The notion of restricted ideles with application to some extension fields II By Yoshiomi FURUTA (Received Jan. 10, 1966) Let k be an algebraic number field of finite degree, K be a normal extension of k of degree n, and $\mathfrak S$ be its galois group. Denote by s resp. $\mathfrak S$ the set of all primes of k resp. of K which has degree 1 in K/k. We defined in the preceding paper [3], which will be referred to as RI, the restricted idele group J_s resp. $J_{\mathfrak S}$ of k resp. of K. And we proved that there is a one to one correspondence between some ($\mathfrak S$ -invariant $\mathfrak S$ -admissible) closed subgroups H of $J_{\mathfrak S}$ and abelian extensions M of K normal over k. In this paper we shall strengthen the above consequence and the condition of H to be \hat{s} -admissible in RI, by studying the norm residue mapping of $J_{\hat{s}}$ to the group of the maximal abelian extension (theorem 1 and 2). Moreover we shall determine the conductor of the field M corresponding to H (theorem 3). Since the \hat{s} -restricted idele group $J_{\hat{s}}$ of K is \mathfrak{G} -isomorphic to the direct product $J_{\hat{s}}^n$ of n-folds of the s-restricted idele group $J_{\hat{s}}$ of k, H is considered a subgroup of $J_{\hat{s}}^n$. So it will be interest to characterize the condition of \hat{s} -admissibility by terms of the ground field k. We shall do it for a special case of K/k, by substantially using the theorem 2 (theorem 4). #### § 1. Norm residue symbols. Let k be an any algebraic number field of finite degree and $J=J_k$ be the (ordinary) idele group of k. Let S=S(k) be the set of all (finite or infinite) primes $\mathfrak p$ of k, s be a subset of S, and s' be its complement in S; S-s. We defined in RI the s-restricted idele group J_s by the restricted direct product of $\mathfrak p$ -adic completions $k_{\mathfrak p}$ over $\mathfrak p$ -adic unit groups $U_{\mathfrak p}$ of k, where $\mathfrak p$ runs over s. Then we have (1) $$J = J_s \times J_{s'}$$ (direct). We shall fix this isomorphism and embed naturally J_s into J. Denote by π_s the projection of J to J_s . The s-restriction ρ_s is defined by any subset A of J_s by (2) $$\rho_s(A) = \pi_s(A \cap J_s).$$ 248 Y. Furuta For any normal extension K/k, denote by $\mathfrak{G}(K/k)$ its galois group. Let A_k be the maximal abelian extension of k and \mathfrak{G}_k be its galois group, which is the projective limit of $\mathfrak{G}(A/k)$ of abelian extensions A over k of finite degree. For any $a \in J$ and any abelian extension A/k of finite degree, let (a, A/k) be the norm residue symbol. Let further (a, k) be the (generalized) norm residue symbol of k, which is defined as an element of \mathfrak{G}_k whose $\mathfrak{G}(A/k)$ component is (a, A/k). Then (a, k) gives a homomorphism of J_k onto \mathfrak{G}_k . We denote this homomorphism by Φ and call the reciprocity map. Denoting by $\mathfrak{a}_{\mathfrak{p}}$ the \mathfrak{p} -component of \mathfrak{a} , we have (3) $$(\mathfrak{a}, k) = \prod_{\mathfrak{p} \in S} (\mathfrak{a}_{\mathfrak{p}}, k_{\mathfrak{p}})$$ where (a_p, k_p) is the (generalized) local norm