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\S 0. Introduction

The aim of this paper is, as a continuation of the previous papers [10],

[11], to establish the local theory in algebro-topological systems over com-
mutative $AW^{*}$-algebras.

This paper consists of two parts. In each part, we shall explain how to
reduce properties of elements of algebro-topological systems over commutative
$B^{*}$ -algebras to those of elements of (classical) algebro-topological systems over
the field of complex (or real) numbers by making use of the local theory.
In \S 1, we shall establish a theorem concerning quasi-ordered linear spaces
\langle Theorem A) and the extension theorem of H. Hahn and S. Banach (Theorem

B). In \S 2, we deal with a theorem of I. Gelfand (Theorem C) and a theorem
of S. Mazur and I. Gelfand (Theorem D). These theorems will be discussed
for the case of algebro-topological systems over commutative $B^{*}$ -algebras (for

example, quasi-ordered linear spaces over commutative $B^{*}$-algebras, linear
spaces over commutative $B^{*}$-algebras, Banach algebras over commutative $B^{*}-$

algebras and $B^{*}$-algebras over commutative $B^{*}$-algebras). They are, however,
essentially valid for the case of algebro-topological systems over commutative
AW*-algebras, which were originated by I. Kaplansky [6] and investigated
by H. Widom [14] and M. Nakai [9]. Precisely speaking, we consider a com-
pact Hausdorff space $\Omega$ and the commutative $B^{*}$ -algebras $C(\Omega)$ (or $R(\Omega)$) of
complex- (or real-) valued continuous functions defined on $\Omega$ . Suppose there
is a theorem concerning an algebro-topological system over $C(\Omega)$ (or $R(\Omega)$).

Then we shall say that this theorem is, for instance, of Stonian class if it is
valid for the case that the underlying space $\Omega$ is Stonian and if further there
exists without fail a counter example, that is, an example, for which the
theorem does not hold, provided that $\Omega$ is not Stonian. In this sense, these
theorems are exactly of Stonian class. (L. Nachbin [8], D. B. Goodner [2],

J. L. Kelley [7], M. Nakai [9], and M. Hasumi [3] proved that the extension
theorem of H. Hahn and S. Banach is exactly of Stonian class.)

I express my hearty thanks to Prof. O. Takenouchi for his various kind
remarks.

*This is the author’s thesis at the University of California, Berkeley.
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\S 1. $N$-Spaces Over $N_{0}$

1. Definitions. Let 2 be a compact Hausdorff space. Denote by $N_{0}$ the
set of real-valued continuous functions on $\Omega$ . In the usual way, $N_{0}$ constitutes
a real normed ring and a semi-ordered linear space. Denote by $(N_{0})_{+}$ the set
of non-negative functions in $N_{0}$ .

We state some definitions and lemmas. The proofs of lemmas in this
section are easy and will be omitted.

DEFINITION 1.1: A binary relation $a\leqq b$ between certain elements of a
set $E$ is called a quasi-ordering if it satisfies the following conditions: (a)
$a\leqq a$ for $a$ in $E$ and (b) $a\leqq b,$ $b\leqq c$ for $a,$ $b,$ $c$ in $E$ imply $a\leqq c$ . The relation
$a\leqq b$ is also denoted by $b\geqq a$ .

DEFINITION 1.2: A module $E$ is called a linear space over $N_{0}$ if it has
$N_{0}$ as an operator domain and the following are satisfied: $(\sigma\tau)a=\sigma(\tau a),$ $(\sigma+\tau)a$

$=\sigma a+\tau a$ , and $la=a$ for $\sigma,$ $\tau$ in $N_{0},$ $a$ in $E$, and where 1 is the function on $\Omega$

taking values identically equal to 1.
DEFINITION 1.3: A linear space $E$ over $N_{0}$ is called a quasi-ordered linear

space over $N_{0}$ if it has a quasi-ordering compatible with the linear operation,
that is: (a) $a,$ $b\geqq 0$ and $a,$

$b$ in $E$ imply $a+b\geqq 0,$ $(b)\sigma,$ $a\geqq 0$ and $\sigma$ in $N_{0},$ $a$

in $E$ imply $\sigma a\geqq 0$ , and (c) $a\geqq b$ if $a-b\geqq 0$ for $a,$
$b$ in $E$.

DEFINITION 1.4: A quasi-ordered linear space $N$ over $N_{0}$ is called an N-
space over $N_{0}$ if it has an order unity $e$ and if $0\leqq\sigma e\leqq 0$ and $\sigma$ in $N_{0}$ imply
$\sigma=0$ , where the order unity $e$ is a positive element in $N$ such that
$N=$ ($a;a\leqq\sigma e$ for some $\sigma$ in $N_{0}$).

DEFINITION 1.5: 1) An N-space $N_{1}$ over $N_{0}$ is said to be homomorphic
onto another N-space $N_{2}$ over $N_{0}$ if there exists a mapping $f$ of $N_{1}$ onto $N_{z}$

satisfying the conditions: (a) $f(a+b)=f(a)+f(b)$ for $a,$
$b$ in $N_{1},$ $(b)f(\sigma a)=\sigma f(a)$

for $\sigma$ in $N_{0},$ $a$ in $N_{1}$ , and (c) $a\leqq b$ for $a,$
$b$ in $N_{1}$ implies $f(a)\leqq f(b)$ .

2) An N-space $N_{1}$ over $N_{0}$ is said to be isomorphic onto another N-space
$N_{2}$ over $N_{0}$ if there exists an one-to-one mapping $f$ of $N_{1}$ onto $N_{2}$ satisfying
the conditions (a), (b) in 1) and $(c)^{\prime}f(a)\leqq f(b)$ holds for $a,$

$b$ in $N_{1}$ when and
only when $a\leqq b$ .

DEFINITION 1.6: 1) A submodule $E_{1}$ of a linear space $E$ over $N_{0}$ is called
an $N_{0}$-subspace of $E$ if it is admissible with respect to the operator domain
$N_{0}$ , that is: $N_{0}E_{1}\subseteqq E_{1}$ .

2) An $N_{0}$-subspace $I$ of an N-space $N$ over $N_{0}$ is called an ideal of $N$ if
$a,$

$b$ in $I$ and $a\leqq c\leqq b$ ($c$ in $N$) imply $c$ in $I$.
Let $N$ be an N-space over $N_{0}$ with order unity $e$ . Then $N_{0}e$ is an N-space

over $N_{0}$ with $e$ as an order unity. The space $N_{0}$ is also an N-space over $N_{0}$

with the order unity 1.
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LEMMA 1.1: $N_{0}e$ is isomorphic onto $N_{0}$ .
Let $N$ be an N-space over $N_{0}$ and $I$ be its ideal. To mention the natural

homomorphism of $N$ onto the quotient space, we add a bar over the elements
of $N$. In $N/I$, we give a quasi-ordering by defining $\overline{a}\leqq\overline{b}$ if there exists at
least one element $c$ in $I$ such that $a+c\leqq b$ . With this quasi-ordering we have $\cdot$

LEMMA 1.2: $N/I$ constitutes a quasi-ordered linear space over $N_{0}$ .
DEFINITION 1.7: An ideal $I$ of an N-space $N$ over $N_{0}$ is said to be proper

if $N/I$ constitutes an N-space over $N_{0}$ with $\overline{e}$ as its order unity.
LEMMA 1.3: An ideal I of an N-space $N$ over $N_{0}$ is proper if and only if

I does not contain $\sigma e$ for any non-zero element $\sigma$ in $N_{0}$ .
DEFINITION 1.8: 1) An N-space over $N_{0}$ is said to be simple if it has,

no proper ideal except for the zero-ideal (0).

