# The notion of restricted ideles with application to some extension fields II

By Yoshiomi FURUTA

(Received Jan. 10, 1966)

Let k be an algebraic number field of finite degree, K be a normal extension of k of degree n, and  $\mathfrak S$  be its galois group. Denote by s resp.  $\mathfrak S$  the set of all primes of k resp. of K which has degree 1 in K/k. We defined in the preceding paper [3], which will be referred to as RI, the restricted idele group  $J_s$  resp.  $J_{\mathfrak S}$  of k resp. of K. And we proved that there is a one to one correspondence between some ( $\mathfrak S$ -invariant  $\mathfrak S$ -admissible) closed subgroups H of  $J_{\mathfrak S}$  and abelian extensions M of K normal over k.

In this paper we shall strengthen the above consequence and the condition of H to be  $\hat{s}$ -admissible in RI, by studying the norm residue mapping of  $J_{\hat{s}}$  to the group of the maximal abelian extension (theorem 1 and 2). Moreover we shall determine the conductor of the field M corresponding to H (theorem 3). Since the  $\hat{s}$ -restricted idele group  $J_{\hat{s}}$  of K is  $\mathfrak{G}$ -isomorphic to the direct product  $J_{\hat{s}}^n$  of n-folds of the s-restricted idele group  $J_{\hat{s}}$  of k, H is considered a subgroup of  $J_{\hat{s}}^n$ . So it will be interest to characterize the condition of  $\hat{s}$ -admissibility by terms of the ground field k. We shall do it for a special case of K/k, by substantially using the theorem 2 (theorem 4).

#### § 1. Norm residue symbols.

Let k be an any algebraic number field of finite degree and  $J=J_k$  be the (ordinary) idele group of k. Let S=S(k) be the set of all (finite or infinite) primes  $\mathfrak p$  of k, s be a subset of S, and s' be its complement in S; S-s. We defined in RI the s-restricted idele group  $J_s$  by the restricted direct product of  $\mathfrak p$ -adic completions  $k_{\mathfrak p}$  over  $\mathfrak p$ -adic unit groups  $U_{\mathfrak p}$  of k, where  $\mathfrak p$  runs over s.

Then we have

(1) 
$$J = J_s \times J_{s'}$$
 (direct).

We shall fix this isomorphism and embed naturally  $J_s$  into J. Denote by  $\pi_s$  the projection of J to  $J_s$ . The s-restriction  $\rho_s$  is defined by any subset A of  $J_s$  by

(2) 
$$\rho_s(A) = \pi_s(A \cap J_s).$$

248 Y. Furuta

For any normal extension K/k, denote by  $\mathfrak{G}(K/k)$  its galois group. Let  $A_k$  be the maximal abelian extension of k and  $\mathfrak{G}_k$  be its galois group, which is the projective limit of  $\mathfrak{G}(A/k)$  of abelian extensions A over k of finite degree.

For any  $a \in J$  and any abelian extension A/k of finite degree, let (a, A/k) be the norm residue symbol. Let further (a, k) be the (generalized) norm residue symbol of k, which is defined as an element of  $\mathfrak{G}_k$  whose  $\mathfrak{G}(A/k)$  component is (a, A/k). Then (a, k) gives a homomorphism of  $J_k$  onto  $\mathfrak{G}_k$ . We denote this homomorphism by  $\Phi$  and call the reciprocity map. Denoting by  $\mathfrak{a}_{\mathfrak{p}}$  the  $\mathfrak{p}$ -component of  $\mathfrak{a}$ , we have

(3) 
$$(\mathfrak{a}, k) = \prod_{\mathfrak{p} \in S} (\mathfrak{a}_{\mathfrak{p}}, k_{\mathfrak{p}})$$

where  $(a_p, k_p)$  is the (generalized) local norm residue symbol. For any subset s of S denote by  $\Phi_s$  the restriction of  $\Phi$  to  $J_s$ . Then

(4) 
$$\varPhi_s(\mathfrak{a}_s) = (\mathfrak{a}_s, k) = \prod_{\mathfrak{b} \in s} (\mathfrak{a}_{\mathfrak{b}}, k_{\mathfrak{b}})$$

for any  $a_s \in J_s$ . Moreover we have immediately from the definition

(5) 
$$\rho_s(\Phi^{-1}(\mathfrak{H})) = \Phi_s^{-1}(\mathfrak{H})$$

for any subgroup  $\mathfrak{H}$  of  $\mathfrak{G}_k^{(1)}$ .