residue symbol. For any subset s of S denote by Φ_s the restriction of Φ to J_s . Then (4) $$\varPhi_s(\mathfrak{a}_s) = (\mathfrak{a}_s, k) = \prod_{\mathfrak{b} \in s} (\mathfrak{a}_{\mathfrak{b}}, k_{\mathfrak{b}})$$ for any $a_s \in J_s$. Moreover we have immediately from the definition (5) $$\rho_s(\Phi^{-1}(\mathfrak{H})) = \Phi_s^{-1}(\mathfrak{H})$$ for any subgroup \mathfrak{H} of $\mathfrak{G}_k^{(1)}$. Now let K be a normal extension field of k of finite degree and denote by S(K/k) the set of all primes of k which are of degree 1 in K/k. Moreover denote by \hat{S} the set of all primes of K and by $\hat{S}(K/k)$ the set of primes of K whose norms belong to S(K/k). Put S(K/k) = s, $\hat{S}(K/k) = \hat{s}$. Let A_K be as before the maximal abelian extension of K, and \mathfrak{G}_K its galois group. Let further M_1, M_2, \cdots be a sequence of abelian extensions of K such that $k \subset M_1 \subset M_2, \cdots$, every M_i is normal over k, and the union of all M_i is equal to A_K . Then \mathfrak{G}_K is equal to the projective limit of $\mathfrak{G}(M_i/K)$. So we denote an element σ of \mathfrak{G}_K by $\sigma = \{\sigma_i\}$ where $\sigma_i \in \mathfrak{G}(M_i/K)$. Then $\{\sigma_i\}$ belongs to \mathfrak{G}_K if and only if the restriction of σ_i to M_j is equal to σ_j when $i \geq j$. Denote by D_K the complete inverse image of the connected component of the unity by the canonical homomorphism of the ordinary idele group J_K to the ordinary idele class group C_K . Then we have THEOREM 1. The image of the norm residue mapping Φ_s of J_s is equal to \mathfrak{G}_K , and the kernel of Φ_s is equal to $\rho_s(D_K)$. Hence we have $J_s/\rho_s(D) = \mathfrak{G}_K$. PROOF. Notations being as above, $\{\sigma_i\}$ be an any element of \mathfrak{G}_K where $\sigma_i \in \mathfrak{G}(M_i/K)$. Let \mathfrak{a}_i be an element of J_s such that $\sigma_i = (\mathfrak{a}_i, M_i/K)$, whose existence follows from theorem 1 in RI. Let further $H_s^{(i)}$ be the subgroup of J_s corresponding to M_i by theorem 2 in RI. Then $\mathfrak{a}_i H_s^{(i)} \supset \mathfrak{a}_j H_s^{(j)}$ when ¹⁾ By Φ^{-1} we mean always the complete converse image. $j \ge i$. Let $\bigcap_i \alpha_i H_i^{(i)} = \alpha_i$, whose existence in J_i follows from that $H_i^{(i)}$ is open and J_i is locally compact. Then $(\alpha_i, M_i/K) = (\alpha_i, M_i/K) = \sigma_i$ for every i. Hence we have $\Phi_i(\alpha_i) = \sigma_i$ which proves the first assersion of the theorem. Since the kernel of Φ is D_K , the other assertions of the theorem follows immediately from the definition of Φ_i . We called in RI a subgroup $H_{\hat{s}}$ of $J_{\hat{s}}$ is \hat{s} -admissible if $H_{\hat{s}} = \rho_{\hat{s}}(\overline{H_{\hat{s}}D_K})$, where the bar stand for the closure in J_K . Now we have THEOREM 2. Let H_s be a closed subgroup of J_s of finite index. Then H_s is \hat{s} -admissible if and only if H_s contains $\rho_s(D_K)$. If H_s is \hat{s} -admissible, then there exists uniquely the admissible² subgroup H of J of finite index such that $\rho_s(H) = H_s$. When that is so we have moreover $\Phi(H) = \Phi_s(H_s)$. PROOF. We