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\S 1. Considering the Cauchy’s functional equation

(1) $f(^{\underline{x}+_{2^{\underline{y}}}})=\underline{f(x)}+\underline{f(y)}2$

where ] $(z)$ is an entire $tuncl_{(}on$ of $z$ , we have the following functional in–
equality:

(2) $|f\left(\begin{array}{l}x+y\\2\end{array}\right)|\leqq\underline{|]^{\backslash }(x)|}+\underline{|f(y)|}2^{\cdot}$

{ $n$ this paper we shall determine all the entire functions $f(z)$ which satisfy
(2).

TIIEOREM. If $f(z)$ is an entire Junction of $z$ , then all the functions which
satisfy (2) are $(\alpha z+\beta)^{n}$ and $\exp(\alpha z+\beta)$ where $\alpha,$ $\beta$ are arbitrary complex con-
stants and $n$ is an arbitrary natural number, and only these.

PROOF. We may assume that $f(z)\not\equiv O$ . Putting $z=s+it$ ( $s,$
$t$ real), $\varphi(s,$ $ t\rangle$

$=|f(z)|$ and using a real parameter $\tau^{[1]}$ , the function
$F(\tau)=\varphi(a+h\tau, b+k\tau)+\varphi(a-h\tau, b-k\tau)$

has a minimum $2\varphi(a, b)$ at $\tau=0$ by (2) Here $a,$ $b,$ $h,$ $k$ are arbitrary real con-
stants which satisfy $f(a+ib)\neq 0$ . Hence we have $F^{\prime\prime}(O)\geqq 0$ . Since

$F^{\prime\prime}(0)=2\{\varphi_{ss}(a, b)h^{\underline{o}}+2\varphi_{st}(0, b)hk+\varphi_{tt}(a, b)k^{2}\}$ ,

we have
$\varphi_{ss}(a, b)h^{2}+2\varphi_{st}(a, b)hk+\varphi_{tt}(a, b)k^{2}\geqq 0$ .

Since $h,$ $k$ are arbitrary, we have

(3) $\varphi_{b}^{2}t(a, b)-\varphi_{SS}(a, b)\varphi_{tt}(a, b)\leqq 0$ .

Since $f(a+ib)\neq 0$ , there exists a regular branch $g(z)$ of $\sqrt{f(z)}$ in a prop-
erly chosen vicinity $V$ of $z=\gamma=a+ib$ .

Using the Cauchy-Riemann equations, we have
$\{\varphi_{st}(a, b)\}^{2}-\varphi_{ss}(a, b)\varphi_{tt}(a, b)=4\{|g(\gamma)g^{\prime\prime}(\gamma)|^{2}-|g^{\prime}(\gamma)|^{4}\}$ .

By (3) we have
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(4) $|g(\gamma)g^{\prime/}(\gamma)|\leqq|g^{\prime}(\gamma)|^{2}$ .
Since $f(z)=g^{2}(z)$ in $V$ , by (4) we have

$|f(\gamma)f^{\prime\prime}(\gamma)|\leqq|f^{\prime}(\gamma)|^{2}$ .

Hence we have the following inequality at every point $z$

(5) $|f(z)f^{\prime\prime}(z)|\leqq|f^{\prime}(z)|^{2}$ .

Let us put $G(z)=\frac{f(\backslash z)}{\{f},\frac{f^{\prime\prime}(z)}{(z)\}^{2}}$ and assume that $z_{0}$ is an arbitrary complex

number. We may assume $f^{\prime}(z)\not\equiv O$ , otherwise $f(z)\equiv const.$ , which surely satis-
fies the original functional inequality. Then there exists a positive number $\delta$

such that $f^{\prime}(z)\neq 0$ in $ 0<|z-z_{0}|<\delta$ . By Riemann’s theorem $G(z)$ is regular
at $z=z_{0}$ , and $|G(z_{0})|\leqq 1$ . Hence $G(z)$ is an entire function satisfying $|G(z)|\leqq 1$

in $|z|<+\infty$ . By Liouville’s theorem $G(z)$ is a constant.
Hence we have

\langle 6) $f(z)f^{\prime\prime}(z)=A\{f^{\prime}(z)\}^{2}$ ,

where $A$ is a constant with $|A|\leqq 1$ .
Solving this differential equation (6), the assertion is proved.
REMARK. If $f(z)$ is a meromorphic function and satisfies (2) in $|z|<+\infty$ ,

then we can easily prove that $J^{\cdot}(z)$ is an entire function of $z$ .
\S 2. Now, using the above theorem we shall solve the following functional

equations under the hypothesis that $f(z),$ $g(z)$ are both entire functions of $z$ :

(1) $f(\frac{x+\gamma}{2})=\underline{f(x)}+\underline{f(y)}2$ .
\langle 2) $f(x+\mathcal{Y})=f(x)+f(y)$ ,

(3) $f(x+y)=f(x)f(y)$ ,

(4) $f(xy)=f(x)f(y)$ ,

(5) $|f(x+y)|+|f(x-y)|=2|f(x)|+2|g(y)|$ ,

(6) $|f(x+y)|+|f(x-y)|=2|f(x)|+2|f(y)|$ .
Solution of (1). $ f(z)=\alpha z+\beta$ . It is clear.
Solution of (2). $f(z)=\alpha z$ . It is also clear.
Solution of (3). We have

$|f(\frac{x+y}{2})|=|f(\frac{x}{2})||f(\frac{y}{2})|\leqq\frac{|f^{2}\left(\begin{array}{l}X\\-2^{-}\end{array}\right)|+|f^{2}}{2}\underline{\left(\begin{array}{l}y\\2\end{array}\right)|}$

$=\frac{|f(x)|+|f(y)|}{2}$ .

Hence $f(z)$ satisfies the condition of our theorem. Hence we have $f(z)\equiv 0$
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or $J^{\cdot}(z)=\exp(\alpha z)$ where $\alpha$ is an arbitrary complex constant.
Solution of (4). Putting $g(z)=f(e^{z})$ , by (4) we have

$g(x+y)=g(x)g(y)$ .

By the above result we have $f(z)\equiv 0$ or $f(z)\equiv 1$ or $f(z)=z^{n}$ where $n$ is an
arbitrary natural number.

Solution of (5). By (5) we have

$|J^{t}(x+y)|+|f(x-y)|\geqq 2|f(x)|$ ,

which implies

$|f(\frac{x+y}{2})|\leqq\frac{|f(x)|+|f(y)|}{2}$ .

Hence $f(z)$ satisfies the condition of our theorem, and we can conclude
$f(z)=(\alpha z+\beta)^{2},$ $g(z)=\alpha^{2}z^{2}$ where $\alpha,$ $\beta$ are both arbitrary complex constants.

Solution of (6). By the above result we have $f(z)=\alpha z^{2}$ where $\alpha$ is an
arbitrary complex constant.
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