Now let K be a normal extension field of k of finite degree and denote by S(K/k) the set of all primes of k which are of degree 1 in K/k. Moreover denote by  $\hat{S}$  the set of all primes of K and by  $\hat{S}(K/k)$  the set of primes of K whose norms belong to S(K/k). Put S(K/k) = s,  $\hat{S}(K/k) = \hat{s}$ .

Let  $A_K$  be as before the maximal abelian extension of K, and  $\mathfrak{G}_K$  its galois group. Let further  $M_1, M_2, \cdots$  be a sequence of abelian extensions of K such that  $k \subset M_1 \subset M_2, \cdots$ , every  $M_i$  is normal over k, and the union of all  $M_i$  is equal to  $A_K$ . Then  $\mathfrak{G}_K$  is equal to the projective limit of  $\mathfrak{G}(M_i/K)$ . So we denote an element  $\sigma$  of  $\mathfrak{G}_K$  by  $\sigma = \{\sigma_i\}$  where  $\sigma_i \in \mathfrak{G}(M_i/K)$ . Then  $\{\sigma_i\}$  belongs to  $\mathfrak{G}_K$  if and only if the restriction of  $\sigma_i$  to  $M_j$  is equal to  $\sigma_j$  when  $i \geq j$ . Denote by  $D_K$  the complete inverse image of the connected component of the unity by the canonical homomorphism of the ordinary idele group  $J_K$  to the ordinary idele class group  $C_K$ . Then we have

THEOREM 1. The image of the norm residue mapping  $\Phi_s$  of  $J_s$  is equal to  $\mathfrak{G}_K$ , and the kernel of  $\Phi_s$  is equal to  $\rho_s(D_K)$ . Hence we have  $J_s/\rho_s(D) = \mathfrak{G}_K$ .

PROOF. Notations being as above,  $\{\sigma_i\}$  be an any element of  $\mathfrak{G}_K$  where  $\sigma_i \in \mathfrak{G}(M_i/K)$ . Let  $\mathfrak{a}_i$  be an element of  $J_s$  such that  $\sigma_i = (\mathfrak{a}_i, M_i/K)$ , whose existence follows from theorem 1 in RI. Let further  $H_s^{(i)}$  be the subgroup of  $J_s$  corresponding to  $M_i$  by theorem 2 in RI. Then  $\mathfrak{a}_i H_s^{(i)} \supset \mathfrak{a}_j H_s^{(j)}$  when

<sup>1)</sup> By  $\Phi^{-1}$  we mean always the complete converse image.

 $j \ge i$ . Let  $\bigcap_i \alpha_i H_i^{(i)} = \alpha_i$ , whose existence in  $J_i$  follows from that  $H_i^{(i)}$  is open and  $J_i$  is locally compact. Then  $(\alpha_i, M_i/K) = (\alpha_i, M_i/K) = \sigma_i$  for every i. Hence we have  $\Phi_i(\alpha_i) = \sigma_i$  which proves the first assersion of the theorem. Since the kernel of  $\Phi$  is  $D_K$ , the other assertions of the theorem follows immediately from the definition of  $\Phi_i$ .

We called in RI a subgroup  $H_{\hat{s}}$  of  $J_{\hat{s}}$  is  $\hat{s}$ -admissible if  $H_{\hat{s}} = \rho_{\hat{s}}(\overline{H_{\hat{s}}D_K})$ , where the bar stand for the closure in  $J_K$ . Now we have

THEOREM 2. Let  $H_s$  be a closed subgroup of  $J_s$  of finite index. Then  $H_s$  is  $\hat{s}$ -admissible if and only if  $H_s$  contains  $\rho_s(D_K)$ . If  $H_s$  is  $\hat{s}$ -admissible, then there exists uniquely the admissible<sup>2</sup> subgroup H of J of finite index such that  $\rho_s(H) = H_s$ . When that is so we have moreover  $\Phi(H) = \Phi_s(H_s)$ .

PROOF. We first note that  $\mathfrak{G}_K$  is compact, J resp.  $J_s$  is locally compact, and  $\Phi$  resp.  $\Phi_s$  maps J resp.  $J_s$  onto  $\mathfrak{G}_K$ . Hence both  $\Phi$  and  $\Phi_s$  are open<sup>8)</sup>. Suppose that  $H_s$  contains  $\rho_s(D_K)$ , which is the kernel of  $\Phi_s$ . Put  $\Phi_s(H_s) = \mathfrak{F}$ . Then since  $\Phi_s$  is an open and onto mapping,  $\mathfrak{F}$  is a closed subgroup of  $\mathfrak{G}_K$  of finite index. Put  $H = \Phi^{-1}(\mathfrak{F})$ . Then H is an admissible subgroup of J of finite index, and  $\rho_s(H) = \rho_s(\Phi^{-1}(\mathfrak{F})) = \Phi_s^{-1}(\mathfrak{F}) = \Phi_s^{-1}(\Phi_s(H_s)) = H_s$  by (5).