2) An ideal $I$ of an N-space $N$ over $N_{0}$ is said to be properly maximal if
it is proper and if $N/I$ is simple.

LEMMA 1.4: Given any proper ideal I of an N-space $N$ over $N_{0}$ , there exists
at least one properly maximal ideal of $N$ containing $I$.

DEFINITION 1.9: 1) A linear mapping $f$ of a linear space $E$ over $N_{0}$ into
$N_{0}$ is said to be $N_{0}$-linear if it satisfies the condition: $f(\sigma a)=\sigma f(a)$ for $\sigma$ in
$N_{0}$ and $a$ in $E$.

2) A linear mapping $f$ of an N-space $N$ over $N_{0}$ into $N_{0}$ is said to be
positive if it satisfies the condition: $a\geqq 0$ and $a$ in $N$ imply $f(a)\geqq 0$ .

3) A positive linear mapping $f$ of an N-space $N$ over $N_{0}$ into $N_{0}$ is called
state of $N$ if it satisfies the condition: $f(e)=1$ .

Here we should like to notice that the simple use of ” linear ” without
“

$N_{0^{-}}’’$ never refers to the ”
$N_{0}$-linear ” fixed in Definition 1.9, 1).

DEFINITION 1.10: 1) A mapping $p$ of a linear space $E$ over $N_{0}$ into $N_{0}$ is.
called a cap of $E$ if it satisfies the following conditions: (a) $p(a+b)\leqq p(a)+p(b)$

for $a,$
$b$ in $E$ and (b) $p(\sigma a)=\sigma p(a)$ for $\sigma$ in $(N_{0})_{+}$ and $a$ in $E$. If $E$ is an N-

space over $N_{0}$ , we require further that (c) $p(\sigma e+a)=\sigma+p(a)$ for $\sigma$ in $N_{0}$ and
$a$ in $E$.

2) Let $p$ be $a$ cap of $E$ . A linear mapping $f$ of a linear space $E$ over $N_{\theta}$ .
into $N_{0}$ is said to be compatible with $p$ if $f(a)\leqq p(a)$ for any $a$ in $E$.

DEFINITION 1.11: An element $\sigma$ in $N_{0}$ is called an (analytic) spectrum of
an element $a$ in an N-space $N$ over $N_{0}$ if the ideal of $N$ generated by $a-\sigma e$

is proper.

2. Stonian Case. In this section, we assume that $\Omega$ is a Stonian space,.
that is to say, a compact Hausdorff space, in which every lower bounded set
of functions in $N_{0}$ has its GLB (the greatest lower bound) in $N_{0}$ . Denote by
$E_{0}$ the set of projections in $N_{0}$ . The family $((\omega;\omega(e_{0})=1);e_{0}\in E_{0})$ of open
sets in $\Omega$ constitutes an open base in $\Omega$ , where we denote by $\omega(\sigma)$ the value-
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of a function $\sigma$ in $N_{0}$ at $\omega$ . For $\omega$ in $\Omega$ , we denote by $E_{0}(\omega)$ the set of pro-
jections $e_{0}(\omega)$ in $E_{0}$ satisfying the condition: $\omega(e_{0}(\omega))=1$ . By ” almost all
points in 2 “ we shall mean “ points outside a certain first category set in
2’‘.

Let $N$ be an N-space over $N_{0}$ . Then $N$ constitutes also an N-space over
the field of real numbers $R$ . For a point $\omega$ in $\Omega$ , denote by (0) the set of
elements $a$ in $N$ such that, given any positive number $\epsilon$, there exists a pro-
jection $e_{0}(\omega)$ in $E_{0}(\omega)$ such that $-\epsilon e_{0}(\omega)e\leqq e_{0}(\omega)a\leqq\epsilon e_{0}(\omega)e$ . It is easy to see
that (0) is an ideal of $N$ as an N-space over $R$ . Set $N_{\omega}=N/(O)^{\omega}$ . Then $N_{\omega}$

constitutes an N-space over $R$ . Denote by $\omega$ the natural homomorphism of
$N$ onto $N_{\omega}$ .

LEMMA 1.5: It holds that $\omega(\sigma a)=\omega(\sigma)\omega(a)$ for $\sigma$ in $N_{0}$ and $a$ in $N$.
PROOF: We first prove that $\sigma a\in(O)^{\omega}$ holds for a non-negative function

{$j$ in $N_{0}$ such that $\omega(\sigma)=0$ and for $a$ in $N$. By the property of $e$ we can find
a natural number $n$ such that $-ne\leqq a\leqq ne$ . Since $\sigma\geqq 0$ , we have $-\sigma ne\leqq\sigma a$

$\leqq\sigma ne$ . Since $\omega(\sigma)=0$, for any natural number $r$, there exists a projection
$e_{0}(\omega)$ in $E_{0}(\omega)$ such that $e_{0}(\omega)\sigma\leqq r^{-1}e_{0}(\omega)$ . From this it follows that $r^{-1}e_{0}(\omega)ne$

$\leqq e_{0}(\omega)\sigma a\leqq r^{-1}e_{0}(\omega)ne$ . This shows that $\sigma a\in(O)^{\omega}$ . For a not necessarily non-
negative function $\sigma$ in $N_{0}$ , we can find the Jordan decomposition $0=\sigma_{1}-\sigma_{2}$

$(\sigma_{1}\geqq 0, \sigma_{2}\geqq 0, \sigma_{1}\sigma_{2}=0)$ . Since $\omega(\sigma)=0$ , we have $\omega(\sigma_{1})=\omega(\sigma_{2})=0$ . Hence $\sigma_{1}a$

and $\sigma_{2}a$ are in (0). Hence $\sigma a$ is in (0)($D$ Now, for a general element $\sigma$ in $N_{0}$ ,

we have $\omega(\sigma a)=\omega(\sigma)\omega(a)+\omega((\sigma-\omega(\sigma))a)=\omega(\sigma)\omega(a)$ , thus the proof is completed.
We shall call this N-space $N_{\omega}$ over $R$ the local N-space of $N$ with respect

to $\omega$ . For an ideal $I$ of $N$, denote by $I_{\omega}$ the ideal of $N_{\omega}$ generated by $\omega(I)$

$(=(\omega(a);a\in I))$ ; namely $I..,$ $=$ ($\omega(c);\omega(a)\leqq\omega(c)\leqq\omega(b)$ for some $a,$
$b$ in $I$).

LEMMA 1.6: An ideal I of $N$ is proper if and only if $I_{\omega}$ is proper in $N_{\omega}$

for almost all points $\omega$ in $\Omega$ .
PROOF: NECESSITY: Suppose $I_{\omega}$ is not proper for some $\omega$ in S2. Then

there exist $a,$
$b$ in $I$ such that $\omega(a)\leqq\omega(e)\leqq\omega(b)$ . In other words, there exist

$a,$
$b$ in $I$ and $a^{\prime},$ $b^{\prime}$ in (0) such that $a^{\prime}+a\leqq e\leqq b+b^{\prime}$ . Hence there exists $e_{0}(\omega)$

in $E_{0}(\omega)$ such that $e_{0}(\omega)(-2^{-1}e+a)\leqq e_{0}(\omega)e\leqq e_{0}(\omega)(2^{-1}e+b)$ . From this it follows
that $(2/3)e_{0}(\omega)a\leqq e_{0}(\omega)e\leqq 2e_{0}(\omega)b$ . This shows that $I$ is not proper.

