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§1. Introduction. Let D be a subdomain of an N-dimensional orientable
C»-manifold M (N=2), and A be an elliptic differential operator of the fol-
lowing form:

1.1 Au(x) = \/iﬂ) [ Nam a(x)? au(x) }erz( PRLIC au(x)

for u € C¥D)

where || a¥(x)| and | b%x)|| are contravariant tensors of class C? in D, [ a¥(x)|
is symmetric and strictly positive-definite for each x € D and a(x)=det || a;;(x) |
=det | a¥(x)||7*. We require neither regularity of the boundary of D, nor
restriction on the behavior of ||a¥(x)| and | b%(x)|| near the boundary of D.

By definition, a function u(x) is said to be A-harmonic in D if it satisfies
Au=0 in D, and is said to be A-superharmonic in D if it satisfies the follow-
ing three conditions:

1) —oo<u(x)=oco and u(x)== oo in D,
i) u(x) is lower semi-continuous in D,
iii) if £ is a domain with its closure 2 C D, and if w(x) is continuous on
92, A-harmonic in £ and satisfies w(x) < u(x) on 02, then w(x) < u(x)
holds in £.

The purpose of the present paper is to prove that there exists a Green
function associated with the elliptic differential operator A in D if, and only
if, there exists at least one non-constant positive A-superharmonic function in
D. This fact is well known in the case of Riemann surfaces—see [1] and [2].

§2. Preliminaries. In this §, we shall state some properties of funda-
mental solutions of parabolic differential equations. The following facts 1°),
2°) and 3°) are implied in the results of the author’s previous paper [3]®.

1) We omit the summation sign 3] according to the usual rule of tensor calculus.
2) Differential operators A and A* in the present paper correspond to A* and A

in [3] respectively.
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By definition, a subdomain £2 of M is called a domain with property (S)
if the boundary of £ consists of a finite number of simple closed hypersurfaces
of class C:.

1°) For any domain £ with its closure 2D and with property (S),
there exists one and only one fundamental solution U, x,y) of the initial-
boundary value problem for the parabolic equation:

@1 %‘z Autf in (0, 00)X 2, ]y = tto, t]scra =

The function U, x, y) satisfies that
Udt, x, v)=0 for any ¢, x, y) (0, oo)><§><§; the equality holds

2.2

@2) if and only if at least one of x and vy belongs to 0f2

and that

(2.3) aL”é’;{’ﬂ)—go for any ¢>0, yc 92 and xe 0 {y}
Y

0 ; ..
where an denotes the exterior normal derivative. Furthermore

2.4) Galx, y)zfo Ult, x, y)dt
is well-defined whenever x, y= 2 and x#y, and is the Green function of the
boundary value problem for the elliptic equation:
(2.5) Au=Ffin 2, ulpu=0¢.

2°) Assume that u,(x), f(t, x) and ¢(¢, x) are functions continuous on £,
on [0, c0)x 2 and on [0, c0)x 3R respectively. Then, if u(t, x) is a solution of
2.1), it is expressible by

@6 utt, 9= Udt, 5, Yu)dy+[ def Ui, x, Az, )y

(! 0Ug(t—7, x, 9)
jo drj'm on, o(z, y)dS,

where dy and dS, respectively denote the volume element and the hypersurface
element with respect to the ‘Riemannian metric’ defined by | a;(x)|; con-
versely, the function u(Z, x) defined by (2.6) satisfies provided that f(¢, x)
and ¢(t, x) are Holder-continuous on [0, c0)x £ and on [0, co)x 082 respectively.
Next assume that f(x) and ¢(x) are functions continuous on £ and on 9082
respectively. Then, if u(x) is a solution of [2.5), it is expressible by

@2.7) ux)=—| o, y)f(y)dy-—fwa—c—%(’f’—y)@(y>dsy ;
Y

conversely the function u(x) defined by satisfies provided that f(x)
and ¢(x) are Holder-continuous on 2 and 002 respectively.
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3°) Let {D,;n=1,2,---} be a sequence of domains with property (S) such
that D, is compact and D, D,+, C D for each n and that lim D,=D. Then