Suppose that H' be also an admissible subgroup of J of finite index such that  $\rho_{\mathfrak{s}}(H')=H_{\mathfrak{s}}$ . Put  $\Phi(H')=\mathfrak{H}'$ . Then by using (5),  $\Phi_{\mathfrak{s}}^{-1}(\mathfrak{H}')=\rho_{\mathfrak{s}}(\Phi^{-1}(\mathfrak{H}'))=\rho_{\mathfrak{s}}(H')=H_{\mathfrak{s}}$ . Hence  $\mathfrak{H}'=\mathfrak{H}'=\mathfrak{H}$ . Then since both H and H' are admissible and closed in J, we have H=H'. Thus the last two assertions of the theorem are proved. The assertion about the  $\mathfrak{s}$ -admissibility is now an immediate consequence of the definition.

### § 2. Conductor.

Let K/k be as before a normal extension of finite degree, and put s=S(K/k),  $\hat{s}=\hat{S}(K/k)$ . Let further  $H_{\hat{s}}$  be an  $\hat{s}$ -admissible subgroup of  $J_{\hat{s}}$  of finite degree. Then by theorem 2 there exists an abelian extension M of K which corresponds to the admissible subgroup H by means of the class field theory, where  $\rho_{\hat{s}}(H)=H_{\hat{s}}$ . We shall call such an M the abelian extension of K corresponding to  $H_{\hat{s}}$ . In this section we shall study the conductor of M/K.

Let  $\mathfrak{P}$  be a prime of K and  $\nu_{\mathfrak{P}}$  be a non negative integer. If  $\mathfrak{P}$  is archimedean,  $\nu_{\mathfrak{P}}=0$  or 1. For  $\mathfrak{a}_{\mathfrak{P}}\in K_{\mathfrak{P}}$  we define the congruence  $\mathfrak{a}_{\mathfrak{P}}\equiv 1$  (mod.  $\mathfrak{P}^{\nu_{\mathfrak{P}}}$ ) to mean the usual congruence if  $\mathfrak{P}$  finite and  $\nu_{\mathfrak{P}}\geq 1$ ;  $\mathfrak{a}_{\mathfrak{P}}$  is a  $\mathfrak{P}$ -unit if  $\mathfrak{P}$  finite and  $\nu_{\mathfrak{P}}=0$ ;  $\mathfrak{a}_{\mathfrak{P}}>0$  if  $\mathfrak{P}$  real and  $\nu_{\mathfrak{P}}=1$ ; and if  $\mathfrak{P}$  is complex, or if  $\mathfrak{P}$  is real but  $\nu_{\mathfrak{P}}=0$ , then we put no restriction on  $\mathfrak{a}_{\mathfrak{P}}$ . Denote by  $\gamma_{\mathfrak{P}}(\mathfrak{P}^{\nu_{\mathfrak{P}}})$  the

<sup>2)</sup> This means that H is closed and contains  $D_K$ .

<sup>3)</sup> See Pontrjagin [4], Ch. 3, Theorem 13.

<sup>4)</sup> See Artin-Tate [2], Ch. 8, 2.

250 Y. FURUTA

group of all elements  $\mathfrak{a}_{\mathfrak{P}}$  of  $K_{\mathfrak{P}}$  such that  $\mathfrak{a}_{\mathfrak{P}} \equiv 1 \pmod{\mathfrak{P}^{\nu_{\mathfrak{P}}}}$ . Furthermore for an idele  $\mathfrak{a}$  and an integral divisor  $\mathfrak{m} = \prod_{\mathfrak{P}} \mathfrak{P}^{\nu_{\mathfrak{P}}}$  define  $\mathfrak{a} \equiv 1 \pmod{\mathfrak{m}}$  to mean  $\mathfrak{a}_{\mathfrak{P}} \equiv 1 \pmod{\mathfrak{P}^{\nu_{\mathfrak{P}}}}$  for every  $\mathfrak{P}$ , and denote by  $\gamma(\mathfrak{m})$  the group of all such ideles. For an integral divisor  $\mathfrak{m}$  we denote by  $\mathfrak{m}_s$  resp.  $\mathfrak{m}_{s'}$  its s resp. s'-part, and put  $\gamma_s(\mathfrak{m}_s) = \rho_s(\gamma(\mathfrak{m}_s))$ ,  $\gamma_{s'}(\mathfrak{m}_s) = \rho_{s'}(\gamma(\mathfrak{m}_{s'}))$ .

