On existence of Green function and positive superharmonic functions for linear elliptic operators of second order

By Seizô ITô

(Received May 8, 1964)

§ 1. Introduction. Let D be a subdomain of an N-dimensional orientable C^{∞} -manifold M ($N \ge 2$), and A be an elliptic differential operator of the following form:

(1.1)
$$Au(x) = \frac{1}{\sqrt{a(x)}} \frac{\partial}{\partial x^{i}} \left[\sqrt{a(x)} \ a^{ij}(x) \frac{\partial u(x)}{\partial x^{j}} \right] + b^{i}(x) \frac{\partial u(x)}{\partial x^{i}}$$
for $u \in C^{2}(D)$

where $||a^{ij}(x)||$ and $||b^i(x)||$ are contravariant tensors of class C^2 in D, $||a^{ij}(x)||$ is symmetric and strictly positive-definite for each $x \in D$ and $a(x) = \det ||a_{ij}(x)|| = \det ||a^{ij}(x)||^{-1}$. We require neither regularity of the boundary of D, nor restriction on the behavior of $||a^{ij}(x)||$ and $||b^i(x)||$ near the boundary of D.

By definition, a function u(x) is said to be *A-harmonic* in *D* if it satisfies Au=0 in *D*, and is said to be *A-superharmonic* in *D* if it satisfies the following three conditions:

- i) $-\infty < u(x) \le \infty$ and $u(x) \ne \infty$ in D,
- ii) u(x) is lower semi-continuous in D,
- iii) if Ω is a domain with its closure $\bar{\Omega} \subset D$, and if w(x) is continuous on $\bar{\Omega}$, A-harmonic in Ω and satisfies $w(x) \leq u(x)$ on $\partial \Omega$, then $w(x) \leq u(x)$ holds in Ω .

The purpose of the present paper is to prove that there exists a Green function associated with the elliptic differential operator A in D if, and only if, there exists at least one non-constant positive A-superharmonic function in D. This fact is well known in the case of Riemann surfaces—see $\lceil 1 \rceil$ and $\lceil 2 \rceil$,

§ 2. **Preliminaries.** In this §, we shall state some properties of fundamental solutions of parabolic differential equations. The following facts 1°), 2°) and 3°) are implied in the results of the author's previous paper [3]²⁾.

¹⁾ We omit the summation sign Σ according to the usual rule of tensor calculus.

²⁾ Differential operators A and A^* in the present paper correspond to A^* and A in [3] respectively.

300 S. Itô

By definition, a subdomain Ω of M is called a *domain with property* (S) if the boundary of Ω consists of a finite number of simple closed hypersurfaces of class C^3 .

1°) For any domain Ω with its closure $\bar{\Omega} \subset D$ and with property (S), there exists one and only one fundamental solution $U_{\Omega}(t, x, y)$ of the initial-boundary value problem for the parabolic equation:

(2.1)
$$\frac{\partial u}{\partial t} = Au + f \text{ in } (0, \infty) \times \Omega, \ u|_{t=0} = u_0, \ u|_{x \in \partial \Omega} = \varphi.$$

The function $U_{\mathfrak{Q}}(t, x, y)$ satisfies that

(2.2) $\begin{cases} U_{\mathcal{Q}}(t, x, y) \geq 0 \text{ for any } \langle t, x, y \rangle \in (0, \infty) \times \overline{\mathcal{Q}} \times \overline{\mathcal{Q}}; \text{ the equality holds} \\ \text{if and only if at least one of } x \text{ and } y \text{ belongs to } \partial \Omega \end{cases}$ and that

(2.3)
$$\frac{\partial U_a(t, x, y)}{\partial \mathbf{n}_y} \leq 0 \text{ for any } t > 0, y \in \partial \Omega \text{ and } x \in \bar{\Omega} - \{y\}$$

where $\frac{\partial}{\partial n}$ denotes the exterior normal derivative. Furthermore

(2.4)
$$G_{\mathfrak{g}}(x, y) = \int_{0}^{\infty} U_{\mathfrak{g}}(t, x, y) dt$$

is well-defined whenever $x, y \in \overline{\Omega}$ and $x \neq y$, and is the Green function of the boundary value problem for the elliptic equation:

