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\S 1. Introduction. Reduction of the problem.

In a previous paper [2] we have shown how the orbits of the Siegel
modular group in the generalized upper half-plane, $H_{n}=\{Z|Z$ an $n\times n$ complex,
symmetric matrix, $Z=X+iY,$ $Y$ positive definite}, form the points of a Q-open
subset $V$ of an algebraic variety $V^{*}$ defined over the rational numbers $Q$ .
It is well-known that these orbits are in a natural one-to-one correspondence
with the isomorphism classes of normally polarized Abelian varieties of
dimension $n$ , and in the paper cited, we have shown that if $x\in V$, then the
field of moduli of the corresponding isomorphism class of polarized Abelian
varieties is just $Q(x)$ . In the present paper we generalize this result to cover
not only the case of the moduli of Abelian varieties with arbitrary polarization,
but also the case of the moduli of polarized Abelian varieties with prescribed
endomorphism ring in certain cases. Namely, we let $k$ be a totally real
algebraic number field $F_{0}$ of degree $n_{0}$ over $Q$ or a purely imaginary quadratic
extension of such a field, let $[k:Q]=n$ , denote by $0$ the ring of integers in
$k$ , and consider an Abelian variety $(A, f)$ of type $0[12]$ and of dimension $m$

satisfying the following conditions:
(1) $\ell(1)=identity$ endomorphism on $A$ , and therefore $n|m$ , or $m=np$ ;
(2) if $\alpha\in \mathfrak{o}$ , then $\ell(\alpha)$ is represented by an $m\times m$ matrix among whose

eigenvalues each conjugate of $\alpha$ appears exactly $p$ times;
(3) if *is the positive involution of the endomorphism algebra of $A$

defined by the polarization attached to a hyperplane section of $A$ , then $f(\alpha)^{*}$

$=\ell(\overline{\alpha})$ for all $\alpha\in \mathfrak{o}$ .
We consider the space $H_{p}$ of complex $p\times p$ matrices $Z$ such that $i({}^{t}\overline{Z}-Z)$ is
positive Hermitian, and in case $k$ is totally real $(i. e., n=n_{0})$ we assume ${}^{t}Z$

$=Z,$
$t$ denoting transpose. For data satisfying the above hypotheses, we may

choose a system of coordinates in $C^{m}$ such that for some $Z=$ $(Z_{1}, \cdots , Z_{n_{0}})\in H_{p^{0}}^{n}$ ,

*The author wishes to acknowledge support received during the course of this
research from the Alfred P. Sloan Foundation and from the National Science Foun.
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and some lattice $L$ in $k^{2p}(i$ . $e.$ , a maximal free Abelian subgroup of $k^{zp}$ , having
2 $np$ independent generators), $A$ is isomorphic to $C^{m}/L_{Z}$ , where

$L_{Z}=\{v_{\lambda}= ((Z_{1}E)\lambda^{\sigma_{1}}, \cdots , (Z_{n_{0}}E)\lambda^{\sigma_{n_{0}}}, ({}^{t}Z_{1}E)\lambda^{\sigma_{1}\tau}, \cdots , ({}^{t}Z_{n_{0}}E)\lambda^{\sigma_{n_{0}}\tau})|\lambda\in L\}$ ,

$E$ denoting the $p\times p$ identity matrix, $(Z_{i}E)$ or $({}^{t}Z_{i}E)$ denoting a $p\times 2p$ matrix
written in $p\times p$ blocks, and $\tau$ denoting complex conjugation on $k$–the last $n_{0}$

terms with ${}^{t}Z_{i}$ appear only if $k$ is a purely imaginary quadratic extension of
$F_{0}$ (so $n=2n_{0}$) and $\tau\neq identity$ on $k$ ; the polarization is defined by the skew
Hermitian form

$(v_{\lambda}, v_{\kappa})=tr({}^{t}\overline{\lambda}J\kappa)$ ,

where $tr=tr_{k/Q}$ and $I=\left(\begin{array}{ll}0 & E\\-E & 0\end{array}\right)$ ; and $f(\alpha)$ , $\alpha\in 0$ , is represented by the

diagonal matrix whose diagonal entries are the $n$ conjugates of $\alpha$ , each repeated
$p$ times, in an appropriate order. The details of this coordinatization of the
problem are described in a paper of Shimura [13]. The group

$sp(p, k)=\{1\psi|{}^{t}\overline{M}Jj\psi=I\}$

acts naturally on $H_{p}^{n0}$ . Let
$\Gamma_{L}=\{l\psi\in Sp(p, k)|{}^{t}\overline{M}L=L\}$ ,

the elements of $L$ being viewed as column vectors. Then for $Z_{1},$ $Z_{2}\in H_{p}^{no}$ the
corresponding isomorphism classes, for the above data, are the same if and
only if $Z_{1}\in\Gamma_{L}Z_{2}$ .

We now introduce the following definitions (see [3, \S 2]): An analytic
family of Abelian varieties is a triple $(\mathfrak{A}, \lambda, \mathfrak{B})$ , where $\mathfrak{A}$ and $\mathfrak{B}$ are irreducible
complex analytic spaces and $\lambda$ is a proper complex analytic mapping of QI

onto $\mathfrak{B}$ having the following properties:
(i) there is an analytic subset 8 of $\mathfrak{B}$ such that for $b\in \mathfrak{B}-\mathcal{E}$ , the fiber

$A_{b}=\lambda^{-1}(b)$ is an Abelian variety of fixed dimension $m$ .
(ii) we define $\mathfrak{A}^{(l)}=(\lambda^{\iota})^{-1}$($diagona1$ of $\mathfrak{B}^{\iota}$), $\lambda^{(l)}=\lambda|\mathfrak{A}^{(l)}$ (for any positive

integer $l$ ), and identify $\mathfrak{B}$ with the diagonal of $\mathfrak{B}^{t}$ ; then the group law of $A_{b}$

is cut out on $A_{b}^{(3)}=\lambda^{(3)}-1(b)$ by a fixed analytic subset $\mathfrak{G}$ of $\mathfrak{A}^{(8)}$ for all $b\in \mathfrak{B}-\mathcal{E}$.
If in addition $\mathfrak{r}$ is some ring with unit 1, we say that $(\mathfrak{A}, \lambda, \mathfrak{B})$ admits $\mathfrak{r}$ as

an endomorphism ring if we have further:
(iii) for each $\rho\in \mathfrak{r}$ we are given an analytic subset $f(\rho)$ of $\mathfrak{A}^{(2)}$ such that

for each $b\in \mathfrak{B}-\mathcal{E},$ $\iota_{b}(\rho)=f(\rho)\cap A_{b}^{(2)}$ is the graph of an endomorphism of $A_{b}$

and such that
$\iota_{b}:\rho\rightarrow\ell_{b}(\rho)$ , $b\in \mathfrak{B}-\mathcal{E}$ ,

is an isomorphism of $\mathfrak{r}$ into $d(A_{b})$ , and $f_{b}(1)$ is the identity on $A_{b}$ . We say
that $b\in \mathfrak{B}-\mathcal{E}$ is a regular point of the fibering $(\mathfrak{A}, \lambda, \mathfrak{B})$ if each point of $\lambda^{-1}(b)$

is a non-singular point of $\mathfrak{A}$ , if $b$ is a non-singular point of $\mathfrak{B}$ , and if the rank
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of the Jacobian matrix of $\lambda$ at each point of $\lambda^{-1}(b)$ is equal to $\dim B$. If that
is so, then for a suitable small neighborhood $N$ of $b,$ $(\lambda^{-1}(N), \lambda, N)$ is a complex
analytic family in the sense of [7, p. 335, Def. 1.4]. If $N$ is suitably small,
we can find a basis of holomorphic l-forms on $\lambda^{-1}(N)$ such that the periods
of these with respect to a basis of l-cycles on $\lambda^{-1}(b^{\prime})$ for each $b^{\prime}\in N$ are
holomorphic functions of $b^{\prime}$ on $N$ (see [8, 163-165]). We assume each polarized
Abelian variety $\lambda^{-1}(b^{\prime})$ with endomorphism ring is of the type described in
(1)$-(3)$ above. It is then easy to see that the above coordinatization of the
problem of moduli of Abelian varieties with endomorphism ring can be carried
out complex analytically on $N$ and on $\lambda^{-1}(N)$ . This shows that in an appro-
priately defined sense, $H_{p^{0}}^{n}$ is a natural universal space for analytic fiber
systems of Abelian varieties with the given data. It is therefore natural if
we restrict ourselves to fiber systems of polarized Abelian varieties with the
given data whose base space is some quotient space of $H_{p^{0}}^{n}$ (or of some part
of $H_{p^{0}}^{n}$). When we do this, we obtain a result analogous to that of [2, p. 363,
Theorem 2], and which is stated in precise form at the end of \S 3.

In the above definitions and remarks it is natural to replace complex
analytic objects by the corresponding objects of algebraic geometry. When
this is done, we should expect, following the ideas suggested by [2, 376-379]

and using the techniques of [11] to be able to transfer the statements about
universality of complex analytic fiber systems of Abelian varieties into state-
ments about similar algebraic fiber systems, conserving as far as possible fields
of definition. However, we shall dwell mainly on the special types of algebraic
fiber systems to be dealt with here in \S 3, since our main concern is to relate
the problem of moduli for Abelian varieties with the theory of automorphic
functions.

Finally, regarding the compactification of the orbit spaces $H_{p^{0}}^{n}/\Gamma_{L}$ as pro-
jective varieties, this has already been achieved for the case when $k$ is totally
real [1]. The result when $k$ is a purely imaginary quadratic extension of a
totally real field is a special case of results [4] for which it is anticipated
proofs may be published before long.

At this point we should like to acknowledge our indebtedness to K. Kata-
yama and G. Shimura for making available to us manuscripts of articles [6,

13] which at the time of their being available to us had not yet appeared in
published form. We should also like to acknowledge our indebtedness to
these colleagues for numerous valuable conversations which helped to clear
up our ideas on some of the matters touched on in this paper.
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\S 2. The theory of $\theta$-functions.