NnN—=00

(2°8> UDn(t: X, y) é UDn+1(t! X, y) fOI' any <t; X, y> = (0: OO>><D_1L><D-‘/L
(n=1,2,-), and
(2.9) Up(t, x, y)=lim Up,(Z, x, 3)

is well-defined on (0, 0)X DX D and independent of the choice of sequence
{D,}, and Upg(t, x,y) is a fundamental solution of the initial-boundary value
problem for the parabolic equation du/0t = Au in (0, 0)xXD. If a part of the
boundary of D consists of a simple hypersurface S of class C* and if | a™(x)|
and || b%(x)| are of class C? in a domain containing D\US, then we can choose
the sequence {D,} such that dD, NS contains a relatively open subregion of
S for any n=1 and limoD,N\S=S, and Uyt x, y) is a fundamental solution

n=—00

of the initial-boundary value problem of the form [(2.1) where 2 and 0% are
replaced by D and S. In this case, we have

aUD(t, x; y) - 1im aUDn(t: X, y)

(2.10) on, . on,

for any £ >0, yeS and x= DUS—{y}.

4°) Let 2 be a domain with property (S) and with compact closure 2 C D.
Then we can choose the sequence {D,} of domains stated in 3°) such that
QcD, If weput D,=D,—2 (n=1,2,--) and D’=D—2, then we may con-
sider Up: (¢, x, ¥) (n=12,---) and Up(t, x,y) in the same way as in 2°) and
3°), and we have

.11) Updt, %, 3)=lim Up (1, %,9) (t >0, x= D—2, y € D— Q)
and

a AT ’ . a , ’ s ~
@iy AU UGB g e D d ye o)

on, oo on,

where d/0n, denotes the exterior normal derivative at the point y of 02 as a
boundary of D’ (=D—2). We put
(2.13) Up(t, x,y)=0 for any t >0, x D’ and any y= 2.
Then ;— :
LEMMA 2.1. For any t >0, x& D’ and y<= D, it holds that

oUp(t—z,

X, 2)
oD’ anz UD(T’ Z, y)dsz

Q1) Unt, %3 =Undt, 9~ O”dz {

Proor. For any fixed ¢>0, ye€D and n=1, the function u(t, x)
=Up,(t+e, x, y) satisfies (2.1) where 2 is replaced by D and
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. S, =0, uy(x) = Up,(e, x,5) (x& D,—£) and
o(t, )=Up,(t+e, x,)) (x€0), =0 (x€0D,).

Hence, by 2°), we have

Up i+, x,0)={ Up(t x2UpSe 2 1)z

___j‘ tdz-j‘ a[]D;l(t—TY X, Z) UDTL(T, z, y>dsz
0 09 on,

for any +>0 and x < D). Letting e—0 and then n—oo, we obtain (2.14) by
means of [2.9), (2.11) and [2.12)

LEMMA 2.2. If u(x) is positive A-superharmonic in D, then
@15  0=—[ ac[ OUnO yeyis,cuy  for any xe D
0 oD’ ang

Proor. By lower semi-continuity of u(x), there exists a monotone increas-
ing sequence {¢,(x)} of continuous functions on 0£2 such that ¢,(x)=0 and
lim ¢,(x) = u(x) on 9£2. Let w,(x) be the solution of the boundary value prob-

lem:
©.(x) on 082,

0 on 0D,

— see [3; §10]. Then, by means of A-superharmonicity of u and by the
same argument as in the proof of the preceding lemma, we get

Aw,(x)=0 in D,, w,(x)= {

U2 29 g, (5pas,
on,

uG) Zwn = Usg @t 5wy 'def

¢ oUp (z, x,¥)
=>—\ d ittt NSt > .
= jo T oo o 0 (3)dS, =0 for any xe D

Letting n->o0, we obtain (2.15).

§3. Superharmonic functions and Green function. We first notice that
the domain £ in the condition iii) in the definition of A-superharmonicity (in
§1) can be restricted to domains with property (S); this may easily be seen
from i), ii) and iii) in the definition. |

THEOREM 1. Assume that u(x) is of class C*in D. Then u(x) is A-super-
harmonic in D if and only if Au(x) <0 holds in D.