$SuFFICIENCY$ : Suppose $I$ is not proper. Then there exist $\sigma(\neq 0)$ in $N_{0}$

and $a,$
$b$ in $I$ such that $a\leqq\sigma e\leqq b$ . Since $\sigma\neq 0$ , we can assume without loss

$\}of$ generality that there exists a projection $e_{0}(\neq 0)$ in $E_{0}$ such that $\sigma e_{0}\geqq 2^{-1}e_{0}$ .
Hence $\sigma e_{0}$ has an inverse in $e_{0}N_{0}$ . Denote it by $\tau$ . Then it holds that $\tau e_{0}a$

$\leqq e_{0}e\leqq\tau e_{0}b$ , where $\tau e_{0}$ is in $N_{0}$ . This shows that $I_{\omega}$ is not proper for any
point $\omega$ in $(\omega;\omega(e_{0})=1, \omega\in\Omega)$ . Hence the set of points $\omega$ in $\Omega$ , for which $I_{\omega}$

is not proper, contains a non-empty open set and so it is not a first category
set in $\Omega$ . Thus we see that if there exists any point $\omega$ in 2 such that $I_{\omega}$ is
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not proper, then the set of $\omega’ s$ for which $I_{\omega}$ is not proper is not a set of first
category. Thus the statement of the lemma is legitimate by our convention
on the use of the expression “ $alm0st$ all ‘’.

The same reasoning shows the following lemma.
LEMMA 1.7: An element $\sigma$ in $N_{0}$ is a spectrum of an element $a$ in $N$ if

and only if $\omega(\sigma)$ is a spectrum of $\omega(a)$ in $N_{\omega}$ for almost all points $\omega$ in $\Omega$ .
We associate $p(a)=GLB(\sigma;a\leqq\sigma e, \sigma\in N_{0})$ with each element $a$ in $N$. This

GLB exists, for there is an element $\tau$ in $N_{0}$ such that $\tau e\leqq a$ and so it holds
that $\tau\leqq\sigma$ for those $\sigma$ in $N_{0}$ which satisfies the condition : $a\leqq\sigma e$ . Thus we
can define a mapping $p$ of $N$ onto $N_{0}$ . The mapping $p$ satisfies the conditions
$(a),$ $(b),$ $(c)$ in Definition 1.10 so that it defines a cap of $N$ as mentioned in the
following lemma. Similarly we set $p_{\omega}(\omega(a))=\inf(\beta;\omega(a)\leqq\beta\omega(e), \beta\in R)$ for $\omega$

in $l2$ and $\omega(a)$ in $N_{\omega}$ . We thus obtain a $mappingp_{\omega}$ of $N_{\omega}$ onto $R$ . It is easy
to see that $p_{\omega}$ also satisfies the conditions of a cap.

LEMMA 1.8: $p$ is a cap of $N$, and for each element $a$ in $N,$ $(*)\omega(p(a))$

$=p_{\omega}(\omega(a))$ for almost all points $\omega$ in $\Omega$ .
PROOF: In order to prove the lemma, we need only to see that $(*)$ holds.

for non-negative element $a$ in $N$, because $p$ satisfies $(c)$ in Definition 1.10 $an\mathfrak{c}L$

$p_{\omega}$ is a cap of $N_{\omega}$ .
We first see that $\omega(p(a))\leqq p_{\omega}(\omega(a))$ for all $\omega$ in $\Omega$ . For a positive number

$\epsilon$ , we have $\omega(a)\leqq(p_{\omega}(\omega(a))+\epsilon)\omega(e)$ . Hence, given any positive number $\delta$ , there
exists a projection $e_{0}(\omega)$ in $E_{0}(\omega)$ such that $e_{0}(\omega)a\leqq(p_{\omega}(\omega(a))+\epsilon+\delta)e_{0}(\omega)e$ . On
the other hand, there exists a natural number $n$ such that $a\leqq ne$ . Set $0$

$=(p_{\omega}(\omega(a))+\epsilon+\delta)e_{0}(\omega)+n(1-e_{0}(\omega))$ . Then $a\leqq\sigma e$ and so $ p(a)\leqq\sigma$ . Taking the
values at $\omega$ , we get $\omega(p(a))\leqq p_{\omega}(\omega(a))+\epsilon+\delta$ . By making $\delta\downarrow 0$ and then $\epsilon\downarrow 0$ ,

we reach the desired inequality.
Conversely, denote by $\Delta$ the set of those elements $\sigma$ in $N_{0}$ which satisfy

the condition: $a\leqq\sigma e$ . Given a natural number $n$, there exist an element $\sigma$

in $\Delta$ and a projection $e_{0}$ in $N_{0}$ such that $e_{0}\sigma\leqq(p(a)+n^{-1})e_{0}$ . Hence, by exhaus-
tion method, we can find an orthogonal set $(e_{0^{\iota}} ; \ell\in I)$ of projections in $N_{0}$ ,

whose LUB is equal to 1, and a set $(\sigma_{\iota} ; c\in I)$ of elements in $N_{0}$ such that
$e_{0^{\iota}}\sigma_{\iota}\leqq(p(a)+n^{-1})e_{0^{\iota}}$ for $\ell$ in $I$. Set $\Omega_{n}=U((\omega_{j\omega(e_{0^{\iota}})}=1),\cdot\ell\in I)$ . Then, for
each $\omega$ in $\Omega_{n}$ , there exists an index $f$ in $I$ such that $\omega(e_{0^{t}})=1$ . Since $e_{0^{\iota}}a$

$(\leqq e_{0^{\iota}}\sigma_{\iota}e)\leqq(p(a)+n^{-1})e_{0^{\iota}}e$ , it holds that $\omega(a)\leqq(\omega(p(a))+n^{-1})\omega(e)$ , that is, $p_{\omega}(\omega(a))$

$\leqq\omega(p(a))+n^{-1}$ . Set $\Omega_{0}=\cap(\Omega_{n} ; n\in J)$ , where we denote by $J$ the set of natural
numbers. Then $p_{\omega}(\omega(a))\leqq\omega(p(a))$ for $\omega$ in $\Omega_{0}$ and so $p_{\omega}(\omega(a))=\omega(p(a))$ for $\omega$

in $\Omega_{0}$ . Since LUB $(e_{0^{\iota}} ; c\in I)=1$ , the closure of $\Omega_{n}$ is $\Omega$ . Moreover $J2_{n}$ is open.
Hence $\Omega_{n}^{c}$ (the complement of $42_{n}$ in J2) is non-dense and $l2_{0}^{c}=\cup(\Omega_{n}^{c} ; n\in J)$ is
a first category set in $\Omega$ . Thus we have shown that $(*)$ holds, which was to
be proved.
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LEMMA 1.9: $p(a)$ is a spectrum of the element $a$ .
PROOF: LOCAL PROOF: We show that $p_{\omega}(\omega(a))$ is a spectrum of $\omega(a)$ in

$N_{\omega}$ . For this aim, it suffices to show that, when $N$ is an N-space over $R$

with $e$ as order unity, and $a\in N,p(a)$ is a spectrum of $a$, because $N_{\omega}$ is such
one as we are hitherto considering. Suppose the contrary. Then there exists
a real number $\beta$ such that $e\leqq\beta(p(a)e-a)$ . From this it follows that $\beta\neq 0$.
If $\beta>0$ , we get $0\leqq(p(a)-\beta^{-1})e$ . This contradicts the construction of $p(a)$ .
On the other hand, if $\beta<0$ , we get $(p(a)+(-\beta^{-1}))e\leqq a$ . This is also impos-
sible because of the same reason. This implies that $p(a)$ is a spectrum of $a$

for this case.
GLOBAL PROOF: For almost all points $\omega$ in $I2,$ $\omega(p(a))=p_{\omega}(\omega(a))$ and so,

by the above local proof and Lemma 1.7, $p(a)$ is a spectrum of $a$ . This com-
pletes the proof.