(2.5)
$$Au = f \text{ in } \Omega, \ u|_{\partial \Omega} = \varphi.$$

2°) Assume that $u_0(x)$, f(t, x) and $\varphi(t, x)$ are functions continuous on $\bar{\Omega}$, on $[0, \infty) \times \bar{\Omega}$ and on $[0, \infty) \times \partial \Omega$ respectively. Then, if u(t, x) is a solution of (2.1), it is expressible by

(2.6)
$$u(t, x) = \int_{\mathcal{Q}} U_{\mathcal{Q}}(t, x, y) u_{0}(y) dy + \int_{0}^{t} d\tau \int_{\mathcal{Q}} U_{\mathcal{Q}}(t - \tau, x, y) f(\tau, y) dy - \int_{0}^{t} d\tau \int_{\partial \mathcal{Q}} \frac{\partial U_{\mathcal{Q}}(t - \tau, x, y)}{\partial \mathbf{n}_{y}} \varphi(\tau, y) dS_{y}$$

where dy and dS_y respectively denote the volume element and the hypersurface element with respect to the 'Riemannian metric' defined by $\|a_{ij}(x)\|$; conversely, the function u(t,x) defined by (2.6) satisfies (2.1) provided that f(t,x) and $\varphi(t,x)$ are Hölder-continuous on $[0,\infty)\times\Omega$ and on $[0,\infty)\times\partial\Omega$ respectively.

Next assume that f(x) and $\varphi(x)$ are functions continuous on $\bar{\Omega}$ and on $\partial\Omega$ respectively. Then, if u(x) is a solution of (2.5), it is expressible by

(2.7)
$$u(x) = -\int_{\Omega} G_{\Omega}(x, y) f(y) dy - \int_{\partial \Omega} \frac{\partial G_{\Omega}(x, y)}{\partial \mathbf{n}_{y}} \varphi(y) dS_{y};$$

conversely the function u(x) defined by (2.7) satisfies (2.5) provided that f(x) and $\varphi(x)$ are Hölder-continuous on $\bar{\Omega}$ and $\partial\Omega$ respectively.

3°) Let $\{D_n; n=1,2,\cdots\}$ be a sequence of domains with property (S) such that \overline{D}_n is compact and $\overline{D}_n \subset D_{n+1} \subset D$ for each n and that $\lim_{n\to\infty} D_n = D$. Then

(2.8)
$$U_{D_n}(t, x, y) \leq U_{D_{n+1}}(t, x, y)$$
 for any $\langle t, x, y \rangle \in (0, \infty) \times \overline{D}_n \times \overline{D}_n$ $(n = 1, 2, \dots)$, and

(2.9)
$$U_{D}(t, x, y) = \lim_{n \to \infty} U_{D_{n}}(t, x, y)$$

is well-defined on $(0,\infty)\times D\times D$ and independent of the choice of sequence $\{D_n\}$, and $U_D(t,x,y)$ is a fundamental solution of the initial-boundary value problem for the parabolic equation $\partial u/\partial t = Au$ in $(0,\infty)\times D$. If a part of the boundary of D consists of a simple hypersurface S of class C^3 and if $\|a^{ij}(x)\|$ and $\|b^i(x)\|$ are of class C^2 in a domain containing $D\cup S$, then we can choose the sequence $\{D_n\}$ such that $\partial D_n\cap S$ contains a relatively open subregion of S for any $n\geq 1$ and $\lim_{n\to\infty}\partial D_n\cap S=S$, and $U_D(t,x,y)$ is a fundamental solution of the initial-boundary value problem of the form (2.1) where Ω and $\partial \Omega$ are replaced by D and S. In this case, we have

(2.10)
$$\frac{\partial U_D(t, x, y)}{\partial n_y} = \lim_{n \to \infty} \frac{\partial U_{D_n}(t, x, y)}{\partial n_y}$$

for any t > 0, $y \in S$ and $x \in D \cup S - \{y\}$.