Proor. We first assume that Au(x) <0 in D, and let £2 be a domain with
property (S) and such that 2cC D and w(x) be a function continuous on 2, A-
harmonic in £ and satisfying w(x) <u(x) on 02. Then, by means of 2°) in
§ 2, we have (see also (2.2), (2.3) and (2.4))
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@1 u=—[ Golr, - Au)dy—{ €L D 55,

Y

> _fag ac‘é(n]:’w w(MdS, =w(x) for any x= Q.
Hence u(x) is A-superharmonic in D. Next assume that Au(x) >0 at some
point x& D. Then there exists a domain £ with property (S) and such that
2C D and that Au(x)>0 in 2. Let w(x) be the solution of the boundary
value problem:

Aw=0in 2, w=u on 02.

Then, by the similar argument to above (see [3.I)), we may obtain that
u(x) <w(x) in 2. Hence u(x) is not A-superharmonic, q.e.d.

LEMMA 3.1. If u(x) is A-superharmonic in D and takes its mimimum at
an inner point of D, then u(x) is constant in D.

PrOOF. We may assume that the minimum of u(x) in D is zero. Suppose
that F={x; u(x)=0} is a proper subset of D. Then there exists a point
%, € E and an domain 2 with property (S) such that x,€ 2 2D and that
Q—F is a non-empty open set. Hence, by the similar arguments to proofs of
Lemmas 2.2 and 2.1, we may obtain

u(xy) = fg_FUg(t, Xoo Nu(dy >0 (see (2.2);

this contradicts to the fact: x,€ E={x;u(x)=0}.
LEMMA 3.2. Let y be a fixed point in D, and assume that u(x) is A-har-

monic in D—{y} and satisfies lim inf w(x)=u(y)=co where ¥(x,y) denotes
=0 r(z,y)<p

the * Riemannian distance’ defined by | a;;(x)|l. Then u(x) is A-superharmonic
in D.

PRrROOF. u(x) clearly satisfies i) and ii) in §1. Let £ be a domain with
property (S) and with its closure 2 — D, and w(x) be a function continuous on
2, A-harmonic in £ and satisfying w(x) <u(x) on 92. We consider the fol-
lowing three cases: 1) ye& 2, 2) y=02,3) ye 2. Incase 1), u(x)—w(x)=0 in
£ by means of Theorem 1 and Lemma 3.1. We may reduce case 2) to case
1) by considering a monotone increasing sequence {£2,} of domains with prop-
erty (S) such that ye 2, for any n, lim2,=2 and limoQ ~0Q2,=02—{y},

kAmdesl n—00

since w(x) is bounded on £. In case 3), there exists p,>0 such that
inf  u(x)> rr%z w(x). Hence, by Theorem 1 and Lemma 3.1, u(x)—w(x)=0

r(2,1)<pg

in Q—{x;r(x,y)<p} for any p < p,, and accordingly u(x)=w(x) in £ (since
u(y)=oo is assumed). Thus u(x) satisfies iii) in §1, q.e.d.
THEOREM 2. The function
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(3.2) G, ) = [ “Uslt, 5 at (x,y€ D, )

is well-defined and is a Green function of the elliptic differential operator A
if, and only if, there exists a non-constant positive A-superharmonic function
in D.

Proor. If G(x,y) (x+#y) is well-defined by (3.2), then we may show by
the similar argument to that in [3; § 10] that G(-, ») is A-harmonic in D—{y}
for any fixed y. It is also clear from the construction of fundamental solu-
tions in [3; §§3-5] that (see 1°) and 3°) in §2 of the present paper)

lim inf G(x,y)=lim inf Gp,(x, ¥)
00 () <p p-0 r@,y<p

=lim inf | “Up,(t, %, )dl = oo

020 r(x,y<pvo0
Hence, by Lemma 3.2, G(x,y) is A-superharmonic in xe D for any fixed y.
The ‘only if’ part of Theorem 2 is thus proved.
To prove the ‘if’ part, it is sufficient to show, under the assumption of
the existence of a non-constant positive A-superharmonic function u(x) in D,
that