Let $F_{0}$ be a totally real number field and let $F$ be a purely imaginary
quadratic extension of $F_{0}$ ; put $n_{0}=[F_{0} : Q]$ . Let $\sigma_{1},$

$\cdots$ , $\sigma_{n_{0}}$ be distinct isomor-
phisms of $F$ into $C$ such that $i\neq j\subset>\sigma_{i}\neq\overline{\sigma}_{j}$ , and let $\tau$ denote complex conjuga-
tion on $F$. Let $k$ be $F_{0}$ or $F$, which we call case I or case II, respectively.
Let $p$ be a positive integer, denote by $L$ a lattice in $k^{2p}$ , and denote by
$r=r(L)$ the order of $L,$ $r=$ {a $\in k|\alpha L\subset L$ }. Denote by $Z_{1}$ , , $Z_{n_{0}}$ complex
$p\times p$ matrices and let $\zeta^{(1)},$ $\cdots$ , $\zeta^{(n)}$ , where $n=[k:Q]$ , be complex p-vectors,
$\zeta^{(j)}=$ $(\zeta_{1}^{(j)}, \cdots , \zeta_{p}^{(j)})\in C^{p}$ . For convenience of notation we let $Z$ be a $p\times p$ matrix
of indeterminates, let $\zeta$ be a $p$-vector with indeterminate components, and
define $Z^{\sigma j}=Z_{j},$ $\zeta^{\sigma_{j}}=\zeta^{(j)}$ , and $\zeta^{(t)\tau}=\zeta^{(j)}$ with $i\equiv i+n_{0}(mod n),$ $Z^{(j)C}={}^{t}Z^{(j)}$ . In
case I, we assume ${}^{t}Z_{j}=Z_{j}$ , and in either case we assume

$i(\overline{{}^{t}Z_{j}}-Z_{j})\gg 0$ , $j=1,$ $n_{0}$ .
We let $g=$ $(g^{(1)}, , g^{(n)})$ and $h=(h^{(1)}, , h^{(n)})$ be n-tuples of complex p-vectors
such that

$g^{(i)}=\overline{g^{(j)}}=g^{(t)f}$ , $h^{(i)}=\overline{h^{(j)}}=h^{(i)\Gamma}$ ,

where $j\equiv n_{0}+i(mod n)$ . We let $L_{Z}$ denote the lattice in $C^{2np}$ defined by

$\{(\xi^{\sigma_{1}}, \cdots \xi^{\sigma n_{0}}, \xi^{\sigma_{1}\tau}, \cdots \xi^{\sigma n_{0}\tau})|\xi=(ZE)\lambda, \lambda\in L\}$ ,

where $(ZE)$ is a $p\times 2p$-matrix written in $p\times p$ blocks and $E$ the identity
matrix. $G_{Q}$ will denote the group of $M\in GL(2p, k)$ such that ${}^{t}\overline{M}JM=J$, where

$I=\left(\begin{array}{ll}0 & E\\-E & 0\end{array}\right)$ . From the Corollary p. 267 of [6], we deduce, by an obvious

modification of the proof of that corollary the following (see also [16], Prop. 1.3).
LEMMA 1. Let $L$ be an o-lattice in $V(2p, k)(=k^{2p})$ , where $0$ is the principal

order of (all integers in) $k$ . Let $P$ denote a non-degenerate, skew-Hermitian
matrix such that $c_{\overline{x}Py}\in c$ for $x,$ $yL$ , where $c$ is an ideal in $k$ . Then, there exists

$T\in GL(2p, k)$ such that $L=T\left(\begin{array}{l}D\\\vdots\\ 0\\\mathfrak{a}_{1}\\\vdots\\\mathfrak{a}_{p}\end{array}\right)\}pp$ and such that ${}^{t}\overline{T}PT=f$

Hence, we may assume without loss of generality in the case $r=0$ that
$L=L_{1}\oplus L_{2}$ , where

$L_{1}=\{\left(\begin{array}{l}\lambda_{1}\\0\end{array}\right)|\lambda_{1}\in \mathfrak{o}^{p}\}$

and



Moduli of Abelian varieties 371

$L_{2}=\{\left(\begin{array}{l}0\\\alpha\end{array}\right)|\alpha\in_{(}\left(\begin{array}{l}\mathfrak{a}_{1}\\\vdots\\\mathfrak{a}_{p}\end{array}\right)\}$

for $\mathfrak{a}_{1},$
$\cdots$ , $\alpha_{p}$ suitable lattices in $k$ . We henceforth make this assumption.

Using the above notation, we put

$\theta_{L_{1}}[g, h](\zeta, Z)=\theta[g, h](\zeta, Z)=\sum_{\lambda_{1}\in L_{1}}\epsilon(\frac{1}{2}Z[\lambda_{1}+g]+{}^{t}(\overline{\lambda_{1}+g})(\zeta+h))$ ,

where $\epsilon()=e^{2\pi itr()}$ and $Z[a]={}^{t}\overline{a}Za$ .
It is easy to see that $\theta[g, h]$ converges uniformly on any compact subset of
the region $\{Z_{j}\in H_{p}, j=1, , n_{0} ; \zeta^{(i)}\in C^{p}, i=1, , n\}$ . An entire function in
this region satisfying the functional equation

$\theta(\zeta+Z\lambda_{1}+\text{{\it \‘{A}}}_{2}, Z)=\epsilon(m(-\frac{1}{2}Z[\lambda_{1}]-{}^{t}\overline{\lambda}_{1}\zeta)+{}^{t}\overline{g}\lambda_{2}-{}^{t}\overline{h}\lambda_{1})\theta(\zeta, Z)$ ,

$\lambda_{i}\in L_{i}$ , $i=1,2$ ,

is called a $\theta$ -function of $m^{th}$ order and characteristic $(g, h)$ with respect to $L$ .
It is easy to see that $\theta_{L_{1}}[g, h]$ is a $\theta$ -function of the first order with respect
to $L^{*}=L_{1}\oplus L_{1}^{\prime},$ $L_{1}$ and $L_{1}^{\prime}$ being identified with lattices in $k^{p}$ in an obvious
manner, and $L_{1}^{\prime}$ being the complementary lattice to $L_{1}$ : $L_{1^{\prime}}=\{\lambda\in k^{p}|tr({}^{t}\overline{\lambda}\lambda)\in Z$ :

the rational integers}. Let $M=\left(\begin{array}{ll}A & B\\C & D\end{array}\right)\in G_{Q}$ , define $Z^{\prime}=MZ=(AZ+B)\cdot(CZ$

$+D)^{-1}$ and $\zeta^{\prime}={}^{t}(\overline{C}{}^{t}Z+\overline{D})^{-1}\zeta$ . The main problem of the transformation theory
of $\theta$ -functions of this kind is to find an expression for $\theta[g, h](\zeta, Z)$ as a
linear combination of $\theta$ -functions of the form $\theta[g^{\prime}, h^{\prime}](\zeta^{\prime}, Z^{\prime})$ for suitable
$(g^{\prime}, h^{\prime})$ . For this purpose let UZ be the group of $M=\left(\begin{array}{ll}A & B\\C & D\end{array}\right)\in G_{Q}$ such that

$C=0$ , and consider the double coset decomposition

$G_{Q}=\cup \mathcal{A}T_{i^{L}}A$ . (Bruhat decomposition)

It is easy to show that there are $p+1$ such double cosets and as a set of
representatives, we may choose $T_{0},$ $\cdots$ $T_{p}$ , where

$T_{q}=\}_{0}^{0}E_{q}0$ $E_{0}^{0}0^{p-q}E_{0}0^{q}0$
$ E_{p-}000\rfloor$

$E_{\nu}$ denoting the $\nu\times\nu$ identity matrix; if $M=\left(\begin{array}{ll}A & B\\C & D\end{array}\right)\in G_{Q}$ , then $M\in dT_{q}A$ if

and only if the rank of $C$ is $q$. It is obvious that if $\left(\begin{array}{ll}A & B\\0 & D\end{array}\right)\in d$, we may

write $\left(\begin{array}{ll}A & B\\0 & D\end{array}\right)=\left(\begin{array}{ll}\rho^{-1}A^{/} & \sigma^{-1}B^{/}\\0 & \sigma^{-1}D\end{array}\right)$ , where $\sigma$ and $\rho$ are positive integers and $A^{\prime}$ ,

$B^{\prime},$ $D^{\prime}\in M_{p}(\mathfrak{r}),$ $\mathfrak{r}=\mathfrak{r}(L)$ ; then we must have $\rho^{-1}{}^{t}\overline{A}‘=\sigma D^{\prime-1}$ , and so
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$M=\left(\begin{array}{ll}{}^{t}D^{\prime-1} & 0\\0 & D’\end{array}\right)-\left(\begin{array}{ll}E & {}^{t}D^{\prime}B^{\prime}\\0 & E\end{array}\right)\left(\begin{array}{ll}\sigma E & 0\\0 & \sigma^{-1}E\end{array}\right)$

$E$ denoting the $pxp$ identity. Transformations of the form $\left(\begin{array}{ll}{}^{t}D & 0\\0 & D^{-1}\end{array}\right)-$ are

said to be of the first kind, those of the form $\left(\begin{array}{ll}E & S\\0 & E\end{array}\right)$ , with $S\in M_{p}(\mathfrak{r})$ , of the

second kind, while $T_{0}$ , , $T_{p}$ are said to be of the third kind. We now
consider these types in turn. First let

$M=\left(\begin{array}{ll}\sigma^{-1}{}^{t}D & 0\\0 & \sigma D^{\rightarrow 1}\end{array}\right)$

$\sigma$ a positive integer, and assume $D$ has coefficients in $r=r(L)$ . Let $\det D=\delta$ .
We have

$\theta(\zeta, Z)=\sum_{m\in L_{1}}\epsilon(\frac{1}{2}Z[m]+t\overline{m}\zeta)$ .

If $A$ is any matrix, denote by $A^{*}$ the adjoint matrix of $A$ (so that $A^{*}$

$=(\det A)A^{-1})$ . Put, for $m\in L_{1},$ $n=\sigma D^{-1}m$ , or $\delta n=\sigma D^{*}m$ . Then

$\theta(\zeta, Z)=\sum_{n}’\epsilon(\frac{1}{2}Z^{\prime}[n]+{}^{t}\overline{n}\zeta^{\prime})$ ,

where $Z^{\prime}=\sigma^{-2}Z[D]$ , and $\zeta^{\prime}=\sigma^{-1}{}^{t}\overline{D}\zeta$ , and where $\Sigma^{\prime}$ means to sum over all
$n\in\sigma D^{-1}L_{1}$ . Now let

$n=\hat{n}+\sigma D^{- 1}$ ,

where $\hat{n}\in L_{1}$ is such that $D\hat{n}\in\sigma L_{1}$ . Then

$\theta(\zeta, Z)=\sum_{\rho}\sum_{\hat{n}}*\epsilon(-21-Z^{\prime}[\hat{n}+\sigma D^{-1}\rho]+{}^{t}(\hat{n}-+\overline{\sigma D^{-1}\rho})\zeta^{\prime})$ ,

where $\Sigma^{*}$ denotes summation over $\hat{n}\in L_{1}\cap\sigma D^{-1}L_{1}$ . Put

$F(\hat{n}, \rho)=\frac{1}{N(\sigma)^{p}}\sum_{\gamma\in L_{1}^{\prime}/\sigma L_{1}^{\prime}}\epsilon(\sigma^{-1}{}^{t}(\overline{n}+\sigma\overline{D}^{-1}\overline{\rho})^{t}\overline{D}\gamma)$ .