 4°) Let Ω be a domain with property (S) and with compact closure $\bar{\Omega} \subset D$. Then we can choose the sequence $\{D_n\}$ of domains stated in 3°) such that $\bar{\Omega} \subset D_1$. If we put $D'_n = D_n - \bar{\Omega}$ $(n = 1, 2, \cdots)$ and $D' = D - \bar{\Omega}$, then we may consider $U_{D'_n}(t, x, y)$ $(n = 1, 2, \cdots)$ and $U_{D'}(t, x, y)$ in the same way as in 2°) and 3°), and we have

(2.11)
$$U_{D'}(t, x, y) = \lim_{n \to \infty} U_{D'_n}(t, x, y) \ (t > 0, x \in D - \Omega, y \in D - \Omega)$$

and

(2.12)
$$\frac{\partial U_{D'}(t, x, y)}{\partial \boldsymbol{n}_{y}} = \lim_{n \to \infty} \frac{\partial U_{D'_{n}}(t, x, y)}{\partial \boldsymbol{n}_{y}} \quad (t > 0, x \in D - \overline{\Omega}, y \in \partial \Omega)$$

where $\partial/\partial n_y$ denotes the exterior normal derivative at the point y of $\partial\Omega$ as a boundary of D' (= $D-\bar{\Omega}$). We put

(2.13)
$$U_{D'}(t, x, y) = 0 \text{ for any } t > 0, x \in D' \text{ and any } y \in \overline{\Omega}.$$
 Then :—

LEMMA 2.1. For any t > 0, $x \in D'$ and $y \in D$, it holds that

(2.14)
$$U_D(t, x, y) = U_{D'}(t, x, y) - \int_0^t d\tau \int_{\partial D'} \frac{\partial U_{D'}(t-\tau, x, z)}{\partial \boldsymbol{n}_z} U_D(\tau, z, y) dS_z$$

PROOF. For any fixed $\varepsilon > 0$, $y \in D$ and $n \ge 1$, the function $u(t, x) = U_{D_n}(t+\varepsilon, x, y)$ satisfies (2.1) where Ω is replaced by D'_n and

302 S. Ітô

$$\left\{ \begin{array}{l} f(t,x)=0,\; u_0(x)=U_{D_n}(\varepsilon,\,x,\,y)\;\,(x\in D_n-\varOmega) \quad \text{and} \\ \\ \varphi(t,\,x)=U_{D_n}(t+\varepsilon,\,x,\,y)\;\,(x\in\partial\varOmega),\; =0\;\,(x\in\partial D_n)\,. \end{array} \right.$$

Hence, by 2°), we have

$$U_{D_n}(t+\varepsilon, x, y) = \int_{D'_n} U_{D'_n}(t, x, z) U_{D_n}(\varepsilon, z, y) dz$$
$$-\int_0^t d\tau \int_{\partial \Omega} \frac{\partial U_{D'_n}(t-\tau, x, z)}{\partial \mathbf{n}_z} U_{D_n}(\tau, z, y) dS_z$$

for any t > 0 and $x \in D'_n$. Letting $\varepsilon \to 0$ and then $n \to \infty$, we obtain (2.14) by means of (2.9), (2.11) and (2.12).

LEMMA 2.2. If u(x) is positive A-superharmonic in D, then

$$(2.15) 0 \leq -\int_0^\infty d\tau \int_{\partial D'} \frac{\partial U_{D'_n}(\tau, x, \xi)}{\partial \boldsymbol{n}_{\xi}} u(\xi) dS_{\xi} \leq u(x) for any x \in D'.$$

PROOF. By lower semi-continuity of u(x), there exists a monotone increasing sequence $\{\varphi_n(x)\}$ of continuous functions on $\partial\Omega$ such that $\varphi_1(x)\geq 0$ and $\lim_{n\to\infty}\varphi_n(x)=u(x)$ on $\partial\Omega$. Let $w_n(x)$ be the solution of the boundary value problem:

$$Aw_n(x) = 0$$
 in D'_n , $w_n(x) = \begin{cases} \varphi_n(x) \text{ on } \partial \Omega, \\ 0 \text{ on } \partial D_n \end{cases}$

— see [3; § 10]. Then, by means of A-superharmonicity of u and by the same argument as in the proof of the preceding lemma, we get

$$u(x) \ge w_n(x) = \int_{D'_n} U_{D'_n}(t, x, y) w_n(y) dy - \int_0^t d\tau \int_{\partial \Omega} \frac{\partial U_{D'_n}(t - \tau, x, y)}{\partial \mathbf{n}_y} \varphi_n(y) dS_y$$

$$\ge - \int_0^t d\tau \int_{\partial \Omega} \frac{\partial U_{D'_n}(\tau, x, y)}{\partial \mathbf{n}_y} \varphi_n(y) dS_y \ge 0 \quad \text{for any } x \in D'.$$

Letting $n \to \infty$, we obtain (2.15).