first note that \mathfrak{G}_K is compact, J resp. J_s is locally compact, and Φ resp. Φ_s maps J resp. J_s onto \mathfrak{G}_K . Hence both Φ and Φ_s are open⁸⁾. Suppose that H_s contains $\rho_s(D_K)$, which is the kernel of Φ_s . Put $\Phi_s(H_s) = \mathfrak{F}$. Then since Φ_s is an open and onto mapping, \mathfrak{F} is a closed subgroup of \mathfrak{G}_K of finite index. Put $H = \Phi^{-1}(\mathfrak{F})$. Then H is an admissible subgroup of J of finite index, and $\rho_s(H) = \rho_s(\Phi^{-1}(\mathfrak{F})) = \Phi_s^{-1}(\mathfrak{F}) = \Phi_s^{-1}(\Phi_s(H_s)) = H_s$ by (5). Suppose that H' be also an admissible subgroup of J of finite index such that $\rho_{\mathfrak{s}}(H')=H_{\mathfrak{s}}$. Put $\Phi(H')=\mathfrak{H}'$. Then by using (5), $\Phi_{\mathfrak{s}}^{-1}(\mathfrak{H}')=\rho_{\mathfrak{s}}(\Phi^{-1}(\mathfrak{H}'))=\rho_{\mathfrak{s}}(H')=H_{\mathfrak{s}}$. Hence $\mathfrak{H}'=\mathfrak{H}'=\mathfrak{H}$. Then since both H and H' are admissible and closed in J, we have H=H'. Thus the last two assertions of the theorem are proved. The assertion about the \mathfrak{s} -admissibility is now an immediate consequence of the definition. ### § 2. Conductor. Let K/k be as before a normal extension of finite degree, and put s=S(K/k), $\hat{s}=\hat{S}(K/k)$. Let further $H_{\hat{s}}$ be an \hat{s} -admissible subgroup of $J_{\hat{s}}$ of finite degree. Then by theorem 2 there exists an abelian extension M of K which corresponds to the admissible subgroup H by means of the class field theory, where $\rho_{\hat{s}}(H)=H_{\hat{s}}$. We shall call such an M the abelian extension of K corresponding to $H_{\hat{s}}$. In this section we shall study the conductor of M/K. Let \mathfrak{P} be a prime of K and $\nu_{\mathfrak{P}}$ be a non negative integer. If \mathfrak{P} is archimedean, $\nu_{\mathfrak{P}}=0$ or 1. For $\mathfrak{a}_{\mathfrak{P}}\in K_{\mathfrak{P}}$ we define the congruence $\mathfrak{a}_{\mathfrak{P}}\equiv 1$ (mod. $\mathfrak{P}^{\nu_{\mathfrak{P}}}$) to mean the usual congruence if \mathfrak{P} finite and $\nu_{\mathfrak{P}}\geq 1$; $\mathfrak{a}_{\mathfrak{P}}$ is a \mathfrak{P} -unit if \mathfrak{P} finite and $\nu_{\mathfrak{P}}=0$; $\mathfrak{a}_{\mathfrak{P}}>0$ if \mathfrak{P} real and $\nu_{\mathfrak{P}}=1$; and if \mathfrak{P} is complex, or if \mathfrak{P} is real but $\nu_{\mathfrak{P}}=0$, then we put no restriction on $\mathfrak{a}_{\mathfrak{P}}$. Denote by $\gamma_{\mathfrak{P}}(\mathfrak{P}^{\nu_{\mathfrak{P}}})$ the ²⁾ This means that H is closed and contains D_K . ³⁾ See Pontrjagin [4], Ch. 3, Theorem 13. ⁴⁾ See Artin-Tate [2], Ch. 8, 2. 250 Y. FURUTA group of all elements $\mathfrak{a}_{\mathfrak{P}}$ of $K_{\mathfrak{P}}$ such that $\mathfrak{a}_{\mathfrak{P}} \equiv 1 \pmod{\mathfrak{P}^{\nu_{\mathfrak{P}}}}$. Furthermore for an idele \mathfrak{a} and an integral divisor $\mathfrak{m} = \prod_{\mathfrak{P}} \mathfrak{P}^{\nu_{\mathfrak{P}}}$ define $\mathfrak{a} \equiv 1 \pmod{\mathfrak{m}}$ to mean $\mathfrak{a}_{\mathfrak{P}} \equiv 1 \pmod{\mathfrak{P}^{\nu_{\mathfrak{P}}}}$ for every \mathfrak{P} , and denote by $\gamma(\mathfrak{m})$ the group of all such ideles. For an integral divisor \mathfrak{m} we denote by \mathfrak{m}_s resp. $\mathfrak{m}_{s'}$ its s resp. s'-part, and put $\gamma_s(\mathfrak{m}_s) = \rho_s(\gamma(\mathfrak{m}_s))$, $\gamma_{s'}(\mathfrak{m}_s) = \rho_{s'}(\gamma(\mathfrak{m}_{s'}))$. Now let H be an admissible subgroup of J_K of finite index and M be the abelian extension of K corresponding to H by means of the class field theory. Then⁵⁾ it is well known that the conductor of M/K is equal to an integral divisor $\mathfrak{f} = \prod_{\mathfrak{P}} \mathfrak{f}_{\mathfrak{P}}$ where $\mathfrak{f}_{\mathfrak{P}} = \mathfrak{P}^{\nu_{\mathfrak{P}}}$, $\nu_{\mathfrak{P}}$ is the smallest non-negative integer such that $H \supset \gamma_{\mathfrak{P}}(\mathfrak{f}_{\mathfrak{P}})$ for every prime \mathfrak{P} . LEMMA 1. Let $A_{\mathfrak{P}}$ be any subgroup of $K_{\mathfrak{P}}$. Then $\Phi_{\mathfrak{s}}^{-1}(\Phi(A_{\mathfrak{P}})) = A_{\mathfrak{P}} \cdot \rho_{\mathfrak{s}}(D_{K})$ or $= \pi_{\mathfrak{s}}(D_{K} \cap (J_{\mathfrak{s}} \times A_{\mathfrak{P}}))$ according to $\mathfrak{P} \in \hat{\mathfrak{s}}$ or $\in \hat{\mathfrak{s}}'$. PROOF. If $\mathfrak{P} \in \mathfrak{s}$, then $\Phi_{\mathfrak{s}}^{-1}(\Phi(A_{\mathfrak{P}})) = \Phi_{\mathfrak{s}}^{-1}(\Phi_{\mathfrak{s}}(A_{\mathfrak{P}})) = A_{\mathfrak{P}} \cdot \Phi_{\mathfrak{s}}^{-1}(1) = A_{\mathfrak{P}} \cdot \rho_{\mathfrak{s}}(D_{K})$ by theorem 1. If $\mathfrak{P} \in \mathfrak{s}'$, then $\Phi_{\mathfrak{s}}^{-1}(\Phi(A_{\mathfrak{P}}))$ is of all $\mathfrak{a} \in J_{\mathfrak{s}}$ such that $\Phi_{\mathfrak{s}}(\mathfrak{a}) = \Phi(\mathfrak{b}_{\mathfrak{P}})$ for some $\mathfrak{a}_{\mathfrak{P}} \in A_{\mathfrak{P}}$. This is equivalent to $\mathfrak{ab}_{\overline{\mathfrak{p}}}^{1} \in D_{K}$, since the kernel of Φ is D_{K} . Hence $\Phi_{\mathfrak{s}}^{-1}(\Phi(A_{\mathfrak{P}})) = \pi_{\mathfrak{s}}(D_{K} \cap (J_{\mathfrak{s}} \times A_{\mathfrak{P}}))$. Thus the lemma is proved. THEOREM 3. Let $H_{\mathfrak{s}}$ be an $\hat{\mathfrak{s}}$ -admissible subgroup of $J_{\hat{\mathfrak{s}}}$ and M be the abelian extension of K corresponding to $H_{\mathfrak{s}}$. Then the conductor of M/K is equal to an integral divisor $\mathfrak{f} = \prod_{\mathfrak{P}} f_{\mathfrak{P}}$ where $\mathfrak{f}_{\mathfrak{P}} = \mathfrak{P}^{\nu_{\mathfrak{P}}}$, $\nu_{\mathfrak{P}}$ is the smallest non negative integer such that $H_{\mathfrak{s}} \supset \gamma_{\mathfrak{P}}(\mathfrak{f}_{\mathfrak{P}})$ or $\supset \pi_{\mathfrak{s}}(D_K \cap (J_{\mathfrak{s}} \times \gamma(\mathfrak{f}_{\mathfrak{P}})))$ according to $\mathfrak{P} \in \mathfrak{s}$ or $\mathfrak{s} \in \mathfrak{s}'$. PROOF. We have $\Phi^{-1}(\Phi_{\delta}(H_{\delta})) = H$ by theorem 2. Hence $H \supset \gamma_{\mathfrak{P}}(\mathfrak{f}_{\mathfrak{P}})$ if and only if $\Phi_{\delta}(H_{\delta}) \supset \Phi(\gamma_{\mathfrak{P}}(\mathfrak{f}_{\mathfrak{P}}))$. This is equivalent that $H_{\delta} \supset \Phi_{\delta}^{-1}(\Phi(\gamma_{\mathfrak{P}}(\mathfrak{f}_{\mathfrak{P}})))$, since H_{δ} is \hat{s} -admissible. Then the theorem implies from lemma 