We are now in a position to prove the following
THEOREM $A$ : Every simple N-space over $N_{0}$ is isomorphic onto $N_{0}$ .
PROOF: For each element $a$ in $N,p(a)$ is a spectrum of $a$ by Lemma 1.9.

Hence the ideal of $N$ generated by $a-p(a)e$ is proper and so it must be equal
to (0). This implies that $a=p(a)e$ . Hence, by Lemma 1.1, we reach the as-
sertion.

Combining Theorem A with Lemma 1.4 and Lemma 1.9, we get the fol-
lowing

LEMMA 1.10: For any element $a$ in an N-space $N$ over $N_{0}$ , there exists a
state $f$ of $N$ such that $f(a)=p(a)$ , where $p$ is the cap of $N$ defined in the para-
graph before Lemma 1.8.

LEMMA 1.11: If a cap $p$ of an N-space $N$ over $N_{0}$ satisfies the following
condition: $(d)a\leqq p(a)e$ for $a$ in $N$, then

1) $p(a)=GLB(\sigma;a\leqq\sigma e, \sigma\in N_{0})$ for $a$ in $N$,
2) $\omega(p(a))=p_{\omega}(\omega(a))$ for $\omega$ in $\Omega$ and $a$ in $N,$ $p_{\omega}$ being the function defined

in the paragraph before Lemma 1.8,
3) every linear mapping of $N$ into $N_{0}$ compatible with $p$ is $N_{0}$ -linear, and
4) a linear mapping $f$ of $N$ into $N_{0}$ with $ f(\sigma e)=\sigma$ for $\sigma$ in $N_{0}$ is positive

if and only if it is compatible with $p$ .
PROOF : PROOF OF 1): Let $p$ be a cap of $N$ satisfying the condition $(d)$.

Suppose $a\leqq oe$ for $\sigma$ in $N_{0}$ and $a$ in $N$. Then, using $(d)$ , we have $0\leqq\sigma e-a$

$\leqq p(\sigma e-a)e=(\sigma-p(a))e$ , or $ p(a)\leqq\sigma$ . Hence we get $p(a)=GLB(\sigma;a\leqq\sigma e, \sigma\in N_{0})$.
The other inequality is trivial because of $(d)$ . This shows 1).

PROOF OF 2): In the proof of Lemma 1.8, we saw that $\omega(p(a))\leqq p_{\omega}(\omega(a))$

for all $\omega$ in $\Omega$ , where $p_{\omega}$ is the local cap defined in the paragraph before
Lemma 1.8. On the other hand, since $a\leqq p(a)e$ , we have $\omega(a)\leqq\omega(p(a))\omega(e)$ .
Namely, we have $p_{\omega}(\omega(a))\leqq\omega(p(a))$ . This shows 2).
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PROOF OF 3): Suppose $f$ is a linear mapping of $N$ into $N_{0}$ compatible
with $p$ . We first see that

$(*)$ if $\omega(a)=0$ for an element $a$ in $N$, then $\omega(f(a))=0$ . Since $\omega(a)=0$ ,
$p_{\omega}(\omega(a))=p_{\omega}(\omega(-a))=0$ . Since $f$ is compatible with $p,$ $-p(-a)\leqq f(a)\leqq p(a)$

and so $-\omega(p(-a))\leqq\omega(f(a))\leqq\omega(p(a))$ . Combining these equalities with 2), we
get $(*)$ .

In view of $(*)$ , a linear functional $f_{\omega}$ of $N_{\omega}$ can be defined by $f_{\omega}(\omega(a))$

$=\omega(f(a))$ for $a$ in $N$. Using this functional, for any $\sigma$ in $N_{0}$ , we have $\omega(f(\sigma a))$

$=f_{l’ J}(\omega(\sigma a))=f_{\omega}(\omega(\sigma)\omega(a))=\omega(\sigma)f_{\omega}(\omega(a))=\omega(\sigma)\omega(f(a))=\omega(\sigma f(a))$ . This implies
that $f(\sigma a)=\sigma f(a)$ . Therefore $f$ is $N_{0}$-linear. Thus we get 3).

PROOF OF 4): Let $f$ be a linear mapping of $N$ into $N_{0}$ compatible with
$p$ . Suppose $a$ is an element in $N$ such that $a\geqq 0$ . Then $-a\leqq 0$ and so, by
$1),$ $-f(a)=f(-a)\leqq p(-a)\leqq 0$ , or $f(a)\geqq 0$ . This shows that $f$ is positive.

Conversely, suppose $f$ is a positive linear mapping of $N$ into $N_{0}$ enjoying
the condition : $ f(\sigma e)=\sigma$ for $\sigma$ in $N_{0}$ . Since $a\leqq p(a)e$ for $a$ in $N$, we have $f(a)$

$\leqq f(p(a)e)=p(a)$ . This shows that $f$ is compatible with $p$ . Thus we get 4).

As an immediate consequence of Theorem $A$ , we shall give an alternative
proof of the following generalization of the extension theorem of H. Hahn
and S. Banach due to M. Nakai [9, Theorem 1].

THEOREM $B$ : For any linear space $E$ over $N_{0}$ , for any $N_{0}$ -subspace $E_{1}$ of
$E$, and for any cap $p$ of $E$, every linear mapping of $E_{1}$ into $N_{0}$ compatible with
$p$ has a linear extension on the whole space $E$ into $N_{0}$ compatible with $p$ .

PROOF: Suppose $f_{1}$ is a linear mapping of $E_{1}$ into $N_{0}$ compatible with $p$ .
Construct the direct sum $N$ of $N_{0}$ and $E$, and we shall consider $N_{0}$ and $E$ as
subspaces of $N$. Then $N$ will turn out to be an N-space over $N_{0}$ with the
order unity 1 when introduced a quasi-ordering as follows: $0+a\leqq\tau+b$ for
$o,$ $\tau$ in $N_{0}$ and for $a,$

$b$ in $E$ holds if and only if $ p(a-b)\leqq\tau-\sigma$ . Moreover $N$

has a cap $\tilde{p}$ defined by $\tilde{p}(\sigma+a)=\sigma+p(a)$ for $\sigma$ in $N_{0},$ $a$ in $E$. We notice that
$\tilde{p}$ satisfies the condition $(d)$ in Lemma 1.11. Denote by $N_{1}$ the $N_{0}$ -subspace
of $N$ generated by $N_{0}$ and $E_{1}$ . Then $f_{1}$ can be extended to a linear mapping