§ 3. Superharmonic functions and Green function. We first notice that the domain Ω in the condition iii) in the definition of A-superharmonicity (in § 1) can be restricted to domains with property (S); this may easily be seen from i), ii) and iii) in the definition.

THEOREM 1. Assume that u(x) is of class C^2 in D. Then u(x) is A-superharmonic in D if and only if $Au(x) \leq 0$ holds in D.

PROOF. We first assume that $Au(x) \leq 0$ in D, and let Ω be a domain with property (S) and such that $\bar{\Omega} \subset D$ and w(x) be a function continuous on $\bar{\Omega}$, A-harmonic in Ω and satisfying $w(x) \leq u(x)$ on $\partial \Omega$. Then, by means of 2°) in § 2, we have (see also (2.2), (2.3) and (2.4))

(3.1)
$$u(x) = -\int_{\Omega} G_{\Omega}(x, y) \cdot Au(y) dy - \int_{\partial \Omega} \frac{\partial G_{\Omega}(x, y)}{\partial \mathbf{n}_{y}} u(y) dS_{y}$$
$$\geq -\int_{\partial \Omega} \frac{\partial G_{\Omega}(x, y)}{\partial \mathbf{n}_{y}} w(y) dS_{y} = w(x) \quad \text{for any } x \in \Omega.$$

Hence u(x) is A-superharmonic in D. Next assume that Au(x) > 0 at some point $x \in D$. Then there exists a domain Ω with property (S) and such that $\bar{\Omega} \subset D$ and that Au(x) > 0 in Ω . Let w(x) be the solution of the boundary value problem:

$$Aw = 0$$
 in Ω , $w = u$ on $\partial \Omega$.

Then, by the similar argument to above (see (3.1)), we may obtain that u(x) < w(x) in Ω . Hence u(x) is not A-superharmonic, q. e. d.

LEMMA 3.1. If u(x) is A-superharmonic in D and takes its minimum at an inner point of D, then u(x) is constant in D.

PROOF. We may assume that the minimum of u(x) in D is zero. Suppose that $E = \{x : u(x) = 0\}$ is a proper subset of D. Then there exists a point $x_0 \in E$ and an domain Ω with property (S) such that $x_0 \in \Omega \subset \overline{\Omega} \subset D$ and that $\Omega - E$ is a non-empty open set. Hence, by the similar arguments to proofs of Lemmas 2.2 and 2.1, we may obtain

$$u(x_0) \ge \int_{Q-E} U_{Q}(t, x_0, y) u(y) dy > 0$$
 (see (2.2));

this contradicts to the fact: $x_0 \in E = \{x; u(x) = 0\}.$

LEMMA 3.2. Let y be a fixed point in D, and assume that u(x) is A-harmonic in $D-\{y\}$ and satisfies $\lim_{\rho\to 0}\inf_{r(x,y)<\rho}u(x)=u(y)=\infty$ where r(x,y) denotes the 'Riemannian distance' defined by $\|a_{ij}(x)\|$. Then u(x) is A-superharmonic in D.

PROOF. u(x) clearly satisfies i) and ii) in § 1. Let Ω be a domain with property (S) and with its closure $\bar{\Omega} \subset D$, and w(x) be a function continuous on $\bar{\Omega}$, A-harmonic in Ω and satisfying $w(x) \leq u(x)$ on $\partial \Omega$. We consider the following three cases: 1) $y \in \bar{\Omega}$, 2) $y \in \partial \Omega$, 3) $y \in \Omega$. In case 1), $u(x) - w(x) \geq 0$ in Ω by means of Theorem 1 and Lemma 3.1. We may reduce case 2) to case 1) by considering a monotone increasing sequence $\{\Omega_n\}$ of domains with property (S) such that $y \in \bar{\Omega}_n$ for any n, $\lim_{n \to \infty} \Omega_n = \Omega$ and $\lim_{n \to \infty} \partial \Omega \cap \partial \Omega_n = \partial \Omega - \{y\}$, since w(x) is bounded on $\bar{\Omega}$. In case 3), there exists $\rho_0 > 0$ such that $\lim_{r(x,y)<\rho_0} u(x) > \max_{x\in \bar{\Omega}} w(x)$. Hence, by Theorem 1 and Lemma 3.1, $u(x) - w(x) \geq 0$ in $\Omega - \{x; r(x,y) < \rho\}$ for any $\rho < \rho_0$, and accordingly $u(x) \geq w(x)$ in Ω (since $u(y) = \infty$ is assumed). Thus u(x) satisfies iii) in § 1, q. e. d.