Then

$F=\left\{\begin{array}{l}1 if D\hat{n}\in \mathfrak{o}L_{1},\\0 otherwise.\end{array}\right.$

(This follows from elementary properties of group characters.) Hence,

$N(\sigma)^{p}\theta(\zeta, Z)=\sum_{\rho,\gamma}\sum_{\hat{n}\in L_{1}}\epsilon(\frac{1}{2}Z^{\prime}[\hat{n}+\sigma D^{-1}\rho]+{}^{t}(\hat{n}+\sigma D^{-1})(\zeta+\sigma^{-1}{}^{t}\overline{D}\gamma))$

$=\sum_{\rho\in L_{1}/DL_{1}}\sum_{\gamma\in L_{1}/\sigma L_{1}^{\prime}}\theta[\sigma D^{-1}\rho, \sigma^{-1}D\gamma](\zeta^{\prime}, Z^{\prime})$

;

if $0=\delta=1$ , this sum contains just one term. By making a suitable change
of variables (replacing $\zeta$ by $\zeta+Zg+h$), we obtain (with $L^{*}=L_{1}\cap\sigma D^{-1}L_{1}$ )
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$N(\sigma)^{p}\theta_{L_{1}}[g, h](\zeta, Z)=\sum_{\rho}\sum_{\gamma}\theta_{L_{1}^{*}}[\sigma D^{-1}(\rho+g), \sigma^{-1}D(\gamma+h)](\zeta^{\prime}, Z^{\prime})$ .

We now consider transformations of type II. Here we have

$\theta_{L_{1}}[g, h](\zeta, Z)=\sum_{m\in L_{1}}\epsilon(\frac{1}{2}Z[m+g]+{}^{t}(\overline{m+g})(\zeta+h))$ .
Put $Z^{\prime}=Z+S,$ $\zeta^{\prime}=\zeta$ , where $S=(S_{ij})$ is Hermitian and $S_{ij}\in \mathfrak{a}=\{\alpha\in k|\alpha L_{1}\subset L_{1}^{\prime}\}$ .
We see from our earlier considerations that we may take $S_{ij}$ in any pre-
assigned lattice $\mathfrak{a}$ in $k$ . Then for some fixed basis $\{\omega_{i}\}_{\iota=1}^{pn}$ of $L_{1}$ , we solve the
equations

$a=p\alpha=t\sum_{j=1}^{j=n}\omega_{i\ddot{\alpha}}^{\rho}\overline{a}_{\alpha j}=\alpha=p\alpha=1\sum_{j=1}^{j=n}(S_{\alpha t}(\omega_{i\alpha}\omega_{i\alpha})^{\rho_{j}},$ ( $S_{aa}$ is totally real)

where $\omega_{i}=$ $(\omega_{i1}, \cdots , \omega_{ip})\in k^{p}$ and $\rho_{1},$
$\cdots$ , $\rho_{n}$ are all the isomorphisms of $k$ into

$C$ ; this system of $np$ equations in $np$ unknowns has a unique solution, since
$\det(\omega_{i\alpha^{j}}^{\rho})\neq 0$ , and we may write $\overline{a}_{\alpha j}=\overline{a}_{\alpha}^{\sigma_{j}}$ for some $a.Ek$ ; the vector $a$ is
denoted by $\delta(S)$ . Then $a=(a_{1}$ , $\cdot$ .. , $a_{p})\in L_{1}^{\prime}$ . Then for any $m\in L_{1},$ $m=\Sigma b_{i}\omega_{i*}$

we have

$\frac{1}{2}\sum_{j}S^{\rho_{f}}[m^{\rho_{j}}]\equiv\frac{1}{2}\sum_{i}b_{i}^{2}\sum_{j}S^{\rho_{j}}[\omega^{\rho_{j}}]$

$\equiv_{2^{-\sum_{i}b_{i}\sum_{j}{}^{t}\overline{a}^{\sigma_{j}}\omega_{i}^{\sigma_{j}}}}^{1}-=\frac{1}{2}tr({}^{t}\overline{a}m)$ , $(mod 1)$ .
Hence,

$\epsilon(\frac{1}{2}Z[m+g]+{}^{t}(\overline{m+g})(\zeta+h))$

$=\epsilon(\frac{1}{2}Z^{\prime}[m+g]+{}^{t}(\overline{m+g})(\zeta+h-Sg-\frac{1}{2}a))\epsilon(\frac{1}{2}S[g]-\frac{1}{2}{}^{t}\overline{g}a)$ ,

where $Z^{\prime}=Z+S$ and $\zeta^{\prime}=\zeta$ . Hence,

$\theta[g, h](\zeta, Z)=\epsilon(\frac{1}{2}(s[g]-\iota_{\overline{g}a))\theta[g^{\prime},h^{\prime}](\zeta^{\prime},Z^{\prime})}$

where $g^{\prime}=g$ and $h^{\prime}=h-Sg-\frac{1}{2}a$ . We observe that $a\in L_{1}^{\prime}$ . Finally, let $T_{q}$

be defined as before with $0\leqq q\leqq p$ . We shall treat this case by obtaining a
particular version of the Poisson summation formula. Let $\psi$ be an entire
function of $z_{1},$

$\cdots$ , $z_{n},$ $z_{i}\in C^{q}$ , such that
$\sum_{m^{*}\in L_{1}^{l}}\psi(z+m^{*})$

converges absolutel\gamma

and uniformly on every compact subset of $C^{nq}$ , where

$L_{1}^{*}=\{\left(\begin{array}{l}\lambda^{\rho_{1}}\\\vdots\\\lambda^{\rho n}\end{array}\right)|\lambda=\left(\begin{array}{l}\lambda_{1}\\\vdots\\\lambda_{q}\end{array}\right)$ , $\left(\begin{array}{l}\lambda\\ 0\end{array}\right)\in L_{1}\}$ .
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Then
$f(z)=\sum_{m\in L_{1}^{*}}\psi(z+m)$

is an entire function such that $]^{\backslash }(z+m)=f(z)$ for all

$m\in L_{1}^{*}$ . Hence
$f(z)=\sum_{m_{1}^{\prime}\in L_{1}^{*!}}a_{m^{l}}\epsilon({}^{t}\overline{m}^{\prime}z)$

,

where $L_{1}^{*\gamma}$ is the complementary lattice to $L_{1}^{*}$ and

$v(cy)\cdot a_{m^{J}}=\int_{\sigma}f(z)\epsilon(-{}^{t}\overline{m}^{\prime}z)dx$ ,

$dx$ denoting an nq-dimensional (real) volume element and where $LJ$ is a period
parallelogram for the lattice $L_{1}^{*\gamma}$ in the real vector space which it spans in
$C^{nq}$ ( $v(\angle\supset)$ is the volume of $LJ$ ). Hence

$v(cy)f(z)=\sum_{m^{\prime}\in L_{1^{\prime}}^{*}}v(l\supset)a_{m^{J}}\epsilon({}^{t}\overline{m}^{\prime}z)$

$=\sum_{m^{\prime}\in L_{1}^{*l}}\sum_{m\in L_{1}^{*}}\int_{\Xi}\psi(x+m)\epsilon({}^{t}\overline{m}^{\prime}(z-x))dx$

$=\sum_{m^{\prime}\in L_{1^{\prime}}^{*}}\int_{R^{nq}}\psi(x)\epsilon(t\overline{m}^{\prime}(z-x))dx$ .

Putting $z=0$ , we obtain

$v(\mathcal{L}J)\sum_{m\in L_{1}^{*l}}\psi(m)=v(\angle J)f(0)=\sum_{m^{\prime}\leftarrow_{-}L_{1}^{*J}}\int_{R^{nq}}\psi(x)\epsilon(-{}^{t}\overline{m}^{\prime}x)dx$
,

where we identify $R^{nq}$ with the real vector space spanned by $L_{1}^{*\prime}$ (which is
the same as that spanned by $L_{1}^{*}$ , since $(L_{1}^{*}, L_{1}^{*/})\subset Z\subset R)$ . Let

$L_{1}^{**}=\{\kappa=\left(\begin{array}{l}\kappa_{1}\\\vdots\\\kappa_{p-q}\end{array}\right)|\left(\begin{array}{l}0\\\kappa\end{array}\right)\in L_{1}\}$ .

Put
$\psi(x)=\sum_{\kappa\in L_{1}^{**}}\epsilon(\frac{1}{2}Z[\kappa x+_{g^{1}}+^{g_{2}}]+t\left(\begin{array}{l}x+g_{1}\\\kappa+g_{2}\end{array}\right)(\zeta+\left(\begin{array}{l}h_{1}\\h_{2}\end{array}\right)))$ ,

where $g_{1},$ $h_{1}\in C_{q},$ $g_{2},$ $h_{2}\in C^{p-q}$ . Then

$\sum_{m\in L_{1}^{*}}\psi(m)=\theta[g, h](\zeta, Z)$
.

Hence, since $\psi$ evidently satisfies the necessary hypotheses, we have
$\theta[g, h](\zeta, Z)=v(\subset 7)^{-1}\cdot A$ ,

where

$A=\sum_{m\in L_{1}^{*}}\int_{R^{nq}}\psi(X)\epsilon(-\iota_{\overline{m}^{\prime}x)dx}$

$=\sum_{m^{\prime}\in L_{1}^{*l}}\sum_{\kappa\in L_{1}^{**}}\int_{R^{nq}}\epsilon(\frac{1}{2}Z[\kappa x+_{g_{2}}+^{g_{1}}]+t\left(\begin{array}{l}x_{1}+g_{1}\\+\kappa g_{2}\end{array}\right)\left(\begin{array}{l}\zeta_{1}+h_{1}\\\zeta_{2}+h_{2}\end{array}\right)-c\overline{m}^{\prime}x)dx$ ,

where $\zeta=\left(\begin{array}{l}\zeta_{1}\\\zeta_{2}\end{array}\right),$ $\zeta_{1}$ being composed of the first $q$ components of $\zeta$ , and $\zeta_{2}$ , of
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the last $p-q$. Put $Z=\left(\begin{array}{ll}Z_{11} & Z_{12}\\Z_{21} & Z_{22}\end{array}\right)$ , and introduce the following notation:

$Z^{*}=\left(\begin{array}{llll}0 & Z_{11} & 0 & Z_{12}\\{}^{t}Z_{11} & 0 & {}^{t}Z_{21} & 0\\0 & Z_{21} & 0 & Z_{22}\\{}^{t}Z_{12} & 0 & {}^{t}Z_{22} & 0\end{array}\right)=\left(\begin{array}{ll}X_{11} & X_{12}\\X_{21} & X_{22}\end{array}\right)$