$\tilde{f}_{1}$ of $N_{1}$ into $N_{0}$ such that $J^{\acute{\sim}_{1}}(\sigma+a)=\sigma+f(a)$ for $\sigma$ in $N_{0},$ $a$ in $E_{1}$ . It is easy
to see that $\tilde{f}_{1}$ is compatible with $\tilde{p}$. Therefore, by Lemma 1.11, $\tilde{f}_{1}$ satisfies
the condition: $\tilde{f}_{1}(\sigma)=\sigma$ for $\sigma$ in $N_{0}$ . Hence $\tilde{f}_{1}$ is positive by Lemma 1.11. Set
$I=$ $(a_{1} ; \tilde{f}_{1}(a_{1})=0, a_{1}\in N_{1})$ . Then the ideal of $N$ generated by $I$ is proper. In
fact, if $a_{1}\leqq\sigma\leqq b_{1}$ for $\sigma$ in $N_{0}$ and for $a_{1},$ $b_{1}$ in $I$, then, because of the posi-
tivity of $\tilde{f}_{1},0=\tilde{f}_{1}(a_{1})\leqq\tilde{f}_{1}(0)=\sigma\leqq\tilde{f}_{1}(b_{1})=0$ , or $\sigma=0$ . Hence, by Lemma 1.4,
there exists a properly maximal ideal $J$ of $N$ containing (the ideal of $N$ gen-
erated by) $I$. Since $N/J$ is simple, there is an isomorphism of $N/J$ onto $N_{0}$ ,

say $\varphi$ , by Theorem A. Denote by $\psi$ the natural homomorphism of $N$ onto
$N/J$ and set $ g=\varphi\circ\psi$ . Then $g$ is positive, because it is the composition of
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positive mappings. Also $g$ satisfies the condition: $ g(\sigma)=\circ$ for $\sigma$ in $N_{0}$ . Hence
$g$ is compatible with $\tilde{p}$ by Lemma 1.11 and so the restriction $f$ of $g$ on $E$ is
compatible with $p$ . Moreover we have $g(a)=0$ for $a$ in $I$. Since $a-\tilde{f}_{1}(a)\in I$

for $a$ in $E_{1}$ , therefore, we get $0=g(a-\tilde{f}_{1}(a))=g(a)-f_{1}(a)=f(a)-f_{1}(a)$ ; namely
$f(a)=f_{1}(a)$ for $a$ in $E_{1}$ . This means that $f$ is an extension of $f_{1}$ . This com-
pletes the proof.

3. Converse Theorems. In connection with Theorems A and $B$ , we $sha$ ] $r$

state and prove the following
THEOREM $A^{\prime}$ : J2 is Stonian if Theorem $A$ holds for any simple N-space

over $N_{0}$ .
PROOF: Suppose $(\sigma_{\iota} ; f\in I)$ be a bounded below family of elements in $N_{0}$ .

It must be shown that, under the validity of Theorem $A$ , the GLB of this
family exists in $N_{0}$ . Denote by $B(\Omega)$ the set of real-valued bounded functions
on $\Omega$ . Then $B(l2)$ can be considered in a natural way as an N-space over $N_{0}$,

with order unity 1. Let $x$ be the GLB of $\sigma_{\iota}(f\in I)$ in $B(\Omega)$ , and $N$ be the $N_{0^{-}}$

subspace of $B(\Omega)$ generated by $N_{0}$ and $x$ . Let $J$ be a properly maximal ideal
of $N$. Then $N/J$ is simple, and so, by hypothesis, it is isomorphic with $N_{0\sim}$

Since 1 is an order unity in $N/J$, it corresponds to a positive function $\sigma_{0}$ . It
will then be easy to see that, denoting by $0$ the image of $x$ under the homo-
morphism $ N\rightarrow(N/J\rightarrow)N_{0},0_{0}^{-1}\sigma$ is the GLB in question.

THEOREM $B^{\prime}$ : S2 is Stonian if Theorem $B$ holds for any linear space over $N_{0-}$

PROOF : Suppose $(\sigma_{\iota} ; f\in I)$ is a bounded below family of elements in $N_{0}$ .
It must be shown that, under the validity of Theorem $B$ , the GLB of this
family exists in $N_{0}$ . Denote by $B(\Omega)$ the set of real-valued bounded functions
on $\Omega$ and by $x$ the GLB of the family in $B(!2)$ . Denote by $(\tau_{\kappa} ; \kappa\in K)$ the
subset $(\tau;\tau\leqq x)$ of $N_{0}$ . Also, denote by $E_{x}$ the $N_{0}$-subspace $(\sigma x;\sigma\in N_{0})$ of
$B(\Omega)$ and by $E$ the restricted direct sum $\sum(E(\ell, \kappa);f\in I,$ $\kappa\in K$) of linear
spaces over $N_{0}$ , whose members $E(\ell, \kappa)$ are all isomorphic to $E_{x}$ as a linear
space over $N_{0}$ . For the sake of convenience, we assume that these summands
are contained in $E$. Denote by $\varphi(\ell, \kappa)$ the isomorphism of $E_{x}$ onto $E(f\kappa)$ .
Any element $a$ in $E$ is written as $a=\sum_{i=1}^{n}\sigma_{i}\varphi(f_{i}\kappa_{i})(x)$ and we can define a $cap|$

$p$ in $E$ such that $p(a)=\sum_{i=1}^{n}((\sigma_{i})_{+\iota}\sigma_{\iota}-(0_{i})_{-T_{\kappa_{i}}})=\sum_{i1}^{n}((0_{i})_{+}(\sigma_{\iota_{i}}-\tau_{\kappa_{i}})+\sigma_{i}\tau_{\kappa_{i}})$ , where
$\sigma=(\sigma)_{+}-(\sigma)_{-}$ is the Jordan decomposition of an element $\sigma$ in $N_{0}$ . Denote by
$E_{1}$ the $N_{0}$-subspace of $E$ spanned by the set of all elements in the form $\sim\backslash $

$\varphi(t_{1}, \kappa_{1})(x)-\varphi(f_{2}\kappa_{2})(x)$ .
We then show that $p(a)\geqq 0$ for $a$ in $E_{1}$ . Suppose $\omega$ is a point in $\Omega$ .

First, suppose $\omega(x)\neq 0$ . Construct the restricted direct sum $E_{\omega}$ of linear $\cdot$

spaces $(E_{\omega}(f\kappa);f\in I, \kappa\in K)$ over $R$ , whose members are all isomorphic to
$\omega(E_{x})(=(\omega(a_{x});a_{x}\in E_{x}))$, where $\omega(a_{x})$ is the value of $a_{x}$ at $\omega$ . For the sake
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of convenience, we assume that these summands are contained in $E_{\omega}$ . Denote
by $\omega$ the natural homomorphism of $E_{x}$ onto $\omega(E_{x})$ and by $\varphi_{\omega}(c, \kappa)$ the isomor-
phism of $\omega(E_{x})$ onto $E_{\omega}(f\kappa)$ . It is easy to see that there exists a homomor-
phism of $E$ onto $E_{\omega}$ as a linear space over $R$, whose restriction on $E(C, \mathcal{K})$ is
equal to $\varphi_{\omega}(\ell, \kappa)\circ\omega\circ\varphi(\ell, \kappa)^{-1}$ . Denote it again by $\omega$ . Then, if $\omega(a)=\omega(b)$ for
$a,$

$b$ in $E$, we have $\omega(p(a))=\omega(p(b))$ . In order to see this, we can assume
without loss of generality that $a$ and $b$ are in the same $E(f\mathcal{K})$ for some $\ell$ in
$I,$ $\kappa$ in $K$ Suppose $a=\sigma\varphi(\ell, \kappa)(x)$ and $b=\tau\varphi(f\kappa)(x)$ . Since $\omega(a)=\omega(b)$ , we have
$\omega(\sigma)=\omega(\tau)$ . If $\omega(\sigma)=\omega(\tau)\geqq 0$ , we have $\omega((\sigma)_{+})=\omega((\tau)_{+})$ and so $\omega(p(a))=\omega((\sigma)_{+}\sigma_{\iota})$

$=\omega((\tau)_{+T_{t}})=\omega(p(b))$ . The case where $\omega(0)=\omega(\tau)<0$ will be treated similarly.
Thus we get $\omega(p(a))=\omega(p(b))$ . Hence we can define a cap $p_{\omega}$ of $E_{\omega}$ such that
$p_{\omega}(\omega(a))=\omega(p(a))$ for $a$ in $E$. Define a linear functional $f_{\omega}$ of $E_{\omega}$ such that