1 immediately. We note that the proposition 5 in RI implies that the condition $H_s \supset \pi_s(D_K \cap (J_s \times \gamma(\mathfrak{f}_{\mathfrak{P}})))$ can be replaced by $H_s \supset \pi_s(K^{\times} \cap (J_s \times \gamma(\mathfrak{f}_{\mathfrak{P}})))$. # §3. Condition of the admissibility in the ground field (special case). Let K/k be a normal extension of finite degree, and put s = S(K/k), $\hat{s} = \hat{S}(K/k)$. It is easily proved that the number of independent units of K is equal to that of k if and only if k is totally real and K is totally imaginary and quadratic over k. In this case we shall characterize in terms of the ground field k the condition of a subgroup of $f_{\hat{s}}$ to be \hat{s} -admissible. We have proved in theorem 2 that a subgroup $H_{\hat{s}}$ of $J_{\hat{s}}$ is \hat{s} -admissible if and only if $H_{\hat{s}}$ contains $\rho_{\hat{s}}(D_K)$. Therefore our purpose in this section is to study on $\rho_{\hat{s}}(D_K)$. The structure of D_K is known by Artin [1] as follows⁶⁾: ⁵⁾ See for instance Artin-Tate [2], Ch. 8, 2. ⁶⁾ Cf. Artin and Tate [2], Ch. 9. Let U be the group of unit ideles of K, and $U_{\mathfrak{P}}$ be the group of \mathfrak{P} -adic units of $K_{\mathfrak{P}}$. Then we have $$(6) U = \bar{U}\,\tilde{U}$$ where $\bar{U} = \prod_{\mathfrak{P} \neq \mathfrak{P}_{\infty}} U_{\mathfrak{P}}$ and $\tilde{U} = \prod_{\mathfrak{P}_{\infty}} U_{\mathfrak{P}_{\infty}}$. We split each unit idele \mathfrak{a} as a product $\mathfrak{a} = \bar{\mathfrak{a}} \tilde{\mathfrak{a}}$. where $\bar{\mathfrak{a}} \in \bar{U}$, $\tilde{\mathfrak{a}} \in \tilde{U}$ and embedded ordinarily in U. Denote by \bar{Z} the completion of the group Z of rational integers under the topology whose fundamental system of neighborhoods of 0 consists of all ideals of Z. Put $V = \bar{Z} + R$ (direct), where R is the group of real numbers, and denote any element $\lambda \in V$ as $\lambda = (x, h)$, where $x \in \bar{Z}$ and $h \in R$. For any element $\mathfrak{a} = U$, the power \mathfrak{a}^{λ} is defined by $$\mathfrak{a}^{\lambda} = \bar{\mathfrak{a}}^{x} \widetilde{\mathfrak{a}}^{h} ,$$ where $\bar{\alpha}^x$ is the generalization of the ordinary power with regard to the above topology. Let $\phi_j(t)$ the idele which has the component $e^{2\pi it}$ at j-th complex prime and 1 at all other primes. Denote by T the group generated by all such $\phi_j(t)$, $j=1,\cdots,r_2$. Let $\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_r$ be a system of independent totally positive units of K, and denote by E_K the group of all elements $\varepsilon_i^{\lambda_1}\cdots\varepsilon_r^{\lambda_r}$ where $\lambda_i=(x_i,h_i)\in V$ $(i=1,\cdots,r)$. Furthermore denote by L the group of ideles which has a real number as the component at the infinite prime fixed once for all, and 1 at all other primes. Then we have by Artin [1] $$(9) D_{\kappa} = E_{\kappa} \cdot T \cdot L \cdot K^*,$$ where K^* is the multiplicative group of non zero elements of K which is embedded ordinarily in J_K . Now let k be a totally real number field of finite degree, and K be a totally imaginary and