$x_{1}=x+g_{1}$ , $x_{2}=\kappa+9_{2}$ , $\eta_{1}=\zeta_{1}+h_{1}-m_{1^{\prime}}$ , $\eta_{1}^{\prime}=\zeta_{1}^{\tau}+\overline{h}_{1}-\overline{m}_{1^{\prime}}$

$\eta=\zeta_{2}+h_{2}$ , $\eta_{2}^{\prime}=\zeta_{2}^{\tau}+\overline{h}_{2}$ , $\eta_{1^{\prime\prime}}=\left(\begin{array}{l}\eta_{1}\\\eta_{1^{\prime}}\end{array}\right)$ , $\eta_{2}^{\prime\prime}=\left(\begin{array}{l}\eta_{2}\\\eta_{2}\end{array}\right)$ , $\xi_{1}=\left(\begin{array}{l}\overline{x}_{1}\\x_{1}\end{array}\right)$ , $\xi_{2}=\left(\begin{array}{l}\overline{x}_{2}\\x_{2}\end{array}\right)$ .
Then $Z_{11}$ and therefore $X_{11}$ are non-singular. Clearly ${}^{t}Z^{*}=Z^{*}$ . So

$\frac{1}{2}Z[xx_{2}^{1}]+-\frac{1}{2}{}^{t}Z$[ $\frac{x^{\overline}}{x}12]+^{t}\left(\begin{array}{l}\overline{x}_{1}\\\overline{x}_{2}\end{array}\right)(_{\zeta_{2}^{1}}^{\zeta}I_{h_{2}}^{h_{1}})$

$+^{t}\left(\begin{array}{l}x_{1}\\x_{2}\end{array}\right)(_{\zeta_{2}^{\tau}+}^{\zeta_{\tau}+}1_{\overline{\frac{h}{h}})-\overline{m}_{1}x-m_{1}^{\prime}\overline{x}}12tJt$

$=\frac{1}{2}Z^{*}\{\xi_{2}^{1}\xi\}+^{t}\left(\begin{array}{l}\xi_{1}\\\xi_{2}\end{array}\right)\left(\begin{array}{l}\eta_{1}^{\prime\prime}\\\eta_{2}^{\prime\prime}\end{array}\right)+{}^{t}\overline{m}_{1}^{\prime}g_{1}+{}^{t}m_{1^{\prime}}\overline{g}_{1}=B$ ,

where $X\{a\}={}^{t}aXa$ . (We observe that the vector space $R^{nq}$ is spanned by

vectors of the form $(\frac{a}{a}).$) Then

$B=\frac{1}{2}X_{11}\{\xi_{1}+X_{11}^{-1}X_{12}\xi_{2}+X_{11}^{-1}\eta_{1}^{\prime/}\}-\frac{1}{2}X_{11}\{X_{11}(X_{12}\xi_{2}+\eta_{1^{\gamma/}})\}$

$+\frac{1}{2}X_{22}\{\xi_{2}\}+{}^{t}\xi_{2}\eta_{2}^{\prime\prime}+\overline{m}_{1}^{\prime}g_{1}+m_{1^{\prime}}\overline{g}_{1}$

$=\frac{1}{2}X_{11}\{\xi_{1}+l\}-{}^{t}\zeta H\zeta^{\iota}-\zeta^{\tau}H^{\tau}\zeta+-\frac{1}{2}Z^{\prime}[m_{1}\kappa^{\prime}-+hg_{2}^{1}]$

$+\frac{1}{2}{}^{t}Z^{\prime}[\overline{m\kappa^{1^{\prime}}-+g_{2}h}]+^{t}\left(\begin{array}{l}m_{1}^{/}-h_{1}\\\kappa+g_{2}\end{array}\right)(\zeta^{\prime}+(h_{2}g_{1}))-$

$+^{t}\left(\begin{array}{l}m_{1^{\prime}}-h_{1}\\\kappa+g_{2}\end{array}\right)(\zeta^{\prime r}+(\overline{h}^{1}\overline{g}_{2}))+{}^{t}g_{1}\overline{h}_{1}+{}^{t}\overline{g}_{1}h_{1}$ ,

where $\left(\begin{array}{ll}A & B\\C & D\end{array}\right)=T_{q},$ $H=(CZ+D)^{-1}C,$ $Z^{\prime}=T_{q}Z,$ $\zeta^{\prime}={}^{t}(CZ+D)^{-1}\zeta$, and $l$ is a

complex vector independent of $\xi_{1}$ . Finally, $X_{11}$ is a symmetric form on
$R^{nq}\times R^{nq}$, with $\det X_{11}=(\det Z_{11})^{2}$ , having positive definite imaginary part.
Hence,

$\int_{R^{n}}.\epsilon(\frac{1}{2}X_{1}\{\xi_{1}+l\})dx=\pm N(\det Z_{11})^{\frac{l}{2}}$ ,
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where $N$ means “ norm ‘’ in the sense of taking the $\backslash product$ over all formal

conjugates. Thus, if $\left(\begin{array}{ll}A & B\\C & D\end{array}\right)=T_{q}$ , we obtain

$\theta[g, h](\zeta, Z)$

$=\pm v(\subset 7)^{-1}N(\det Z_{11})^{-}12^{-}\epsilon(-2^{-Z_{11}^{-1}[\zeta_{1}])\epsilon({}^{t}\overline{g}_{1}h_{1})\sum_{m^{\prime}\in L_{1}^{*\prime}}\epsilon(\frac{1}{2}Z^{\prime}[]}1m_{2}+^{\prime}g^{\prime}m$

$+^{t}\left(\begin{array}{l}m^{\prime}\\m_{2}+g^{\prime}\end{array}\right)(\zeta^{\prime}+h^{\prime}))$ ,
$m_{2}\in L_{1}^{**}$

where $g^{\prime}=\left(\begin{array}{l}-h_{1}\\g_{2}\end{array}\right),$
$h^{f}=\left(\begin{array}{l}g_{1}\\h_{2}\end{array}\right)$ . Finally, we remark that the sum on the right

above can be written as a sum of $\theta$ -functions attached to the lattice $L_{1}$ . This
follows from the observation that if $A_{1}$ and $A_{2}$ are lattices, then any of the
$\theta$ -functions $\theta_{\Lambda_{1}}[g, h]$ can be expressed as a linear combination of the $\theta$ -functions
$\theta_{\Lambda_{2}}[g^{\prime}, h^{\prime}]$ , for suitable $g^{\prime}$ and $h^{\prime}$ . To prove this, it is sufficient to consider
the cases (a) $\Lambda_{1}\supset\Lambda_{2}$ and (b) $\Lambda_{2}\supset\Lambda_{1}$ . Case (a) is obvious since then $\Lambda_{1}$

$=\cup(\Lambda_{2}+c)$ for a finite number of $c$ . For case (b), let $\chi_{1},$
$\cdots$ , $\chi_{N}$ be the char-

acters of the group $\Lambda_{2}/\Lambda_{1}$ . Each $\chi_{i}$ can be written in the form $\chi_{i}(a)=\epsilon({}^{t}\overline{\lambda}_{i^{\prime}}a)$ ,

for some $\lambda_{i^{\prime}}\in\Lambda_{1}^{\prime}$ and for all $a\in\Lambda_{2}$ . Then if $m=$ $(m_{1}, \cdots , m_{p})\in\Lambda_{2}$ ,

$\sum_{i=1}^{n}\chi_{i}(m)=\left\{\begin{array}{l}0 if m\not\in\Lambda_{1},\\Nif m\in\Lambda_{1}.\end{array}\right.$

Therefore

$\theta_{\Lambda_{1}}[g, h](\zeta, Z)=\sum_{m\in L_{1}}\epsilon(\frac{1}{2}Z[m+g]+{}^{t}(\overline{m+g})(\zeta+h))$

$=N^{-1}\sum_{m\in\Lambda_{2}}\sum_{i}\chi_{i}(m)\epsilon(-12-Z[m+g]+{}^{t}(\overline{m+g})(\zeta+h))$

$=\sum_{i}(\sum_{m\in\Lambda_{2}}\epsilon(\frac{1}{2}Z[m+g]+{}^{t}(\overline{m+g})(\zeta+h+\lambda_{i^{\prime}}))\epsilon(-{}^{t}g\lambda_{i}^{\prime}))$ ,

where $\lambda^{\prime}\in\Lambda_{1^{\prime}}$ . Hence
$\theta_{\Lambda_{1}}[g, h]=\sum_{i}\theta_{\Lambda_{2}}[g, h+\lambda_{i^{\prime}}]\epsilon(-{}^{t}\overline{g}\lambda_{i^{\prime}})\cdot N^{-1}$ .

Combining the above results, we obtain, finally, for any $\left(\begin{array}{ll}A & B\\C & D\end{array}\right)\in Sp(p, k)$ , that

$\theta_{L_{1}}[g, h](\zeta, Z)=\gamma(\zeta, Z)\sum_{g}c_{g^{\prime},h^{\prime}}\theta_{L_{1}}[g^{\prime}, h^{\prime}](\zeta^{\prime}, Z^{\prime})$ ,

where $\gamma(\zeta, Z)=(N\det(CZ+D))^{\frac{1}{2}}\epsilon(-{}^{t}\zeta^{\prime}C\zeta),$
$\zeta^{\prime}={}^{t}(CZ+D)^{-1}\zeta,$ $Z^{\prime}=(AZ+B)(CZ$

$+D)^{-1}$ , and $c_{g^{\prime},h^{J}}$ are constants; the sum on the right side is finite, and if
$g,$ $h\in k$ , then $g^{\prime},$ $h^{\prime}\in k$ , and $c_{g^{\prime},h^{\prime}}$ belong to a cyclotomic number field. We

are particularly interested in the case for which $t^{-}\left(\begin{array}{ll}A & B\\C & D\end{array}\right)L=L$ . Such a

matrix $\left(\begin{array}{ll}A & B\\C & D\end{array}\right)$ is called an L-unit. The group of L-units is denoted by $\Gamma_{z}$ .
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If $L_{1}$ and $L_{2}$ are complimentary lattices in $k^{p}$ , then the C-module of $\theta$ -functions
of given characteristic $g,$ $h$ with respect to $L$ and of 1st order is one-dimen-

sional (vide infra). Assuming this we shall show in case $\left(\begin{array}{ll}A & B\\C & D\end{array}\right)E\Gamma_{L}$ that
the above formula takes the form:

$\theta_{L_{1}}[g, h](\zeta, Z)=c\cdot(N\det(CZ+D)^{-\frac{1}{2}})\epsilon(-\frac{1}{2}{}^{t}\zeta^{\prime}C\zeta)\cdot\theta_{L}[g^{\prime}, h^{\prime}](\zeta^{\prime}, Z^{\prime})$ ,

where $|c|=1$ and
$g^{\prime}=Dg-Ch+^{1}-2-\delta(C^{t}\overline{D})$

$h^{\prime}=-Bg+Ah+-2-\delta({}^{t}\overline{B}A)1$ ,

where $\delta(S)$ has the previously defined meaning for Hermitian $S$ such that
$\overline{S}L_{1}\subset L_{1^{\prime}}$ , (we recall that $L_{1}=\mathfrak{o}^{p}$) or $\overline{S}L_{1}^{\prime}\subset L_{1}$ . In fact, for this choice of $(g^{\prime}, h^{\prime})$ ,

put $\varphi(\zeta, Z)=\epsilon(-2^{-{}^{t}\zeta^{\prime}C\zeta)\theta_{L_{1}}[g^{\prime},h^{\prime}]}1$ . Then for $\lambda_{1}\in L_{1},$ $\lambda_{2}\in L_{1^{\prime}}$ , we have

$\varphi(\zeta+Z\lambda_{1}+\lambda_{2})=\theta_{L_{1}}[g^{\prime}, h^{\prime}](\zeta^{\prime}+Z^{\prime}(D\lambda_{1}-C\lambda_{2})+(-B\lambda_{1}+A\lambda_{2}), Z^{\prime})$ .

