-cocycle which is cohomologous to f. This means f=f4dg,
where g is a 1-cochain. Let &, be the Lie algebra determined by the 2-cocycle
f’. Since g is a 1l-cochain, it gives a map ¢ :g— M, which is the restriction
of g to g. We define a map ¢:£,—¢& by putting
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é(m, x)=(m+¢(x), x)

where me M, x=g. Then

¢(? ky(m;, x3)) = ¢($ kym,+ 72(n), Zz: kyx;)

= (12 kg + Tz(”)‘i‘Sb(; kixs), Zl: kix:),

and
; kip(mx;) = 22 ki(m;+d(xy), x) = (Z kym+ Zi: kp(x)+71i(n), 22 kixs),

where
n=kix)— Zk(x)eN,mie M, xeg.

But yi(n)—7.(n) = 0g(n) = H(Z ksx)— X kif(x;) by virtue of Therefore
¢(i2 kms, x)) = ;kiéb(mu x5,
where m;e M, x,€g9. Again,

dL(my, xp), (My, x5)]= P(xymy—xymy+7y (%, X5), (x4, X,0)

= (xlmz_x2ml+r1(xl’ x2)+¢([xn %), [xy, %,]),
while

Lo(my, x1), §(my, x)]1=[(m,+P(xy), x1), (My+P(x,), x,)]

:(x1m2'_x2m1+x1¢(xz)“xz¢(x1)+rf(x1’ %), [0, %20)
where m,, my& M and x,, x,g. Since by

T;(xl; xz)“?’l(xv x,) = 0g{ x| %, ) = —x1¢(x2)+x2¢(xl)+¢([x1r X 1),
it follows that

$L(my, x1), (Mg, )] =[P(m,, x,), G(m,, X,)] .

We have now shown that ¢ is a homomorphism of Lie algebras. It is
easy to verify that ¢ is bijective.
Conversely, suppose

O—>Mi6’ﬁ>g—>0

is an exact sequence of Lie algebras, where M is an abelian Lie algebra. Let
p:8—& be a map such that Bp=identity map, and p(—x)= —p(x) where
xeg. This is possible since there exists an element k€ K for which 2k=1.
Let us define two maps

riigXg—M,
and

7e:Ng— M
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by the relations

(4.13) 71(xs, x) = P(Exn xz])_[P(xl); P(xz)] ’
and
w1y i) = Skep(x)

where x, x,, ¥, €0, k;< K and n= Y ky(x;) € N, such that 3 k;x;=0. We ob-

serve that the relations and are satisfied in view of the choice of
p. Also

SNACAENES N NCTHENE ENNCNE Ny SUBNE A REAE o SIS
—7:1(0% %0, ) =[p(xy), (x5, X, D—Lo(x2), p(x:)]]
—Lo(xy), p(Cxy, 2, D—[o(x), p(x)11+Lp(xe), p(Lx, x:D—Lo(x0), p(xz)]]
—p(([x1, x,], 2, D+Lox,, %D, p(xs)]
+p([[xy %51, % D—LpCxy, %51), p(x)]— p([[ X2, X1, %, 1)
+Lo(Cxz, x51), p(x)]= p(Lx1, [x2s 251D+ p(xes [, 2,1D)
+o(Lx5, [xy, X 1D =71:(m),

where

m =[xy, [x5, X, 1D+ (0%, [x, 2, ID 4 [x0 21D

with x, x,, x,€¢. Since mep, r,(m)=0. Therefore the relation is
satisfied.

Again,
S kays(x, 20+ x72(m)—7a([x, nD)
= ko, x)— B hle@), plx)]+Lo(), Dkio(x:)]
= ZkipCx, D=0,

where n=3ky(x;) such that 3 k;x;=0, k;e K, x;€g. Therefore the relation
is satisfied. The relation is trivially satisfied.

After the usual arguments we have

THEOREM 1. There exists a natural one-to-one correspondence between the
two-dimensional cohomology module H*(@g, M) and the set of equivalence classes

of the special extensions of g with kernel M which induce over M the given g-
module structure.
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5. On H3g, M).