quadratic over k. Then we can take in k the above system $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_r$ of independent units of K, and we have (10) $$D_{k} = E \cdot L \cdot k^{*},$$ $$D_{K} = E \cdot T \cdot L \cdot K^{*},$$ where $E = E_k = E_K$. LEMMA 2. Let K/k be as above. Then we have $$\rho_s(D_K) = \rho_s(D_k)$$. PROOF. Let r be the number of independent units of k, which is equal to that of K. Generally denote by α , ϵ , ϕ and ν elements of K, E, T and L respectively. Then $\rho_{\delta}(D_K)$ is of all $\pi_{\delta}(\epsilon\phi\nu\alpha)$ such that $\pi_{\delta'}(\epsilon\phi\nu\alpha)=1$ by (10). ⁷⁾ We always embed J_k into J_K by ordinal way. 252 Y. FURUTA This is equal to the set of all $\pi_s(\epsilon\alpha^{-1})$ such that $\pi_{s'}(\epsilon) = \pi_{s'}(\phi\nu\alpha)$. By the assumption of K/k, all infinite primes of K is contained in \hat{s}' . Hence $\pi_{s'}(\epsilon) = \pi_{s'}(\phi\nu\alpha)$ is equivalent to $\pi_{s'}(\bar{\epsilon}) = \pi_{s'}(\alpha)$ and $\pi_{s'}(\bar{\epsilon}) = \pi_{s'}(\phi\nu\bar{\alpha})$. But the last condition is unnecessary. Because for any $\alpha \in K$ the equality $\bar{\epsilon} = 1$ always a solution with respect to $\bar{\epsilon}$, ϕ , ν . Now for any $\sigma \in \mathfrak{G}(K/k)$ and $x \in \bar{Z}$ we have easily $(\bar{\epsilon}^x)^{\sigma} = (\bar{\epsilon}^{\sigma})^x$ by the definition of the generalized power. Then since $\bar{e} = \bar{\epsilon}_1^{x_1} \cdots \bar{\epsilon}_r^{x_r}$ where $\epsilon_i \in k$, $\pi_s(\bar{\epsilon}) = \pi_s(\alpha)$ implies $\alpha \in k$. Hence $\rho_s(D_K)$ consists of all $\pi_s(\epsilon\alpha^{-1})$ such that $\pi_s(\bar{\epsilon}) = \pi_s(\alpha)$ where $\alpha \in k$. By the same way as above we see $\rho_s(D_k)$ consists of all $\pi_s(\epsilon \alpha^{-1})$ such that $\pi_{s'}(\bar{\epsilon}) = \pi_{s'}(\alpha)$ where $\alpha \in k$. Hence we have the lemma. Now by theorem 2 and lemma 2 we have Theorem 4. Let k be a totally real algebraic number field of finite degree and K be its quadratic extension which is totally imaginary. Put s = S(K/k). We embed k^* and $\rho_s(D_k)$ diagonaly into the direct product $J_s \times J_s$ of s-restricted idele groups of k. Then there is a following one to one correspondence between the set of all closed subgroups H of $J_s \times J_s$ of finite index which contains $\rho_s(D_k)$ and the set of all abelian extensions M of K of finite degree: When M corresponds to H, a prime $\mathfrak p$ of k splits completely in M if and only if $\mathfrak p \in s$ and $k_{\mathfrak p} \times k_{\mathfrak p} \subset H$. Mathematical Institute Kanazawa University # References - [1] E. Artin, Representatives of the connected component of the idele class group, Proc. Int. Symp. Algebraic Number Theory, Tokyo-Nikko (1955), Science Council of Japan, Tokyo, 1956. - [2] E. Artin and J. Tate, Class field theory, Princeton notes (1951), destributed by Harvard University. - [3] Y. Furuta, The notion of restricted ideles with application to some extension fields, Nagoya Math. J., 27 (1966), 121-132. - [4] L.S. Pontrjagin, Topological groups, Princeton, 1946.