. $\epsilon(-\frac{1}{2}{}^{t}(\zeta^{\prime}+Z^{\prime}(D\lambda_{1}-C\lambda_{2})+(-B\lambda_{1}+A\lambda_{2}))C(\zeta+Z\lambda_{1}+\lambda_{2}))$

$=\theta_{L}[g^{\prime}, h^{\prime}](\zeta^{\prime}, Z^{\prime})\epsilon(-\frac{1}{2}t\zeta^{\prime}C\zeta)\cdot\epsilon(\#)$ ,

where $\#=tr\{-{}^{t}(\overline{D\lambda_{1}-C\lambda_{2}})(-21-Z^{\prime}(D\lambda_{1}-C\lambda_{2})+\zeta^{\prime})+$ $\}$ . Direct computation

shows the latter to be $\equiv tr\{-\frac{1}{2}Z[\lambda_{1}]-{}^{t}\overline{\lambda}_{1}\zeta+{}^{t}\overline{\lambda}_{2}g-{}^{t}\overline{\lambda}_{1}h\}mod 1$ . Hence

$\theta_{L_{1}}[g, h](\zeta, Z)=c\cdot\theta_{L_{1}}[g^{\prime}, h^{\prime}](\zeta^{\prime}, Z^{\prime})\epsilon(-\frac{1}{2}{}^{t}\zeta^{\prime}C\zeta)$ ,

where $c$ depends only on $Z$. We know in any case from our preceding

formulas that $c=(N\det(CZ+D)^{-1}2)\cdot c_{1}$ , where $c_{1}$ is a constant. For the
purpose of computing $c$ , it is easily seen to be sufficient to consider the case
for which $\det C\neq 0$ ; for we can always write

$M=(\nu EE$ $E0$ ) $\left(\begin{array}{ll}A_{1} & B_{1}\\C_{1} & D_{1}\end{array}\right)$

where $\nu\neq 0$ and $\det C_{1}\neq 0$ for suitable choice of $\nu$ . In the following, we say
a rational integer $l$ is ” sufficiently divisible “ if $l$ is divisible by $a!$ for a
sufficiently large rational integer $a$ . When $\det C\neq 0$ , we may use the compu-
tations on 173-181 of [9] to compute $c$ , and we find that

$c=\epsilon(\frac{1}{\Delta}\psi(g, h))N\det(CZ+D)^{-1/2}\chi(M)$ ,
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where $\chi(M)$ is a complex number depending only on $M$. Using an argument
similar to that of lines 7-12, p. 347 of [2], we see that there is an integer $d$

such that $\chi(M)^{a}$ is a character on $\Gamma_{L},$ $i$ . $e.$ , a homomorphism of $\Gamma_{L}$ into the
multiplicative group of non-zero complex numbers. As for the more precise
nature of $\chi(M)$ , we assume that

$M\in\Gamma_{L}(l)=\{M_{1}|{}^{t}(\overline{M_{1}-E})L\subset lL\}$

for sufficiently divisible $l$. Let $1\supset$ denote a ” period parallelogram ” for $L_{1}$ .
If 2 is the matrix of the conjugates of a set of basis vectors of $L_{1}$ over the
rational integers, numbered and arranged in suitable order, then $|\det\Omega|=v(\Pi)$ .
We write the rational number $v(\mathcal{L}7)^{2}$ as the quotient $\frac{a}{b}$ of rational integers

such that $a\Omega^{-1}$ and $bI2$ are algebraic integral matrices and assume $4ab|l$. Then
using the argument of lines 12-17 of page 347 of [2], we can easily prove
$\chi(M)isarootofunity,$ $providedwecanprove|\chi(M)|=1$ . To prove $|\chi(M)|=1$ ,
we observe that the calculations 173-181 of [9] may be carried over to our
case with certain minor, but essential, modifications which we now describe.

First, Krazer’s matrix $T$ [p. 131 loc. cit.] is $\left(\begin{array}{ll}D & -C\\-B & A\end{array}\right)$ in our notation.

Secondly, Krazer’s period matrix $\alpha$ and vector variable $u$ are just $\pi iZ$ and
$\pi i\zeta$ in our notation. In the calculations 173-181 of [9], in formula (163) p. 173,
the integral indicated there should be $v(\angle\supset)^{-1}$ , when not zero, instead of 1 (we
note that integration must be carried out over a “ period parallelogram” of
$L_{1}^{\prime})$ . Moreover, the new indices of summation $n$ and $\rho$ introduced on 174-175
should be restricted by requiring that $n\in L_{1^{\prime}}$ and $\rho\in L_{1}$ . Then the number
of “ normal solutions “ of (173), p. 175 is the number of solutions $\rho$ of $C^{-1}\rho\in L_{1^{\prime}}$ ,
for $\rho\in L_{1}$ , incongruent modulo $|\det\Omega^{-2}\cdot N\det C|L_{1}$ . If $P=C$ or $D$ , we put

$P^{*}=\left(\begin{array}{llll}P^{\sigma_{1}} & & & \\ & & & 0\\ & P^{\sigma n_{0}} & & \\ & & P^{\sigma_{1}r} & \\0 & & & P^{\sigma n_{0}r}\end{array}\right)$

and put $C_{0}=\Omega^{-1}C^{*t}\overline{\Omega}^{-1},$ $ D_{0}=\Omega^{-1}D^{*}\Omega$ . Then the number of normal solutions
referred to above is just $|\det C_{0}|^{p-1}$ . Moreover, if $(C, D)$ is a primitive Hermitian
pair and if, as we have supposed, $M\in\Gamma_{L}(l)$ , then $(C_{0}, D_{0})$ is a primitive sym-
metric pair of rational integral matrices with $C_{0}\equiv 0,$ $D_{0}\equiv Emod 4$ . In (XXXI)

p. 181 of [9], $|\frac{(-\pi)^{p}}{\Delta_{A}}|^{\frac{1}{2}}=|N\det(CZ+D)^{-\frac{1}{2}}|,$ $\Delta_{II}=N\det C,$ $\nabla_{II}^{1-p}=|\det C_{0}|^{1-p}$ , and



Moduli of Abelian varieties 379

we see that $G$ becomes the modified Gaussian sum associated with $(C_{0}, D_{0})$ in

the classical transformation theory of $\theta$ -functions, so that $|G|=|\det C_{0}|^{p-\frac{1}{2}}$ .
Hence, in the formula (XXXI) we have

$|v(cy)^{-1}c|=|N\det(CZ+D)^{-}2^{-}1|\cdot|\det C_{0}|^{\frac{1}{2}}|N\det C|^{-\frac{1}{2}}$

$=|N\det(CZ+D)^{\frac{1}{2}}||\det$ J2 $|^{-1}$

or since $v(\angle\supset)=|\det\Omega|$ , we have $|N\det(CZ+D)^{-}21|=|c|$ , so that $|\chi(M)|=1$ .
Since $\chi(M)$ is a product of a Gaussian sum by a root of unity and by a real
number, it follows that $\chi(M)$ is a root of unity. Clearly its order is bounded
since $\Gamma_{L}(l)$ is finitely generated. Hence, for any $l_{0},$ $l|l_{0}$ , we have $\chi(M)^{l}=1$

for $M\in\Gamma_{L}(l_{0})$ , for suitable $d$.
Let $L=L_{1}\oplus L_{2}$ be as at the beginning of \S 2. We assume that $\mathfrak{r}(L_{1})$

$=\mathfrak{r}(L_{1}^{\prime})=\mathfrak{r}(L_{2})=\mathfrak{r}(L_{2}^{\prime})=\mathfrak{r}$ , so in particular $r=r$ . For fixed characteristic $(g, h)$ ,

for fixed $Z$, and for a positive rational integer $m$ , we wish to find a basis for
the $m^{th}$ order $\theta$ -functions $\Theta$ of characteristic $(g, h),$ $i$ . $e.$ , entire functions such
that

$\Theta(\zeta+Z\lambda_{1}+\lambda_{2})=\epsilon(-m^{t}\overline{\lambda}_{1}(\frac{1}{2}Z\lambda_{1}+\zeta)+{}^{t}\overline{\lambda}_{2}-{}^{t}\overline{\lambda}_{1}h)\Theta(\zeta)$ .

We assume $mL_{2}\subset L_{1}^{\prime}$ , so that $mL_{1}\subset L_{2}^{\prime}$ . By multiplication of $L$ by a suitable
scalar, we may assume without loss of generality that $L_{2}\supset L_{1^{\prime}}$ . $\Theta$ may be
expanded in a Fourier series:

$\Theta(\zeta)=\epsilon({}^{t}\overline{g}\zeta)\sum_{\ell\in L_{2}^{\prime}}C_{\mu}\epsilon({}^{t}\overline{\mu}\zeta)$

,

and it is easy to show that for $\lambda_{1}\in L_{1}$ we have

$C_{t_{0}+m\lambda_{1}}=C_{J_{0}}\epsilon(\frac{1}{2}mZ[\lambda_{1}]+{}^{t}\overline{\mu}_{0}Z\lambda_{1}+{}^{t}\overline{\lambda}_{1}h+{}^{t}\overline{g}Z\lambda_{1})$ ,

so that if $\mu_{0}\in L_{2}^{\prime}$ runs over a complete set of representatives modulo $mL_{1}$ ,

we have

$\Theta(\zeta)=\epsilon({}^{t}\overline{g}\zeta)\sum_{\mu_{0}}C_{y_{0}}\sum_{\lambda_{1}\in L_{1}}\epsilon(\frac{1}{2}mZ[\lambda_{1}]+{}^{t}\overline{\mu}_{0}Z\lambda_{1}+{}^{t}\overline{g}Z\lambda_{1}+{}^{t}(\overline{\mu}_{0}+m\overline{\lambda}_{1})\zeta+{}^{t}\overline{\lambda}_{1}h)$ ,

or
$\Theta(\zeta)=\epsilon(t\overline{g}\zeta)\cdot(\sum_{\mu_{0}}C_{t}0\epsilon(-\frac{1}{2m}Z[l_{0}+g])\theta_{L_{1}}[\frac{l4_{0}+g}{m},$ $h](m\zeta, mZ))$ .