$f_{\omega}(\omega(a))=\sum_{i=1}^{n}\beta_{i}\omega(x)$ , where $\omega(a)=\sum_{i=1}^{n}\beta_{i}\varphi_{\omega}(f_{i}\mathcal{K}_{i})(\omega(x))$ . Then $f_{\omega}$ is compatible with
$p_{\omega}$ . In order to see this, we can assume without loss of generality that $\omega(a)$

is contained in $E_{\omega}(\ell, \kappa)$ for some $\ell$ in $I,$ $\kappa$ in $K$. Suppose $\omega(a)=\beta\varphi_{\omega}(\ell, \kappa)(\omega(x))$ .
If $\beta>0$ , then $p_{\omega}(\omega(a))=\beta\omega(0_{\iota})$ and so $f_{\omega}(\omega(a))=\beta\omega(x)\leqq p_{\omega}(\omega(a))$ . If $\beta=0$ , then
$p_{\omega}(\omega(a))=f_{\omega}(\omega(a))=0$ . If $\beta<0$ , then $p_{\omega}(\omega(a))=-\beta\omega(\tau_{\kappa})$ and so $f_{\omega}(\omega(a))=(-\beta)$

$(-\omega(x))\leqq(-\beta)(-\omega(\tau_{\kappa}))=p_{\omega}(\omega(a))$ . Hence $f_{\omega}$ is compatible with $p_{\omega}$ . Since
$f_{\omega}(\omega(a))=0$ for $\omega(a)$ in $\omega(E_{1})$ , we have $\omega(p(a))=p_{\omega}(\omega(a))\geqq 0$ for $a$ in $E_{1}$ because
of the compatibility of $f_{\omega}$ with $p_{\omega}$ . This is the case when $\omega(x)\neq 0$ . If $\omega(x)$

$=0$ , we see that $\omega(\sigma_{\iota})\geqq 0\geqq\omega(\tau_{\kappa})$ and, for any $a=\sum_{i=1}^{n}\sigma_{i}\varphi(f_{i}\kappa_{i})(x)\in E$, we have

$\omega(p(a))=\omega(\sum_{i=1}^{n}((\sigma_{i})_{+}\sigma_{{}^{t}i}-(0_{i})_{-}\tau_{\kappa_{i}}))\geqq 0$ . We have thus shown that $p(a)\geqq 0$ for all
$a$ in $E_{1}$ .

We then see that the zero functional, say, $f_{1}$ of $E_{1}$ is compatible with $p$.
According to the validity of Theorem $B,$ $f_{1}$ can be extended to a linear map-
ping, say, $f$ of $E$ into $N_{0}$ compatible with $p$ . Denote then by $\sigma$ the image of
$\varphi(\ell, \kappa)(x)$ due to $f$, which is independent of the choice of indices $\ell,$ $\kappa$ . It is.
easy to see that $\sigma$ is the GLB in question. This completes the proof.

4. Connection between the Theorem of L. Nachbin-D. B. Goodner and
Theorem of M. Nakai. We say that a normed linear space $E_{0}$ has the exten-
sion property of L. Nachbin if, for any normed linear space $E$ over $R$ and
for any subspace $E_{1}$ of $E$, every linear functional $f_{1}$ of $E_{1}$ into $E_{0}$ , whose
norm is less than 1, has a linear extension on the whole space $E$ into $E_{0}$ ,

whose norm is also less than 1. We also say that the space $N_{0}$ of real-valued
continuous functions on a compact Hausdorff space has the extension property
of M. Nakai if, for any linear space $E$ over $N_{0}$ with a cap $p$ and for any
$N_{0}$-subspace $E_{1}$ of $E$, every linear mapping $f_{1}$ of $E_{1}$ into $N_{0}$ compatible with
$p$ has a linear extension on the whole space $E$ into $N_{0}$ compatible with $p$ .
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We first prove the following
PROPOSITION 1: Let $\Omega$ be a compact Hausdorff space and $N_{0}$ be the space

of real-valued continuous functi$ons$ on $\Omega$ . If $N_{0}$ has the extension property of
L. Nachbin, considered as a normed linear space with the usual supremum norm,
then it has the extension property of M. Nakai.

PROOF: Let $E$ be a linear space over $N_{0}$ with a cap $p$ and let $E_{1}$ be its
$N_{0}$-subspace. Suppose $f_{1}$ is a linear mapping of $E_{1}$ into $N_{0}$ compatible with
$p$ . Consider the N-space constructed from the direct sum $N$ of $N_{0}$ and $E$ as
in the proof of Theorem B. The spaces $E$ and $N_{0}$ then can be regarded as
parts of this N-space. As such, the mapping $f_{1}$ can be extended as an
N-linear mapping $F_{1}$ from the $N_{0}$-subspace $N_{1}$ of $N$ generated by $E_{1}$ and $N_{0}$ ,

and it is compatible with the cap $\tilde{p}$ of $N$ defined by $\tilde{p}(\sigma+a)=\sigma+p(a)(a\in E)$

as is in the proof of Theorem B.
The norm of an element $\sigma$ in $N_{0}$ being noted as $\Vert\sigma\Vert$ , write $\Vert a\Vert$

$={\rm Max}(\Vert\tilde{p}(a)\Vert, \Vert\tilde{p}(-a)\Vert)$ for $a$ in $N$. It is easy to see that $\Vert a\Vert$ has the proper-
ties of a pseudo-norm: (1) $\Vert a\Vert\geqq 0$ for $a$ in $N,$ (2) $\Vert\beta a\Vert=|\beta|\Vert a\Vert$ for $\beta$ in $R$

and $a$ in $N$, and (3) $\Vert a+b\Vert\leqq\Vert a\Vert+\Vert b\Vert$ for $a,$
$b$ in $N$. Let $M$ be the linear

subspace over $R$ of $N$ consisting of the elements $a$ such that $\Vert a\Vert=0$ , and
denote by tt the image of the element $a$ of $N$ under the natural homomor-
phism of $N$ onto the quotient space $\tilde{N}=N/M$. The space $\tilde{N}$ is obviously a
normed linear space. Let $N_{1}$ be the subspace of $\tilde{N}$, image of $N_{1}$ under the
homomorphism $N\rightarrow\tilde{N}$.

Now, because $F_{1}$ is compatible with $p$ , we have $-\tilde{p}(-a)\leqq F_{1}(a)\leqq\tilde{p}(a)$ for $a$

in $N_{1}$ , so that $\Vert F_{1}(a)\Vert\leqq\Vert a\Vert$ . This inequality permits us to define a mapping
$\tilde{F}_{1}(\sim a)$ from $N_{1}$ into $N_{0}$ by setting $\tilde{F}_{1}(a\sim)=F_{1}(a)$ (naturally $\tilde{a}$ is the image of $a$),

and this satisfies $\Vert\tilde{F}_{1}(a\sim)\Vert\leqq\Vert a\sim\Vert$ . Now by the extension property of L. Nach-
bin, which we have assumed true for $N_{0}$ , a linear mapping $\tilde{F}$ from $\tilde{N}$ into $N_{0}$

exists which extends $F_{1}$ and satisfies $\Vert\tilde{F}(a\sim)\Vert\leqq\Vert a\sim\Vert$ for any $ a\sim$ in $\tilde{N}$.
Put then $f(a)=\tilde{F}(\sim a)$ for $a$ in $E$. It remains to show that $f(a)\leqq p(a)$ for

any $a$ in $E$. But, if we put $b=p(a)-a,$ $b\geqq 0$ by the definition of the quasi-
ordering in $N$, and $f(a)\leqq p(a)$ is equivalent to $\tilde{F}(\tilde{b})\geqq 0$ since $\tilde{F}(\tilde{b})=p(a)-f(a)$ .
Let $\alpha=2\Vert a\Vert$ , then $\Vert\alpha-\tilde{b}\Vert={\rm Max}(\Vert\tilde{p}(a-p(a)+\alpha)\Vert, \Vert\tilde{p}(-a+p(a)-\alpha)\Vert)$

$\leqq{\rm Max}(\alpha, \Vert\alpha-(p(a)+p(-a))\Vert)\leqq\alpha$ , and so $\Vert\alpha-\tilde{F}(\tilde{b})\Vert=\Vert\tilde{F}(\alpha-\tilde{b})\Vert\leqq\Vert\alpha-\tilde{b}\Vert\leqq\alpha$ ,
which shows exactly that $\tilde{F}(\tilde{b})\geqq 0$ .