Now let H be an admissible subgroup of  $J_K$  of finite index and M be the abelian extension of K corresponding to H by means of the class field theory. Then<sup>5)</sup> it is well known that the conductor of M/K is equal to an integral divisor  $\mathfrak{f} = \prod_{\mathfrak{P}} \mathfrak{f}_{\mathfrak{P}}$  where  $\mathfrak{f}_{\mathfrak{P}} = \mathfrak{P}^{\nu_{\mathfrak{P}}}$ ,  $\nu_{\mathfrak{P}}$  is the smallest non-negative integer such that  $H \supset \gamma_{\mathfrak{P}}(\mathfrak{f}_{\mathfrak{P}})$  for every prime  $\mathfrak{P}$ .

LEMMA 1. Let  $A_{\mathfrak{P}}$  be any subgroup of  $K_{\mathfrak{P}}$ . Then  $\Phi_{\mathfrak{s}}^{-1}(\Phi(A_{\mathfrak{P}})) = A_{\mathfrak{P}} \cdot \rho_{\mathfrak{s}}(D_{K})$  or  $= \pi_{\mathfrak{s}}(D_{K} \cap (J_{\mathfrak{s}} \times A_{\mathfrak{P}}))$  according to  $\mathfrak{P} \in \hat{\mathfrak{s}}$  or  $\in \hat{\mathfrak{s}}'$ .

PROOF. If  $\mathfrak{P} \in \mathfrak{s}$ , then  $\Phi_{\mathfrak{s}}^{-1}(\Phi(A_{\mathfrak{P}})) = \Phi_{\mathfrak{s}}^{-1}(\Phi_{\mathfrak{s}}(A_{\mathfrak{P}})) = A_{\mathfrak{P}} \cdot \Phi_{\mathfrak{s}}^{-1}(1) = A_{\mathfrak{P}} \cdot \rho_{\mathfrak{s}}(D_{K})$  by theorem 1. If  $\mathfrak{P} \in \mathfrak{s}'$ , then  $\Phi_{\mathfrak{s}}^{-1}(\Phi(A_{\mathfrak{P}}))$  is of all  $\mathfrak{a} \in J_{\mathfrak{s}}$  such that  $\Phi_{\mathfrak{s}}(\mathfrak{a}) = \Phi(\mathfrak{b}_{\mathfrak{P}})$  for some  $\mathfrak{a}_{\mathfrak{P}} \in A_{\mathfrak{P}}$ .

This is equivalent to  $\mathfrak{ab}_{\overline{\mathfrak{p}}}^{1} \in D_{K}$ , since the kernel of  $\Phi$  is  $D_{K}$ . Hence  $\Phi_{\mathfrak{s}}^{-1}(\Phi(A_{\mathfrak{P}})) = \pi_{\mathfrak{s}}(D_{K} \cap (J_{\mathfrak{s}} \times A_{\mathfrak{P}}))$ . Thus the lemma is proved.

THEOREM 3. Let  $H_{\mathfrak{s}}$  be an  $\hat{\mathfrak{s}}$ -admissible subgroup of  $J_{\hat{\mathfrak{s}}}$  and M be the abelian extension of K corresponding to  $H_{\mathfrak{s}}$ . Then the conductor of M/K is equal to an integral divisor  $\mathfrak{f} = \prod_{\mathfrak{P}} f_{\mathfrak{P}}$  where  $\mathfrak{f}_{\mathfrak{P}} = \mathfrak{P}^{\nu_{\mathfrak{P}}}$ ,  $\nu_{\mathfrak{P}}$  is the smallest non negative integer such that  $H_{\mathfrak{s}} \supset \gamma_{\mathfrak{P}}(\mathfrak{f}_{\mathfrak{P}})$  or  $\supset \pi_{\mathfrak{s}}(D_K \cap (J_{\mathfrak{s}} \times \gamma(\mathfrak{f}_{\mathfrak{P}})))$  according to  $\mathfrak{P} \in \mathfrak{s}$  or  $\mathfrak{s} \in \mathfrak{s}'$ .