Hence, the dimension of the module of such $\theta$ -functions is $[L_{2}^{\prime} : mL_{1}]$ . Denote
this module by $X(m, L, g, h)$ . Let $m$ be such that in fact $mL_{2}\subset 3L_{1^{\prime}}$ (or
$mL_{2}\subset pL_{1^{\prime}}$ , for any $p\geqq 3$). Let $\Theta_{0}$ , , $\Theta_{N}$ be a basis over $C$ (for. fixed Z) of
$X(m, L, g, h)$ . Let $L_{Z}$ be defined as in \S 2, and let $A_{Z}$ be the complex torus
$C^{np}/L_{Z}$ . We define a mapping
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$\theta:A_{Z}\rightarrow CP^{N}$ ,

where $CP^{N}$ is the N-dimensional complex projective space, by $\theta(\zeta)=[\Theta_{0}(\zeta)$ :
: $\Theta_{N}(\zeta)$]. Then by a proof which is mutatis mutandis identical with the

classical proof in [5], we may show that $\theta$ is a biregular immersion of $A_{Z}$ as
an Abelian variety in $CP^{N}$ .

We now refer to [10], p. 32, formulas $(\Pi_{0^{\prime}})$ and $(I\overline{I}_{0})$ . Precisely the same
formulas can be shown to hold in our case with $n$ replaced by some positive
integer $m$ and with $n^{p}$ replaced by $m^{np}$ . The calculations are just as in [10]

with appropriate change of notation, and we shall not dwell on them here
except to note that the indices $\beta$ on p. 19 (loc. cit.) should be taken as elements
of $L_{1}^{\prime}$ . At any rate, the result which these formulas imply is that if $L=L_{1}\oplus L_{1}^{\prime}$

\langle $i$ . $e.$ , if $L_{2}=L_{1^{\prime}}$ , viewing each as a lattice in $k^{p}$), then the module of $\theta$ -functions
of $m^{th}$ order and characteristic $(g, h)$ is spanned by the products

$\prod_{i=1}^{m}\theta[\frac{g+\lambda_{i}}{m},$ $\frac{h+\kappa_{r}}{m}](\zeta, Z)$

for which $\Sigma\lambda_{i}\in mL_{1},$ $\sum\kappa_{i}\in mL_{1^{\prime}}$ . The argument for proving this is just as
on p. 344 of [2].

It is also easy to prove that

$\theta[g+g^{\prime}, h+h^{\prime}](\zeta, Z)=\epsilon(\frac{1}{2}Z[g^{\prime}]+t\overline{g}^{\prime}(\zeta+h+h^{\prime}))\theta[g, h](\zeta+Zg^{\prime}+h^{\prime}, Z)$

and in particular if $\kappa\in L_{1},$ $\lambda\in L_{1^{\prime}}$ , then

$\theta[g+\kappa, h+\lambda](\zeta, Z)=\epsilon(\iota\overline{\lambda}g)\theta[g, h](\zeta, Z)$ .

Hence, if $\sum_{t=1}^{m}h_{i}^{(1)}=\sum_{i=1}^{m}g_{i}^{(1)}=0=\sum_{i=1}^{m}h_{i}^{(2)}=\sum_{i=1}^{m}g_{i}^{(2)}$ , then

$\frac{\prod_{i}\theta[g_{i^{(1)}},h_{i}^{(1)}](Zg^{\prime}+h^{\prime},Z)}{\prod_{i}\theta[g_{i^{(2)}},h_{i^{(2)}}](Zg^{\prime}+h’,Z)}=\frac{\prod_{i}\theta[g_{i^{(1)}}+g^{\prime},h_{i}^{(1)}+h^{\prime}}{\prod_{i}\theta[g_{i}^{(2)}+g,h_{i}^{(2)}+h’}\frac{(0,Z)}{(0,Z)}]]$

Denote the right side by $f[g_{1}^{(1)}, , h_{m}^{(2)}](Z)$ . Let $Z_{1},$ $Z_{2}\in H_{p^{0}}^{n}$ and suppose for
$a11m,$ $g_{1}^{(1)},$

$\cdots,$
$h_{m}^{(2)},$ $wehavef[g_{1}^{(1)}, \cdots, h_{m}^{(2)}](Z_{1})=f[g_{1}^{(1)}, \cdots, h_{m}^{(2)}](Z_{2})$ . The equality

of the expressions on the left side of the above equation for $Z_{1}$ and $Z_{2}$ says
that if $L=L_{1}\oplus L_{1^{\prime}}$ and if $A_{z_{i}}=C^{np}/L_{z_{i}},$ $i=1,2$ , then we have an isomorphism
$\varphi$ of $A_{z_{1}}$ onto $A_{z_{2}}$ which carries all the points of any fixed order $m$ on $A_{z_{1}}$

onto the points of order $m$ on $A_{z_{2}}$ . Hence $\varphi$ is induced by a mapping
$\psi:\zeta\rightarrow a\zeta+b$ of $C^{np}$ onto itself, and we evidently have $a(Z_{1}g^{\prime}+h^{\prime})+b=Z_{2}g^{\prime}+h^{\prime}$

for all $g^{\prime},$ $h^{\prime}$ sufficiently small. Hence $b=0$ and $a=E$, the identity matrix.
Therefore $Z_{1}=Z_{2}$ .

Just as in [2], 344-345, we may also write down an “ addition formula ”

for $\theta$ -functions similar in form to (9) of [2]; the essential details of the proof
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are those in [10], sections, 3, 6, 7 with notation adapted to our present situation
and with minor modifications in the summations performed there. The essential
point is that the final formula must be the same in form (compare p. 58, loc.
cit. ; replace $r$ by $m,$ $\alpha$ by $\pi imZ$, and $u$ by $\pi im\zeta$).

Finally, let $\rho\in \mathfrak{r}(L),$ $\rho\neq 0$ . Then $\theta(\rho\zeta, Z)$ is a first order $\theta$ -function with
respect to the lattice $\rho^{-1}(L_{1}\oplus L_{1^{\prime}})$ . Since $\rho$ is an endomorphism of $L_{1}\oplus L_{1}^{\prime}$ ,
and since the latter is commensurable with $L_{1}\oplus L_{2}$ , it is clear that if $\theta_{0}(\zeta, Z)$ ,
... , $\theta_{np}(\zeta, Z)$ are algebraically independent $\theta$ -functions of the type we have
been considering, then $\theta(\rho\zeta, Z)$ and these must satisfy an algebraic relation
with coefficients which are holomorphic on $H_{p^{0}}^{n}$ and which therefore (see [2]

p. 364) must be automorphic forms with respect to some congruence group
contained in $\Gamma_{L}$ . It is a priori evident that the numerical coefficients of the
Fourier series involved must lie in some cyclotomic field, and that the given
algebraic equation is carried into another valid algebraic equation (involving

different $\theta$ -functions) by application of an automorphism of the Galois group
of that cyclotomic field to these. We are now in a position to apply the
methods of [2], section 5.1; we shall do this in the next section.

\S 3. The moduli of Abelian varieties.

Let $L=L_{1}\oplus L_{2},$ $k$ , etc., have the same meaning as in the previous
section (we shall not assume $L_{2}=L_{1}^{\prime}$ unless so stated). Let $H_{p}$ be defined as
before (see introduction). Let $R_{0}$ be the subring of the ring of holomorphic
functions on $H_{p^{0}}^{n}\times C^{np}$ generated by the functions $\theta_{L_{1}}[g, h](\zeta, Z)$ for $g\in k^{p}$

and $h\in k^{p}$ . As we have seen, given $Z_{1},$ $Z_{2}\in H_{p^{0}}^{n}$ , there exist $g,$ $h,$ $g^{\prime},$ $h^{\prime}\in k^{p}$

such that $\theta_{L_{1}}[g^{\prime}, h^{\prime}](0, Z_{1})$ , $\theta_{L_{1}}[g^{\prime}, h^{\prime}](0, Z_{2})\neq 0$ and such that if $f(Z)$

$=\theta_{L_{1}}[g, h](0, Z)/\theta_{L_{1}}[g^{\prime}, h^{\prime}](0, Z)$ , then $f(Z_{1})\neq f(Z_{2})$ . Define subsets of $R_{0}$ as
follows:

1) For each positive rational integer $m$ , let
$R_{m0}=$ {ring generated by 1 and by all $\theta_{L_{1}}[g, h]$

such that $mg\in L_{1},$ $mh\in L_{2}$ }.
2) If $l$ is a non-negative rational integer, let $R_{0}^{(\iota)}$ denote the module of

homogeneous polynomials of degree $l$ with rational integral coefficients in the
functions $\theta_{L_{1}}[g, h](\zeta, Z),$ $g,$ $h\in k^{p}$ .

3) Put $R_{m0}^{(\iota)}=R_{m0}\cap R_{0^{l)}}($

Clearly, $R_{m0}=\oplus_{l}R_{m0}^{(\iota)},$ $\oplus denoting$ restricted direct sum (this follows from
the functional equation for $\theta$ -functions). If $\gamma$ is any of the sets defined above,
let $r^{*}=\{g|g(Z)=f(0, Z), Z\in H_{p^{0}}^{n}, f\in r\}$ . Let $K(r)$ and $K(r^{*})$ denote the
quotient fields of the rings generated by $r$ and $r^{*}$ respectively. If $m$ is a

positive rational integer, let $Q_{m}$ denote the cyclotomic field $Q(\epsilon(\frac{1}{m}))$ . Put
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$A=\bigcup_{m}Q_{m}$ ; A is the maximal Abelian extension of the rationals $Q$ . Let
$G(A/Q)$ denote the Galois group of A. It is easy to see that $Q_{m^{2}}K(R_{m0}^{(l)})$ and
$Q_{m^{2}}K(R_{m0^{*}}^{(\iota)})$ are regular extensions of $Q_{m^{2}}$ . If $\sigma\in G(A/Q),$ $\sigma$ may be made to
act naturally on $R_{0}$ ( $=R_{m0}^{(l)}$ or $R_{m0^{*}}^{(l)}$), and hence on $K(R_{0})$ , by allowing $\sigma$ to act
on the Fourier coefficients of all $\theta_{L_{1}}[g, h]$ , which belong to A as soon as
$g,$ $h\in k^{p}$ . If $R_{0}$ is any of the above rings or Z-modules ($Z=rational$ integers),
let $R=R_{0}\otimes_{Z}$ A. We have seen that $sp(p, k)$ acts naturally on $R^{\mathfrak{c}\iota)}$ ; namely,

if $P\in R^{(l)}$ , and if $\left(\begin{array}{ll}A & B\\C & D\end{array}\right)\in Sp(p, k)$ , define

$\left(\begin{array}{ll}A & B\\C & D\end{array}\right)P(\zeta, Z)=\epsilon(--2l-{}^{t}\zeta^{\prime}C\zeta)N\det(CZ+D)^{2}P(\zeta^{\prime}, Z^{\prime})--\iota$ .