As L. Nachbin [8] and D. B. Goodner [2] have shown, the Banach space
of continuous functions on a Stonian space has the extension property of L.
Nachbin, so the theorem of M. Nakai (our Theorem B) is a consequence of
their results by the proposition just shown. We show conversely that the
theorem of L. Nachbin and D. B. Goodner follows from the theorem of M.
Nakai, so that these two theorems are completely equivalent.
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THEOREM (B) (L. Nachbin and D. B. Goodner): The space of real-valued
continuous functions on a Stonian space has the extension property of L. Nachbin.

PROOF: Let $\Omega$ be a Stonian space and $N_{0}$ be the set of real-valued con-
tinuous functions on $\Omega$ . Let $E$ be a normed linear space over $R$ and let $E_{1}$

be its linear subspace. Suppose $f_{1}$ is a linear mapping of $E_{1}$ into $N_{0}$ such
that $\Vert f_{1}(a)\Vert\leqq\Vert a\Vert$ for $a$ in $E_{1}$ . It must be shown that $f_{1}$ has a linear exten-
sion $f$ of $E$ into $N_{0}$ such that $\Vert f(a)\Vert\leqq\Vert a\Vert$ for $a$ in $E$. Denote by $E_{\Omega}$ the
set of all symbols $(a_{\iota}, e_{0t} ; \ell\in I)$ , where $(e_{0\iota} ; f\in I)$ is an orthogonal set of non-
zero projections in $N_{0}$ , whose LUB (the least upper bound) is 1, and $(a_{\iota} ; f\in I)$

is a uniformly bounded set of elements in $E$. We introduce an equivalence
relation in $E_{\Omega}$ as follows: $a=(a_{\iota}, e_{0^{t}} ; \ell\in I)$ and $b=(b_{\kappa}, e_{0\mathfrak{r}} ; \kappa\in K)$ are equiva-
lent if $a_{\iota}=b_{\kappa}$ whenever $e_{0^{\iota}}e_{0\kappa}\neq 0$ . For simplicity, we do not introduce a new
notation to show the equivalence class, but let it represent by one of the
elements belonging to the class. We define the addition $a+b$ of $a$ and $b$ in
$E_{\Omega}$ , scalar multiplication $\alpha a$ of $a$ in $E_{\Omega}$ by $\alpha$ in $R$ , and norm $\Vert a\Vert$ of $a$ in $E_{tI}$

by $a+b=$ $(a_{\iota}+b_{\kappa}, e_{0^{\iota}}e_{0\kappa} ; e_{0^{\iota}}e_{0}, \neq 0, \ell\in I, \kappa\in K),$ $\alpha a=(\alpha a_{\iota}, e_{0t} ; \ell\in I)$ , and $\Vert a\Vert$

$=\sup$ $(\Vert a_{\iota}\Vert ; \ell\in I)$ , respectively, where $a=(a_{\iota}, e_{0\iota} ; f\in I)$ and $b=(b_{\kappa}, e_{0\mathcal{K}} ; \kappa\in K)$ .
It is easy to see that these are well defined and $E_{\Omega}$ constitutes a normed
linear space over $R$ . For $a$ in $E,$ $(a, 1)$ is an element of $E_{\Omega}$ and the mapping:
$a\rightarrow(a, 1)$ gives an isometric isomorphism of $E$ into $E_{\Omega}$ , and it will be con-
venient in what follows that we identify $a$ with $(a, 1)$ . Denote by $\overline{E_{\Omega}}$ the
completion of $E_{\Omega}$ . If $\{a_{n}\}$ is a Cauchy sequence of elements in $E_{\Omega}$ and if $e_{0}$

is a projection in $N_{0}$ , then $\{e_{0}a_{n}\}$ is also a Cauchy sequence of elements in
$E_{J2}$ , where, for a projection $e_{0}$ , and for $a=(a_{t}, e_{0t} ; \ell\in I)$ , we define $e_{0}a$ as fol-
lows. Put $I_{1}=the$ set of indices $\ell$ in $I$ such that $e_{0}e_{0t}\neq 0$ , and let, for such $\ell$ ,
$e_{0^{\iota}}^{\prime}=e_{0}e_{0^{\iota}}$ . Put $I_{1}^{0}$ the set $I_{1}$ augmented by one index $0$ , and let $a_{0}=0,$ $e_{00^{\gamma}}$

$=1-e_{0}$ . Then $e_{0}a=(a_{\iota}, e_{0t}^{\prime};\ell\in I_{1}^{0})$ . We define $e_{0}(\lim a_{n})$ by $\lim e_{0}a_{n}$ . Denote
by $(e_{0,\alpha}(\sigma);-\infty<\alpha<\infty)$ the $resolution^{r}of$ identity associated with an element
$\sigma$ in $N_{0}$ . Then, for $\sigma$ in $N_{0}$ and for $a$ in $\overline{E_{l2}}$ , we define $\sigma a$ by $\int_{-\infty}^{\infty}\alpha d(e_{0,\iota t}(\sigma)a)$ .

(This integral converges in norm.) It is easy to see that $\overline{E_{\Omega}}$ constitutes a
linear space over $N_{0}$ . Since $\Vert e_{0}a\Vert\leqq\Vert a\Vert$ for a projection $e_{0}$ in $N_{0}$ and for $a$

in $\overline{E_{J2}}$ , we can conclude that $\Vert\sigma a\Vert\leqq\Vert\sigma\Vert\Vert a\Vert$ for $\sigma$ in $N_{0}$ and $a$ in $\overline{E_{\Omega}}$ .
For $\omega$ in S2, set 1 $ a\Vert_{\omega}=\inf$ $(\Vert e_{0}a\Vert ; e_{0}\in E_{0}(\omega))$ . It is easy to see that the

function: $\omega\rightarrow\Vert a\Vert_{\omega}$ is semi-continuous. Hence, by a theorem of Baire and
Hausdorff, we can find a continuous function on J2, which is almost equal to
this semi-continuous function. Denote it by $p(a)$ . It is not hard to see that
$p$ is a cap of $\overline{E_{J2}}$ . Moreover, we notice that $ p(a)=\Vert a\Vert$ for $a$ in $E$.