THEOREM 2. The function

304 S. Itô

(3.2)
$$G(x, y) = \int_{0}^{\infty} U_{D}(t, x, y) dt \qquad (x, y \in D, x \neq y)$$

is well-defined and is a Green function of the elliptic differential operator A if, and only if, there exists a non-constant positive A-superharmonic function in D.

PROOF. If G(x, y) $(x \neq y)$ is well-defined by (3.2), then we may show by the similar argument to that in $[3; \S 10]$ that $G(\cdot, y)$ is A-harmonic in $D - \{y\}$ for any fixed y. It is also clear from the construction of fundamental solutions in $[3; \S\S 3-5]$ that (see 1°) and 3°) in § 2 of the present paper)

$$\lim_{\rho\to 0} \inf_{r(x,y)<\rho} G(x,y) \ge \lim_{\rho\to 0} \inf_{r(x,y)<\rho} G_{D_n}(x,y)$$

$$=\lim_{\rho\to 0}\inf_{r(x,y)<\rho}\int_0^\infty U_{D_n}(t,x,y)dt=\infty.$$

Hence, by Lemma 3.2, G(x, y) is A-superharmonic in $x \in D$ for any fixed y. The 'only if' part of Theorem 2 is thus proved.

To prove the 'if' part, it is sufficient to show, under the assumption of the existence of a non-constant positive A-superharmonic function u(x) in D, that

(3.3)
$$\int_0^\infty dt \int_E U(t, x_0, y) dy < \infty$$

for any $x_0 \in D$ and any compact set $E \subset D$, since, if it be proved, the existence of Green function may be shown in the entirely same way as the proof of Theorem 8 in [3, § 10]. By virtue of Lemma 3.1, there exist positive numbers α and β such that

$$0 < \alpha < \beta < \inf_{x \in \{x_0\} \cup E} u(x)$$
.

Let Ω_1 and Ω_2 be subdomains of D with compact closures such that $\bar{\Omega}_1 \subset \{x \in D \; ; \; u(x) < \alpha\}$ and $\{x \in D \; ; \; u(x) > \beta\} \supset \bar{\Omega}_2 \supset \{x_0\} \cup E$ and that $D' = D - \bar{\Omega}_1$ and $D'' = D - \bar{\Omega}_2$ are domains with property (S). Then for any $z \in \bar{\Omega}_1$,

$$\alpha > u(z) \ge -\int_0^\infty d\tau \int_{\partial D''} \frac{\partial U_{D''}(\tau, z, \xi)}{\partial n_\xi} \cdot \beta dS_\xi \ge 0$$

by Lemma 2.2, and hence

$$(3.4) 0 \leq -\int_0^\infty d\tau \int_{\partial D'} \frac{\partial U_{D''}(\tau, z, \xi)}{\partial \boldsymbol{n}_{\xi}} dS_{\xi} < \frac{\alpha}{\beta} \text{for any } z \in \overline{\Omega}_1.$$

Since $u_0(x) \equiv 1$ is also A-superharmonic, we may similarly show that

(3.5)
$$0 \leq -\int_0^\infty d\tau \int_{\partial D'} \frac{\partial U_{D'}(\tau, x, z)}{\partial \boldsymbol{n}_z} dS_z \leq 1 \quad \text{for any} \quad x \in \bar{\Omega}_2.$$

Since $-\int_{\partial D'} \frac{\partial U_{D'}(1, y, z)}{\partial n_z} dS_z$ is positive and continuous in $y \in D'$, we see that

$$\gamma \equiv \min_{y \in E} \left\{ -\int_{\partial D'} \frac{\partial U_{D'}(1, y, z)}{\partial n_z} dS_z \right\}$$

is positive, and hence

On the other hand, by Lemma 2.1, we have

$$U_{D}(t, x, y) = U_{D'}(t, x, y) - \int_{0}^{t} d\tau \int_{\partial D'} \frac{\partial U_{D'}(t - \tau, x, z)}{\partial n_{z}} U_{D}(\tau, z, y) dS_{z}$$