If $\Gamma$ is a subgroup of $Sp(p, k)$ , denote by $R_{\Gamma}^{(\iota)}$ the subring or submodule of
$R^{(l)}$ consisting of the elements invariant under $\Gamma$ .

It follows from our imbedding theorem for Abelian varieties that for
$m\geqq 3$ , the elements of $R_{m}^{(1)}$ have no common zeros on $H_{p^{0}}^{n}\times C^{np}$, and so the
elements of $R_{m}^{(1)^{*}}$ , and therefore the elements of $R_{m}^{(l)^{*}}$ have no common zeros
on $H_{p^{0}}^{n}$ . We define

$\Gamma_{L}(m)=\{g\in\Gamma_{L}|({}^{t}\overline{g}-E)L\subset mL\}$ ,

$E$ denoting as always the identity matrix of appropriate dimension. Then for
fixed $m$ and for sufficiently divisible $l$ and $d,$ $R_{m,\Gamma_{L^{((}}t)}^{(l)}=R_{m}^{(l)}$ and $R_{m,\Gamma(}^{(l)^{*}}=R_{m}^{(l)*}L^{(l)}$

These statements are easy consequences of the transformation formula. Let
$\theta_{0}^{*},$ $\cdots$ , $\theta_{N}^{*}$ be a basis of $R_{m}^{(l)^{*}}$ and define $\theta^{*}:$ $H_{p^{0}}^{n}\rightarrow CP^{N}$ by $\theta^{*}(Z)=[\theta_{0}^{*}(Z):\cdots$ :
$\theta_{N}^{*}(Z)]$ . Clearly, $\theta^{*}$ induces a well-defined mapping $\theta_{I}^{*}$ of the orbit space
$H_{p}^{n}/\Gamma_{L}(d)=V(\Gamma_{L}(d))$ into $CP^{N}$ . $V(\Gamma_{L}(d))$ has a natural compactification $[1]^{(1)}$ ,
$V(\Gamma_{L}(d))^{*}$ , obtained by adjoining to $H_{p^{0}}^{n}$ all rational boundary components (in

the sense of Satake), supplying the union $(H_{p^{0}})\#$ of these with a suitable
topology, and providing the quotient space $(H_{p^{0}}^{n})\#/\Gamma_{L}(d)$ with the richest natural
analytic structure; the resulting complex space $V(\Gamma_{L}(d))^{*}$ may be imbedded
as an algebraic variety in some complex projective space by means of a
mapping whose coordinates are automorphic forms of suitably high weight
with respect to $\Gamma_{L}(d)$ . Each rational boundary component in $H_{p^{0}}^{n}$ may be
identified with $H_{r^{0}}^{n}$ for some $r_{;}0\leqq r<p$ , and there is a mapping $\Phi$ which
maps the graded module of automorphic forms with respect to any group
commensurable with $\Gamma_{L}$ into a graded module of automorphic forms on $H_{r^{0}}^{n}$

with respect to some discontinuous group. It is easy to see that $\Phi$ maps $R_{m}^{(l)*}$

onto the similarly defined module of holomorphic functions on $H_{r}^{n}$ . Hence, as
it is easy to see, $\theta_{I}^{*}$ may be extended to a well-defined mapping also denoted
by $\theta_{I}^{*}$ (whose coordinates have no common zeros) of $V(\Gamma_{L}(d))^{*}$ into $CP^{N}$ . As

1) See end of \S 1.
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in [2], 353-354, it is easy to prove that for each $x\in CP^{N},$ $\theta_{I}^{*-1}(x)$ is at most
a finite set of points. Let $y\in H_{p^{0}}^{n}$ be such that $\theta_{I}^{*-1}(\theta^{*}(y))\subset V(\Gamma_{L}(d))$ and such
that the number of points in $\theta_{I}^{*-1}(\theta^{*}(y))$ is minimal. Let $\theta_{I}^{*-1}(\theta^{*}(y))=\{y_{1}, \cdots y_{s}\}$

and let $y_{i}$ be the canonical image of $Z_{i}\in H_{p^{0}}^{n},$ $i=1$ , $\cdot$ .. , $s$ . We know there
exists a sufficiently divisible $m^{\prime},$ $d|m^{\prime}$ , such that if we are given $i,$ $j$ with
$1\leqq i<j\leqq s$ , then there exists an $f\in K(R_{m}^{(l)^{*}},)$ with $f(Z_{i})\neq f(Z_{j})$ . (For this, we
should observe again the fact that any $t_{W}o$ lattices in $k^{p}$ are commensurable.)

Let $\phi_{0},$ $\cdots$ , $\phi_{N}$ , be a basis of $R_{m.\Gamma_{L}(a)}^{(l^{\prime})^{*}}$ for suitably divisible $l^{\prime},$ $l|l^{\prime}$ . Clearly,
$R_{m,\Gamma_{L^{(d)}}}^{(l^{\prime,})^{*}}$ contains all homogeneous polynomials of degree $l^{\prime}/l$ in $\theta_{0},$ $\cdots$ , $\theta_{N}$

having coefficients in A. Define $\phi:H_{p^{0}}^{n}\rightarrow CP^{N^{\prime}}$ by $\phi(Z)=[\phi_{0}(Z): : \phi_{N^{\prime}}(Z)]$ .
Then $\phi$ induces an analytic mapping $\phi_{I}$ ; $V(\Gamma_{L}(d))^{*}\rightarrow CP^{N^{\prime}}$ . By our choice of
$m^{\prime},$ $\phi_{I}(y_{1})$ , $\cdot$ .. , $\phi_{I}(y_{s})$ are all distinct. Hence $\phi_{I}^{-1}(x)$ is finite (if not empty) for
all $x\in CP^{N}$, and if $x$ is a generic point of $\phi_{I}(V_{\Gamma_{L}}(d)*)$ over $A$ , then $\phi_{I}^{-1}(x)$ is
a single point. For any positive integer $m_{1}$ , let $G(m_{1}, L)$ denote the subgroup
of $sp(p, k)$ leaving $K(R_{m_{1}})$ pointwise fixed. What we have just proved clearly
implies that $G(m^{\prime}, L)\subset\Gamma_{L}(d)\subset G(m, L)$ . Let $V(m^{\prime}, L)=V(G(m^{\prime}, L))$ . Denote
by $i$ the homogeneous elements of degree $l^{\prime\prime}$ , for sufficiently divisible, fixed
$l^{\prime\prime}$ , in the integral closure of the graded ring whose generating elements (of

degree 1) are the elements of $R_{m^{\prime}}^{(\iota_{/})}$ for some fixed 1’ ; let $\alpha_{0},$
$\cdots$ , $\alpha_{N^{\prime\prime}}$ be a basis

of $J$ ; then the mapping
$\alpha:V(m^{\prime}, L)^{*}\rightarrow CP^{N^{\prime\prime}}$

with these as coordinates is a projective imbedding of $V(m^{\prime}, L)^{*}$ as a projective
normal variety defined over A for suitably large $l^{\prime\prime}$ . Clearly, for sufficiently
divisible $m^{\prime},$ $G(m^{\prime}, L)$ is a normal subgroup of $\Gamma_{L}$ , as we see from the trans-
formation formulae for $\theta$ -functions. In fact, using the notation of the preceding

section, if $M=\left(\begin{array}{ll}A & B\\C & D\end{array}\right)\in\Gamma_{L}$ , then $\theta_{L_{1}}[0,0](\zeta, Z)=\lambda(M)\sum_{g_{1},h_{1}}\epsilon_{g1^{h}1}\theta[g_{1}, h_{1}](\zeta^{*}, Z)$
,

where $\lambda(M)=\chi(M)N\det(CZ+D)^{-}2^{\wedge}1$ and the sum on the right side is finite;
replacing $\zeta$ by $\zeta+Zg+h$ , we obtain the transformation formula for $\theta_{L_{1}}[g, h]$ ;
then, finally, since $\Gamma_{L}$ is finitely generated, we can find a positive integer $l_{0}$

such that all $l_{0}g_{1},$ $l_{0}h_{1}\in L_{i}\cap L_{i^{\prime}},$ $i=1,2$ for all $g_{1}$ and $h_{1}$ which appear as $M$

runs over a set of generators of $\Gamma_{L}$ ; therefore, if $l_{0}|m^{\prime},$ $\Gamma_{L}$ is a transformation
group of $K(R_{m},)$ and $G(m^{\prime}, L)$ is the kernel of this representation of $\Gamma_{L}$ . Then
if $\gamma\in\Gamma_{L}/G(m^{\prime}, L),$

$\gamma$ is represented by a projective transformation defined
over A. Hence $\Gamma_{L}/G(m^{\prime}, L)=G_{m}$ , is a finite group of projective transformations
of $V(m^{\prime}, L)^{*}$ , and the quotient variety is easily seen to be $V(\Gamma_{L})^{*}$ defined over
A. On the other hand, if $\sigma\in G(A/Q)$ , we see that $\sigma$ carries $R_{m}^{(l)^{*}}$ onto itself
for any $l,$

$m_{1}$ . Let $T_{\sigma}$ : $V(m^{\prime}, L)^{*}\rightarrow V(m^{\prime}, L)^{*\sigma}$ be the projective transformation
induced by this linear mapping of $R_{m}^{(l)^{*}}$, onto itself (see [2], p. 356, Lemma 2).