(3.3) { :dt { U, %0, 3)dv < o0

for any x,= D and any compact set £ C D, since, if it be proved, the existence
of Green function may be shown in the entirely same way as the proof of
Theorem 8 in [3, §10]. By virtue of Lemma 3.1, there exist positive numbers
a and B such that

O<a<fB< inf u(x).

ze{rolUE
Let £, and £, be subdomains of D with compact closures such that
2.c{xeD;ux<a} and {xeD;ux)>p}D2,D{x}VE
and that D’=D—@, and D”=D—@, are domains with property (S). Then,
for any ze 2,,

” aUDLL(Ea z, @
a>u(z)= —fo dz‘f@pn— o . BdS: =0

by Lemma 2.2, and hence

(3.4 0= —j drj aUD"(T 2, €) dS: < 2 for any ze,.
oD B

Since u,(x)=1 is also A-superharmonic we may similarly show that

(3.5) 0= —f LD;—G—U:—’Q%; %, 2) dS,<1 for any xe< 2,
OUp(1, y

. V: 2) dS, is positive and continuous in y < D’, we see that
(7724 z

Since —
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7= min{ j.aD' 9Up, 3, 2) dS}

yeE anz
is positive, and hence

(3.6) Tf dtf Up(t, x, y)dy < — f dtj Updt, x, y)dyj aglzil'ﬁy;zg
=—["atf ds.f Untt, x»2025h2D g

e oUL(t+1, x, 2)
3) DA> T2y Ay
2 jo dt.fw an, ds, =1 (by (3.5)).
On the other hand, by Lemma 2.1, we have

t —_—
Ustt, 5, 0= Uplts 5,30~ def OUUE2D e, 2, yyas,

4

for any x, y < 2, and any ¢ >0, and

T a”—':,
Luaaw:aLwLm¥m“%JZS)MM£JM&

for any ze 2,, vy 2, and any £ >0. Combining these two equalities, we have-
UD(t: Xy y) - UD’(ty X, y)

' oUp(t—r, %, 2) : O0Up(t—0,2§)
+f aef EEPEIm B s [ def CERRE Un(o, € 3)dS;

o0 n;

for any x,y< 2, and any ¢>0. Integrating both sides in y over E and then
in ¢ over (0, T), and changing the order of integration, we get

L%ﬁ;mumwwzhﬁﬁfm@mw@

+j0Tdtj0tdfj6D, aUD'(tgni;, X, Z) dSzjofdo_j-aD”aUpn(%n: z, E)dséj‘ Ui(o,&,y)dy

<[ "dt] Unt, x 5)dy

for any T >0. If we put X, supj dtf Ux(t, x,y)dy, then the above inequality,

xEPy

together with [(3.4), (3.5) and (3.6), implies that XTg—f-}-»B«XT, and accordingly

XTéWB[iF)“< oo; here a, B and y are independent of 7. Hence

3) This equality holds by virtue of the following property of the fundamental
solution : jDI Up (t, %, ) Up (5,3, 2)dy=Up (t+s, %, 2).
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1Tig X< ]7’(.3@7) < co; which implies [3.3).

REMARK. The existence of the Green function defined by (3.2) does not
necessarily imply the existence of non-constant positive A-harmonic function.
For example, consider the case: D=RY with N=3 and A—=4 (Laplacian in
usual sense). Then the fundamental solution Uy, x, y) constructed with
the method in 3°) of §1 is identical with the ¢Gaussian kernel’
Urt)y¥2exp (—| x—y|2/41), and (3.2) and (3.3) clearly hold. However, it is well
known that a positive (4-) harmonic function in the whole space RY is
always constant.

Department of Mathematics
University of Tokyo

References

[17 M. Ohtsuka, Dirichlet problem on Riemann surfaces and conformal mappings,
Nagoya Math. J., 3 (1951), 91-137.

[27 L.V. Ahlfors, On the characterization of hyperbolic Riemann surfaces, Ann.
Acad. Sci. Fenn. Ser. A I, No. 125 (1952), 1-5.

[37] S. Its, Fundamental solutions of parabolic differential equations and boundary
value problems, Japan. J. Math., 27 (1957), 55-102.




	On existence of Green ...
	\S 1. Introduction.
	\S 2. Preliminaries.
	\S 3. Superharmonic functions ...
	References