Let ) be a Lie algebra, let D(§) denote the Lie algebra of derivations of
b and let I(h) denote the ideal of D(§)) consisting of the inner derivations of
h. Consider the homomorphism of Lie algebras g :%)— D()) which maps every
element of §) into the inner derivation of } induced by it. The kernel of this
homomorphism is the centre Cy of the Lie algebra §) and the image is I()).
So we have an exact sequence of Lie algebras

G.1) 0— Cy —§— D) — D)/ 1) — 0 .

We call D(B)/I(h) the Lie algebra of exterior derivations of §. The centre Cy
is a D()/I(h)-module for the operation Dc= D¢, where ¢ Cy, D < D®)/I1(h)
and D is an element of D(f) belonging to the coset D.

Consider an exact sequence of Lie algebras

G2) 0—p5etg-0.

Since af is an ideal of &, the map ¢— ade, where ade denotes the inner deri-
vation of € induced by the element e of & gives a Lie algebra homomorphism
v:&— D). Since al) is mapped into I(}), v induces a Lie algebra homomorphism

(5.3) 0:9—D)/1®) .

Conversely, suppose we are given Lie algebras ¢ and ) and a homomor-
phism of Lie algebras #:9— D()/I(§). Does there exist a Lie algebra & and
an exact sequence of Lie algebras of the type such that the induced
homomorphism is the same as the given homomorphism #? We note
that ¢ gives to C; a g-module structure. We propose to associate with & an
element of H@g, Cy) called the obstruction of  and we shall answer the ques-
tion in terms of the obstruction of 4.

Let o:9—D() be a map such that o(x) is an element of the coset 6(x),

where x €g and o(—x)= —o(x). Since @ is a homomorphism of Lie algebras,
we have

(GX)) o([xy, 2, D—L0(x), o(x)]= py(x,, %5),

(5.5) Y kio(x) = pr,(n),

where x,, x,, x; €9, B, € K, n=3X k(x) €N, so that 3 k;x;=0, and py,(x;, x,)

and ur,(n) are the inner derivations of § induced by the elements 7,(x,, x,)
and 7,(n) of ). The elements y,(x,, x,) and y,(n) are not well-determined but
the inner derivations py,(x,, x,) and py,(n) are well-determined.

We define a 3-cochain of g with values in C; by the relations
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(5.6) ACAEAESEZUCNI ACTHEDEILENFNEMENETENINEMP S
—1(Cxn 0], x)+r((xy 20, %) =7 ([x, X0, 241,
67 Hxinp = =Zhkiri(x, x)—=o@r(m)+r.{x 1D,
(5.8 ') = Zj) kira(ny) ,

where x,, x,, X, €09, n =2 ky(x;) € N, so that 3 kux;=0 and n’ =X kj(n,) e N,
i 1 i
so that 2 kjn; =0, n; kere.
7

The second member of each of the above three relations belongs to Cj,
because if we apply ¢ to each ons of them and calculate their values we get
zero. We call f an obstruction of 0.

PROPOSITION 1. An obstruction f of @ is a 3-cocycle and any two obstruc-
tions of O are cohomologous. If f is an obstruction of 6, then a 3-cocycle
which is cohomologous to f is also an obstruction.

Proor. The maps y, and r, define a “2-cochain” h of g with values in
b, but with this difference that § is not a g-module. Also the relations (5.6),
(5.7) and (5.8) are similar to the relations (4.1), (4.2) and (4.3) respectively and
we may write f=dJh bearing in mind that A is a “ 2-cochain” of g with values
in §, which is not a g-module. If §) were a g-module we could at once infer
that df=00h=0; but since we do not have

oCx, 1) ="[o(x), o(x)]  and  o(Zkix) = Dkio(x),

where x,, x,, x; g9, we shall have to verify that in the expressions for Jf the
terms which involve

o(Cry 5 D—Lo(x), o] and  o(Skir) =3 kio(x)

cancel out, the other terms getting cancelled as in the identity 60 =0 for 2-
cochains.
We observe that

of € Homg(Us 00,00 Cy )+Homg(U, 0,1, Cy )+Hom (U, 5, Cy)
+Homg(U,,;, Cy)+Homg(Us, Cs) .
It is a matter of straightforward verification that
Of< X, %51 X3 | 24> =0, 01y | | m ) =0, 0f< x| m” ) =0, 6K ny|ny > =0, 0f{n”> =0,