If $\gamma\in G_{m},$ , then $\gamma^{\sigma}=T_{\sigma}\gamma T_{\overline{\sigma}^{1}}$ . In fact, let $(a, b)$ be a generic point of $\gamma$ over
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$A$ , so that $a$ and $b$ are generic points of $V(m^{\prime}, L)^{*};$ then $a^{\sigma}=T_{\sigma}(a)$ and $b^{\sigma}=T_{\sigma}(b)$

are generic points of $V(m^{\prime}, L)^{*\sigma}$ and we have: $\gamma^{\sigma}(a^{\sigma})=b^{\sigma}=T_{\sigma}(b)=T_{\sigma}(\gamma a)$

$=T_{\sigma}\gamma T_{\overline{\sigma}^{1}}(a^{\sigma})$ (as for the equations $a^{\sigma}=T_{\sigma}(a)$ , etc., $T_{\sigma}$ may be thought of as
prescribing for any generic point $a$ of $V(m^{\prime}, L)^{*}a$ fixed extension of $0:A\rightarrow A$

to an isomorphism $T_{\sigma}$ : $A(a)\rightarrow A(a^{\sigma}))$ . Let $G_{m}^{\sigma},$ $=\{\gamma^{\sigma}|\gamma\in G_{m^{\prime}}\}$ , and define $T_{\sigma}$ on
$V(\Gamma_{L})^{*}$ by $T_{\sigma}=\pi^{\sigma}T_{\sigma}\pi^{-1}$ , where $\pi$ is the canonical map of $V(m^{\prime}, L)^{*}$ onto $V(\Gamma_{L})^{\tau}$ .
Then it is easy to show that $T_{\sigma}$ is a well defined biregular map of $V(\Gamma_{L})^{*}$

onto $V(\Gamma_{L})^{*\sigma}=V(m^{\prime}, L)^{*\sigma}/G_{m^{\sigma}}^{\prime}$ . So we have the diagram:
$T_{\sigma}$

$V(m^{\prime}, L)^{*}\rightarrow V(m^{\prime}, L)^{*\sigma}$

$\downarrow\pi$

$T_{\sigma}$

$\downarrow\pi^{\sigma}$

$V(\Gamma_{L})^{*}\rightarrow V(\Gamma_{L})^{*\sigma}$

Evidently $T_{\sigma}^{\tau_{o}}$ $T.=T_{\sigma\tau}$ . Therefore, we may apply the criterion of Andr\’e Weil
[15] and find a biregular map $f$ of $V(\Gamma_{L})^{*}$ onto a variety $V$ defined over the
rational numbers such that $f=f_{e}=f^{\sigma}\circ T_{\sigma}$ . Hence we have diagram:

$V(m^{\prime}, L)^{*}\rightarrow V(m^{\prime}, L)^{*\sigma}T_{\sigma}$

$\pi\downarrow$

$T_{\sigma}$

$\downarrow\pi^{\sigma}$

$V(\Gamma_{L})^{*}\rightarrow V(\Gamma_{L})^{*\sigma}$

$f\backslash _{\searrow\swarrow}/f^{\sigma}$

$V/Q$

Let $\alpha:V(m^{\prime}, L)^{*}\rightarrow CP^{N^{\prime;}}$ be the projective imbedding defined previously.

Let $\theta_{0}$ , $\cdot$ . , $\theta_{N}$ be the basis $\theta_{L_{1}}[\frac{\eta}{m}$ , $0](m\zeta, mZ),$ $\eta\in L_{2}^{\prime}mod mL_{1}$ , of the

module of $m^{th}$ order $\theta$ -functions (for each fixed $Z$ ) with respect to $L_{Z}$

of characteristic $(0,0)$ . Consider the map $\theta$ : $H_{p^{0}}^{n}\times C^{np}\rightarrow CP^{N}$ defined by
$\theta(\zeta, Z)=[\theta_{0}(\zeta, Z):\ldots : \theta_{N}(\zeta, Z)]$ ; define $T=\overline{\alpha}\times\theta:H_{p^{0}}^{n}\times C^{np}\rightarrow CP^{M}\times CP^{N}$ by
$T(Z, \zeta)=\overline{\alpha}(Z)\times\theta(\zeta, Z)$ , bl being the map induced by $\alpha$ . For fixed $Z\in H_{p^{0}}^{n}$ ,
$T(Z\times C^{np})=A_{Z}$ is an Abelian variety. For sufficiently divisible $m^{\prime},$ $G(m^{\prime}, L)$

$\subset\Gamma_{L}(d)$ for some sufficiently divisible $d$, and therefore we may assume
for such $m^{\prime}$ that $G(m^{\prime}, L)$ has no (non-trivial) fixed points in $H_{p^{0}}^{n}$ , so that
$T(H_{p^{0}}^{n}\times C^{np})$ is a fiber system of Abelian varieties over $\alpha(H_{p}^{n})$ , and $\Gamma_{L}/G(m^{\prime}, L)$

$=G_{m}$ , acts in a natural way as a finite group of projective transformations
of $T(H_{p^{0}}^{n}\times C’’)$ . Clearly $G_{m},(V(m^{\prime}, L)^{*}-V(m^{\prime}, L))=V(m^{\prime}, L)^{*}-V(m^{\prime}, L)$ . More-
over, if $0\in G(A/Q)$ , then $T_{\sigma}(V(m^{\prime}, L)^{*}-V(m^{\prime}, L))=(V(m^{\prime}, L)^{*}-V(m^{\prime}, L))^{\sigma}$ ; this
is true because application of $\sigma$ to the Fourier coefficients of a modular form
commutes with the $\Phi$ -operator ( $q$ . $v.$ , supra).

We now show that $T(H_{p^{0}}^{n}xC^{np})^{*}$ is an algebraic variety on which
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$T(H_{p^{0}}^{n}\times C^{np})$ is an A-open set. In fact, it is clear that the dimension of
$T(H_{p^{0}}^{n}\times C^{np})$ as a complex space is $n(p+\underline{p(p}_{2}\underline{+1)})$ . Moreover, if $A$ is the

smallest algebraic variety containing $T(H_{p^{0}}^{n}\times C^{np})$ , then $\dim d=\dim_{\overline{\alpha}}T+\dim_{Q}\overline{\alpha}$

$=n(\underline{p(p}_{2}\underline{+1)})+\dim$ T. One may then show, using methods of a previous

paper [2], that any $ np+2\theta$ -functions are algebraically dependent over the
field of automorphic functions on $H_{p^{0}}^{n}$ with respect to $\Gamma_{L}$ , and hence
$\dim_{\overline{\alpha}}T\leqq np$ . It follows that $\dim A\leqq\dim(T(H_{p^{0}}^{n}\times C^{np}))$ , and our assertions
about $T(H_{p^{0}}^{n}\times C^{np})$ are immediate. Put $\mathfrak{U}=T(H_{p^{0}}^{n}\times C^{np})^{*},$ $\mathfrak{B}=\alpha(H_{p^{0}}^{n})^{*},$ $\lambda:\mathfrak{A}\rightarrow \mathfrak{B}$ ,

the restriction of $pr_{1}$ : $CP^{M}\times CP^{N}\rightarrow CP^{M}$ . It is easy to see how to define $T_{\sigma}$

on $\mathfrak{A}$ and that $T_{6}(\mathfrak{A})=?S^{\sigma},$ $T_{\sigma}[\lambda]=T_{\sigma}\lambda T_{\sigma}^{-1}=\lambda^{\sigma}$ , etc. By our remarks at the
end of the last section it is easy to see how to make the Galois group act on
the graphs of the group law and of the elements of our endomorphism ring

$\mathfrak{r}$ by projective transformations which we also denote by T.. Then $T_{\sigma}$ is an
isomorphism of $A_{\beta(Z)}=A_{\beta(TZ)}$ . If $\eta\in \mathfrak{r}$ , then the graph $[\eta]$ of the endomorphism
$\eta$ is an algebraic subvariety of $\mathfrak{U}^{(2)}$ (see end of \S 2 and [2], p. 370), and
$T_{\sigma}[\eta]=[\eta]^{\sigma},$ $\gamma[\eta]=[\eta]$ . Thus we have the following diagram:

DI
$\rightarrow^{T_{\sigma}}?Y^{\sigma}$

$\downarrow\lambda T_{\sigma}\downarrow\lambda^{\sigma}$

$\mathfrak{B}_{f_{1}}\rightarrow \mathfrak{B}_{1}\backslash _{\searrow\swarrow f}\nearrow_{\sigma}^{\sigma}$

$V/Q$ , $ f_{1}=f\circ\pi$ .

Let $Z\in H_{p^{0}}^{n},$ $\beta(Z)=x\in \mathfrak{B},$ $f_{1}(x)\in V=V(\Gamma_{L})^{*}$ . We want to prove that $Q(f_{1}(x))$

is the field $k_{0}^{x}$ of moduli of $(A_{Z}, \theta^{x}, \ell),$ $\ell$ being the “natural” injection of $\mathfrak{r}$ in
the endomorphism ring of $A_{Z}$ and $\theta^{x}$ being the polarization attached to the
projective imbedding $\theta$ . First $A_{Z},$ $\theta^{x}$ , and $\ell(\eta)$ are all defined $(\eta\in \mathfrak{r})$ over a
finitely generated subfield $k(x)$ of $A(x)$ . Let $x$ be such that $x$ and $f_{1}(x)$ are
$generICon\mathfrak{B}$ andVrespectively over A. If $\gamma\in\Gamma_{L},$ $A_{Z}\cong A_{\gamma z},$ $andif\sigma\in G(A/Q)$ ,

then $A_{Z}\cong T_{\sigma}A_{Z}=A_{Z}^{\sigma}$ . Hence $k_{0}^{x}$ is contained in the fixed point field $k_{1}$ of all
$\gamma$ and $\sigma$ in $k(x)$ . The fixed point field of all $\gamma$ is $k(\pi(x))$ (since $\pi$ is the
canonical map of $V(m^{\prime}, L)^{*}$ onto $V(\Gamma_{L})^{*}=V(m^{\prime}, L)^{*}/G_{m^{\prime}})$ , and by the construc-
tion of [15, p. 511], the fixed point field in $k(\pi(x))$ of all $0$ is $Q(f(\pi(x)))=Q(f_{1}(x))$ .
Hence $k_{0}^{x}\subset Q(f_{1}(x))$ . Then with minor changes of notation, we may apply the
argument of [2; p. 364, 1. $20-p$ . $365,1.4$] to show that for any specialization
$\overline{x}$ of $x$ over $A$ , we have $k_{0}^{\overline{\gamma}}=Q(f_{1}(\overline{x}))$ . Thus we have:

THEOREM. There exists a projective imbedding $\varphi$ of the space $V(\Gamma_{L})^{*}$

$=(H_{p}^{n}/\Gamma_{L})^{*}$ defined over the rational numbers Q. The points of the orbit space
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$V(\Gamma_{L})$ are in one-to-one correspondence with the isomorphism classes of polarized
Abelian varieties of given dimension and polarization, given type $[12, 14]$ and
with given injection of $\mathfrak{o}\subset k$ into their endomorphism rings satisfying (1)$-(3)$ of
\S 1. If $y\in V(\Gamma_{L})$ , then $Q(\varphi(y))$ is the field of moduli of the corresponding isomor-
phism class.

The University of Chicago
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