PROOF. We have  $\Phi^{-1}(\Phi_{\delta}(H_{\delta})) = H$  by theorem 2. Hence  $H \supset \gamma_{\mathfrak{P}}(\mathfrak{f}_{\mathfrak{P}})$  if and only if  $\Phi_{\delta}(H_{\delta}) \supset \Phi(\gamma_{\mathfrak{P}}(\mathfrak{f}_{\mathfrak{P}}))$ . This is equivalent that  $H_{\delta} \supset \Phi_{\delta}^{-1}(\Phi(\gamma_{\mathfrak{P}}(\mathfrak{f}_{\mathfrak{P}})))$ , since  $H_{\delta}$  is  $\hat{s}$ -admissible. Then the theorem implies from lemma 1 immediately.

We note that the proposition 5 in RI implies that the condition  $H_s \supset \pi_s(D_K \cap (J_s \times \gamma(\mathfrak{f}_{\mathfrak{P}})))$  can be replaced by  $H_s \supset \pi_s(K^{\times} \cap (J_s \times \gamma(\mathfrak{f}_{\mathfrak{P}})))$ .

# §3. Condition of the admissibility in the ground field (special case).

Let K/k be a normal extension of finite degree, and put s = S(K/k),  $\hat{s} = \hat{S}(K/k)$ . It is easily proved that the number of independent units of K is equal to that of k if and only if k is totally real and K is totally imaginary and quadratic over k. In this case we shall characterize in terms of the ground field k the condition of a subgroup of  $f_{\hat{s}}$  to be  $\hat{s}$ -admissible.

We have proved in theorem 2 that a subgroup  $H_{\hat{s}}$  of  $J_{\hat{s}}$  is  $\hat{s}$ -admissible if and only if  $H_{\hat{s}}$  contains  $\rho_{\hat{s}}(D_K)$ . Therefore our purpose in this section is to study on  $\rho_{\hat{s}}(D_K)$ . The structure of  $D_K$  is known by Artin [1] as follows<sup>6)</sup>:

<sup>5)</sup> See for instance Artin-Tate [2], Ch. 8, 2.

<sup>6)</sup> Cf. Artin and Tate [2], Ch. 9.

Let U be the group of unit ideles of K, and  $U_{\mathfrak{P}}$  be the group of  $\mathfrak{P}$ -adic units of  $K_{\mathfrak{P}}$ . Then we have

$$(6) U = \bar{U}\,\tilde{U}$$

where  $\bar{U} = \prod_{\mathfrak{P} \neq \mathfrak{P}_{\infty}} U_{\mathfrak{P}}$  and  $\tilde{U} = \prod_{\mathfrak{P}_{\infty}} U_{\mathfrak{P}_{\infty}}$ . We split each unit idele  $\mathfrak{a}$  as a product  $\mathfrak{a} = \bar{\mathfrak{a}} \tilde{\mathfrak{a}}$ .

where  $\bar{\mathfrak{a}} \in \bar{U}$ ,  $\tilde{\mathfrak{a}} \in \tilde{U}$  and embedded ordinarily in U. Denote by  $\bar{Z}$  the completion of the group Z of rational integers under the topology whose fundamental system of neighborhoods of 0 consists of all ideals of Z. Put  $V = \bar{Z} + R$  (direct), where R is the group of real numbers, and denote any element  $\lambda \in V$  as  $\lambda = (x, h)$ , where  $x \in \bar{Z}$  and  $h \in R$ . For any element  $\mathfrak{a} = U$ , the power  $\mathfrak{a}^{\lambda}$  is defined by

$$\mathfrak{a}^{\lambda} = \bar{\mathfrak{a}}^{x} \widetilde{\mathfrak{a}}^{h} ,$$

where  $\bar{\alpha}^x$  is the generalization of the ordinary power with regard to the above topology. Let  $\phi_j(t)$  the idele which has the component  $e^{2\pi it}$  at j-th complex prime and 1 at all other primes. Denote by T the group generated by all such  $\phi_j(t)$ ,  $j=1,\cdots,r_2$ . Let  $\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_r$  be a system of independent totally positive units of K, and denote by  $E_K$  the group of all elements  $\varepsilon_i^{\lambda_1}\cdots\varepsilon_r^{\lambda_r}$  where  $\lambda_i=(x_i,h_i)\in V$   $(i=1,\cdots,r)$ . Furthermore denote by L the group of ideles which has a real number as the component at the infinite prime fixed once for all, and 1 at all other primes. Then we have by Artin [1]

$$(9) D_{\kappa} = E_{\kappa} \cdot T \cdot L \cdot K^*,$$

where  $K^*$  is the multiplicative group of non zero elements of K which is embedded ordinarily in  $J_K$ .