where x,, x,, X5, X, €6, 1, ny, B, N, n’ N, n” €N, Hence f is a 3-cocycle.
In order to show that two obstructions of # are cohomologous we note
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that f depends upon the choice of ¢ and h=(y, 7,). First we shall show
that if we choose a second map ¢’:g— D() such that ¢/(x) is an element of
the coset 6(x), where x ¢ and ¢/(—x) = —¢’(x), we can choose i in such a
way that f remains the same. Indeed ¢’—o has its values in pf since o’(x)
and o(x) belong to the same coset 0(x), where x =q. Let us write

o/(x) = o (x)+pr(x),
where x =g and z(x) ). Then using and we have
o' (Lx1, 2. D—L0'(x0), 0’ (x)] = py1(xy, x)+p{z(x 2,0
—Lz(xp), o(x)1—Lo(x), v(x)1—[z(xy), v(x)1}

and
zi: ko’ (x) = prz(n)er(‘Z kit(xs)),

where n= > k(x,) € N,., We choose
i

7i(xy, %) = 1:(xy, %)+ (xy, 2, D—[7(x), 0(x5)]
"[a(-xl>r (x)]—Le(xy), 7(xp)],
H) = 1a)+ S e

If f7 is the 3-cocycle determined by ¢’ and (7], ys), then straightforward cal-
culations of f/{x,|x;|x;>, f/{x|n)> and f/(n’) show that /' =/.

If, however, we keep ¢ fixed and choose h’/=(yi, ys) instead of h=(y,, 7.
such that ph’= puh, then h'—h =g has values in Cy and so is a 2-cochain of
g with values in Cy. If f’ is the 3-cocycle determined by A’ (and o), then

f'=0n =0(h+g)=/f+og

showing that the two obstructions f and f’ are cohomologous.

Finally, given an obstruction f determined by ¢ and h and a 3-cocycle f”
cohomblogous to f we have f/ =f+40g, where g is a 2-cochain with values in
Cy. Choose h/’=h+g. This choice is permissible since ph'= puh+pg= ph.
Then f'=f+0g=0h+0g=0(h-+g)=0h' showing that f is also an obstruction.
This proves the proposition completely.

The cohomology class &; of H%(g, Cy) determined by f is called the ob-
struction of . We are now in a position to answer the question raised at the
beginning of this section.

THEOREM 2. A homomorphism 6 :9— D(©)/I(9) is induced by an extension
of ¢ with kernel § if and only if the obstruction &,=0.

ProoOF. Let

Oqﬁ—igig—)o
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be an extension which induces 6. Let p:g—& be a map such that p(—x)
= —p(x), where xeg, such that fp=identity. We take o:9— D(h) by com-
posing p with v:&— D().

Then we can choose 7, and 7, such that

71(x1, x) = p(Lxy, %, ) —Lp(xy), p(x)]
7o) = % kip(x:),
where x,, x,eq, n< Kere. We note that the restriction of v to § is p. If we

now substitute these values of y, and 7, in [(5.6),[5.7) and [5.8), we find f=0.

Conversely, suppose £y=0. Then by virtue of we can choose
o and h=(y,, 7,) such that f=0. Consider the set £ consisting of element of
the form (a, x) where a el and x g and define the operations as follows

;ki(au X)) = (Zi) kiai+7.(m), 2 kixy),

[(ay, xy), (ay, x,)] = (a,a,+0(x)a,—0o(x)a,+7,(xs, x5), [ X1, %,0),
where x, x,, x; €0, by e K, n=C kix)—2 k(x;) € N,. It can be easily verified

that these operations satisfy the eleven identities of a Lie algebra, since f=0.
We observe that (0, 0) is the zero of the Lie algebra € and that € is induced
by the extension

e B

given by a(a)=(a, 0) and f(a, x)=x, where a€), x=q.

REMARK. In order to give a complete interpretation of H3(g, M) it remains
to prove the following theorem: Let g be a Lie algebra and let M be a g-
module. Let f be a 3-cocycle of ¢ with values in M. Then there exists a
Lie algebra %) having M as centre and a homomorphism @& :g— D(0)/I(§) which
induces on M the given g-module structure such that f is an obstruction of 4.
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