for any $x, y \in \overline{\Omega}_2$ and any t > 0, and

$$U_{D}(\tau, z, y) = -\int_{0}^{\tau} d\sigma \int_{\partial D''} \frac{\partial U_{D''}(\tau - \sigma, z, \xi)}{\partial \mathbf{n}_{\xi}} U_{D}(\sigma, \xi, y) dS_{\xi}$$

for any $z\in \bar{\Omega}_1$, $y\in \bar{\Omega}_2$ and any $\tau>0$. Combining these two equalities, we have $U_D(t,x,y)=U_{D'}(t,x,y)$

$$+ \int_{0}^{t} d\tau \int_{\partial D'} \frac{\partial U_{D'}(t-\tau, x, z)}{\partial \boldsymbol{n}_{z}} dS_{z} \int_{0}^{\tau} d\sigma \int_{\partial D'} \frac{\partial U_{D''}(\tau-\sigma, z, \xi)}{\partial \boldsymbol{n}_{\xi}} U_{\boldsymbol{D}}(\sigma, \xi, y) dS_{\xi}$$

for any $x, y \in \bar{\Omega}_2$ and any t > 0. Integrating both sides in y over E and then in t over (0, T), and changing the order of integration, we get

$$\int_{0}^{T} dt \int_{E} U_{D}(t, x, y) dy = \int_{0}^{T} dt \int_{E} U_{D'}(t, x, y) dy
+ \int_{0}^{T} dt \int_{0}^{t} d\tau \int_{\partial D'} \frac{\partial U_{D'}(t - \tau, x, z)}{\partial \mathbf{n}_{z}} dS_{z} \int_{0}^{\tau} d\sigma \int_{\partial D'} \frac{\partial U_{D''}(\tau - \sigma, z, \xi)}{\partial \mathbf{n}_{\xi}} dS_{\xi} \int_{E} U_{D}(\sigma, \xi, y) dy
\leq \int_{0}^{\infty} dt \int_{E} U_{D'}(t, x, y) dy
+ \int_{0}^{\infty} dt' \int_{\partial D'} \frac{\partial U_{D'}(t', x, z)}{\partial \mathbf{n}_{z}} dS_{z} \int_{0}^{\infty} d\tau' \int_{\partial D''} \frac{\partial U_{D''}(\tau', z, \xi)}{\partial \mathbf{n}_{\xi}} dS_{\xi} \int_{0}^{T} d\sigma \int_{E} U_{D}(\sigma, \xi, y) dy$$

for any T>0. If we put $\chi_T=\sup_{x\in\overline{\mathcal{Q}_2}}\int_0^T\!dt\int_E\!U_D(t,x,y)dy$, then the above inequality, together with (3.4), (3.5) and (3.6), implies that $\chi_T\leq\frac{1}{\gamma}+\frac{\alpha}{\beta}\chi_T$, and accordingly $\chi_T\leq\frac{\beta}{\gamma(\beta-\alpha)}<\infty$; here α , β and γ are independent of T. Hence

³⁾ This equality holds by virtue of the following property of the fundamental solution: $\int_{D'} U_{D'}(t,x,y) \, U_{D'}(s,y,z) \, dy = U_{D'}(t+s,x,z).$

306 S. Ітô

 $\lim_{T\to\infty} \chi_T \leq \frac{\beta}{\gamma(\beta-\alpha)} < \infty \text{; which implies (3.3).}$

REMARK. The existence of the Green function defined by (3.2) does not necessarily imply the existence of non-constant positive A-harmonic function. For example, consider the case: $D=R^N$ with $N\geq 3$ and $A=\mathcal{A}$ (Laplacian in usual sense). Then the fundamental solution $U_D(t,x,y)$ constructed with the method in 3°) of §1 is identical with the 'Gaussian kernel' $(4\pi t)^{-N/2} \exp{(-|x-y|^2/4t)}$, and (3.2) and (3.3) clearly hold. However, it is well known that a positive (\mathcal{A} -) harmonic function in the whole space R^N is always constant.

Department of Mathematics University of Tokyo

References

- [1] M. Ohtsuka, Dirichlet problem on Riemann surfaces and conformal mappings, Nagoya Math. J., 3 (1951), 91-137.
- [2] L.V. Ahlfors, On the characterization of hyperbolic Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. A I., No. 125 (1952), 1-5.
- [3] S. Itô, Fundamental solutions of parabolic differential equations and boundary value problems, Japan. J. Math., 27 (1957), 55-102.