Now let k be a totally real number field of finite degree, and K be a totally imaginary and quadratic over k. Then we can take in k the above system  $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_r$  of independent units of K, and we have

(10) 
$$D_{k} = E \cdot L \cdot k^{*},$$

$$D_{K} = E \cdot T \cdot L \cdot K^{*},$$

where  $E = E_k = E_K$ .

LEMMA 2. Let K/k be as above. Then we have

$$\rho_s(D_K) = \rho_s(D_k)$$
.

PROOF. Let r be the number of independent units of k, which is equal to that of K. Generally denote by  $\alpha$ ,  $\epsilon$ ,  $\phi$  and  $\nu$  elements of K, E, T and L respectively. Then  $\rho_{\delta}(D_K)$  is of all  $\pi_{\delta}(\epsilon\phi\nu\alpha)$  such that  $\pi_{\delta'}(\epsilon\phi\nu\alpha)=1$  by (10).

<sup>7)</sup> We always embed  $J_k$  into  $J_K$  by ordinal way.

252 Y. FURUTA

This is equal to the set of all  $\pi_s(\epsilon\alpha^{-1})$  such that  $\pi_{s'}(\epsilon) = \pi_{s'}(\phi\nu\alpha)$ . By the assumption of K/k, all infinite primes of K is contained in  $\hat{s}'$ . Hence  $\pi_{s'}(\epsilon) = \pi_{s'}(\phi\nu\alpha)$  is equivalent to  $\pi_{s'}(\bar{\epsilon}) = \pi_{s'}(\alpha)$  and  $\pi_{s'}(\bar{\epsilon}) = \pi_{s'}(\phi\nu\bar{\alpha})$ . But the last condition is unnecessary. Because for any  $\alpha \in K$  the equality  $\bar{\epsilon} = 1$  always a solution with respect to  $\bar{\epsilon}$ ,  $\phi$ ,  $\nu$ . Now for any  $\sigma \in \mathfrak{G}(K/k)$  and  $x \in \bar{Z}$  we have easily  $(\bar{\epsilon}^x)^{\sigma} = (\bar{\epsilon}^{\sigma})^x$  by the definition of the generalized power. Then since  $\bar{e} = \bar{\epsilon}_1^{x_1} \cdots \bar{\epsilon}_r^{x_r}$  where  $\epsilon_i \in k$ ,  $\pi_s(\bar{\epsilon}) = \pi_s(\alpha)$  implies  $\alpha \in k$ . Hence  $\rho_s(D_K)$  consists of all  $\pi_s(\epsilon\alpha^{-1})$  such that  $\pi_s(\bar{\epsilon}) = \pi_s(\alpha)$  where  $\alpha \in k$ .

By the same way as above we see  $\rho_s(D_k)$  consists of all  $\pi_s(\epsilon \alpha^{-1})$  such that  $\pi_{s'}(\bar{\epsilon}) = \pi_{s'}(\alpha)$  where  $\alpha \in k$ . Hence we have the lemma.

Now by theorem 2 and lemma 2 we have

Theorem 4. Let k be a totally real algebraic number field of finite degree and K be its quadratic extension which is totally imaginary. Put s = S(K/k). We embed  $k^*$  and  $\rho_s(D_k)$  diagonaly into the direct product  $J_s \times J_s$  of s-restricted idele groups of k. Then there is a following one to one correspondence between the set of all closed subgroups H of  $J_s \times J_s$  of finite index which contains  $\rho_s(D_k)$  and the set of all abelian extensions M of K of finite degree: When M corresponds to H, a prime  $\mathfrak p$  of k splits completely in M if and only if  $\mathfrak p \in s$  and  $k_{\mathfrak p} \times k_{\mathfrak p} \subset H$ .

Mathematical Institute Kanazawa University

# References

- [1] E. Artin, Representatives of the connected component of the idele class group, Proc. Int. Symp. Algebraic Number Theory, Tokyo-Nikko (1955), Science Council of Japan, Tokyo, 1956.
- [2] E. Artin and J. Tate, Class field theory, Princeton notes (1951), destributed by Harvard University.
- [3] Y. Furuta, The notion of restricted ideles with application to some extension fields, Nagoya Math. J., 27 (1966), 121-132.
- [4] L.S. Pontrjagin, Topological groups, Princeton, 1946.