Let $(E_{1})_{J?}$ be the set of elements $a=(a_{\iota}, e_{0\iota} ; \ell\in I)$ in $E_{\Omega}$ such that $a_{\iota}\in E_{1}$

for any $\ell\in I$. If we define $f_{1}(a)$ for $a=(a_{\iota}, e_{0^{t}} ; \iota\in I)$ in $(E_{1})_{\Omega}$ by $f_{1}(a)$
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$=\oplus(f_{1}(a_{\iota})e_{0\iota} ; \ell\in I)$ where the right side denotes the element in $N_{0}$ uniquely
defined to be equal to $f_{1}(a_{\iota})$ in $(\omega;\omega(e_{0\iota})=1, \omega\in\Omega)$ for any $\ell$ , we have $\Vert f_{1}(a)||$

$\leqq\Vert a\Vert$ , and $f_{1}$ can be extended as a linear functional on the closure $\overline{(E_{1})_{P_{d}}}$ . As we $\cdot$

have considered at the end of the last paragraph, we can introduce a $N_{0^{-}}$

linear structure in $\overline{(E_{1})_{\Omega}}$ and it will be easy to observe that $f_{1}$ is actually a
$N_{0}$-linear functional. The relation $\Vert f_{1}(a)\Vert\leqq\Vert a\Vert$ which is true for any $a$ in
$\overline{(E_{1})}_{\Omega}$ implies $\Vert\omega(f_{1}(a))\Vert\leqq\Vert a\Vert_{\omega}$ for any $\omega$ in $\Omega$ , thus we see that $\Vert f_{1}(a)\Vert\leqq p(a)$ .
Theorem $B$ now asserts that there exists a linear extension $f$ of $\overline{E_{\Omega}}$ into $N_{\alpha}$

compatible with $p$ . Then the restriction of $f$ on $E$ will be the linear exten-
sion in question as is easily seen. This completes the proof.

\S 2. Banach Algebras Over $R_{0}$ .
1. Definitions. Let $\Omega$ be a compact Hausdorff space. Denote by $R_{0}$ the

set of complex-valued continuous functions on $\Omega$ . In a usual way $R_{0}$ con-
stitutes a commutative Banach algebra over the field of complex numbers $C_{\sim}$

We introduce some definitions and state some lemmas.
DEFINITION 2.1: A normed algebra $A$ over $C$ is called a normed algebra

over $R_{0}$ if it has $R_{0}$ as an operator domain and the following are satisfied:
$(0\tau)a=\sigma(\tau a),$ $(\sigma+\tau)a=\sigma a+\tau a,$ $\sigma(ab)=(\sigma a)b=a(\sigma b),$ la $=a,$ $\Vert\sigma a\Vert\leqq\Vert 0\Vert\Vert a\Vert$ for $\sigma$ ,
$\tau$ in $R_{0},$ $a,$

$b$ in $A$ , where 1 is the function on $\Omega$ taking values identically
equal to 1.

DEFINITION 2.2: An element $e$ in a normed algebra over $R_{0}$ is called an
$R_{0}$-unit if it is a unit and if it satisfies the condition: $\Vert\sigma e\Vert=\Vert 0\Vert\Vert e\Vert$ for $\sigma$

in $R_{0}$ .
It is easy to see that any normed algebra over $R_{0}$ can be extended to a

normed algebra over $R_{0}$ with an $R_{0}$-unit. From now on throughout this sec-
tion, however, we are concerned only with normed algebras over $R_{0}$ with an
$R_{0}$-unit and denote it by $e$ .

DEFINITION 2.3: A normed algebra over $R_{0}$ is called a Banach algebra
over $R_{0}$ if it is complete.

It is easy to see that the completion of a normed algebra over $R_{0}$ becomes.
a Banach algebra over $R_{0}$ .

Let $A$ be a Banach algebra over $R_{0}$ . Denote by $N_{0}$ the set of real-valued
continuous functions on $\Omega$ and by $E_{0}$ the set of those functions $e_{0}$ in $N_{0}J$

which satisfies the condition: $(a)0\leqq e_{0}\leqq 1$ and $(b)$ the set $\gamma(e_{0})$ of inner
points of $(\omega;\omega(e_{0})=1, \omega\in\Omega)$ is non-empty.

DEFINITION 2.4: A left (right) ideal $I$ of a Banach algebra $A$ over $R_{0}$ is
said to be proper if $\sigma e\in I$ for some $0$ in $R_{0}$ implies $0=0$ .

LEMMA 2.1: The closure of a proper left ideal I of a Banach algebra $A$
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over $R_{0}$ is also proper.
PROOF: Suppose the contrary. Then there exist a non-zero element $0$

in $R_{0}$ and an element $a$ in $I$ such that $\Vert\sigma e-a\Vert<1/2$ . We can assume with-
out loss of generality that $\sigma$ is in $N_{0}$ and $\Vert\sigma\Vert=1$ . Then there exists an
element $e_{0}$ in $E_{0}$ such that $\Vert(0-1)e_{0}e\Vert<1/2$ . From these inequalities it fol-
lows that $\Vert e_{0}(e-a)\Vert<1$ . Hence $e-e_{0}(e-a)$ has an inverse in $A$ . Denote it
by $b$ . Moreover we can find an element $e_{0}^{\prime}$ in $E_{0}$ such that $e_{0}^{\prime}e_{0}=e_{0}^{\prime}$ . Then
we get $(e_{0}^{\prime}e_{0}b)e_{0}a=e_{0}^{\prime}b(e-e_{0}(e-a)-(1-e_{0})e)=e_{0}^{\prime}e$ . This means that $e_{0}^{\prime}e$ is
contained in $I$. This contradicts the assumption that $I$ is proper. Hence the
closure of $I$ must be proper. This completes the proof.

For $\omega$ in $\Omega$ , denote by $E_{0}(\omega)$ the set of elements $e_{0}(\omega)$ in $E_{0}$ such that the
set $\gamma(e_{0}(\omega))$ of inner points of $(\rho;\rho(e_{0}(\omega))=1, \rho\in\Omega)$ contains $\omega$ . Set $\Vert a\Vert_{\omega}$

$=\inf$ $(\Vert e_{0}(\omega)a\Vert ; e_{0}(\omega)\in E_{0}(\omega))$ for $a$ in $A$ and (0) $=(a;\Vert a\Vert_{\omega}=0, a\in A)$ . Then
(0) constitutes a closed ideal of $A$ . Denote by the same $\omega$ the natural homo-
morphism of $A$ onto $A/(O)^{\omega}$ . Then $A/(O)^{\omega}$ constitutes a Banach algebra over
$C$ with norm defined by $\Vert\omega(a)\Vert=\Vert a\Vert_{\omega}$ for $a$ in $A$ . Denote it by $A_{\omega}$ and call
it the local Banach algebra of $A$ with respect to $\omega$ .

LEMMA 2.2: It holds that $\Vert\omega(\sigma a)\Vert=|\omega(0)|\Vert\omega(a)\Vert$ for $\sigma$ in $R_{0}$ and $a$ in $A$ .
PROOF: It is easy to see that $(\sigma-\omega(\sigma))a\in(0)(J)$ Hence we get $\Vert\omega(\sigma a)\Vert$

$=\Vert\omega(\omega(\sigma)a)\Vert=\Vert\omega(\sigma)\omega(a)\Vert=|\omega(\sigma)|\Vert\omega(a)\Vert$ . This completes the proof.
LEMMA 2.3: A left ideal I of a Banach algebra $A$ over $R_{0}$ is proper if and

only if $\omega(I)$ is proper in $A_{\omega}$ for almost all points $\omega$ in 9.
PROOF: NECESSITY; Suppose $\omega(I)$ is not proper in $A_{\omega}$ for some point $\omega$

in $\Omega$ . Then there exists an element $a$ in $I$ such that $\omega(a)=\omega(e)$ , that is,

1 $e_{0}(e-a)\Vert<1$ for some element $e_{0}$ in $E_{0}(\omega)$ . Hence we can find an element
$b$ in $A$ such that $b(e-e_{0}(e-a))=e$ and an element $e_{0}^{\prime}$ in $E_{0}$ such that $e_{0}^{\prime}e_{0}=e_{0^{\prime}}$ .
Then we get $e_{0}^{\prime}ba=e_{0}^{f}e$ as in the proof of Lemma 2.1. This means that $I$ is
not proper. Thus we have proved that, if $I$ is proper, then $\omega(I)$ is proper in
$A_{\omega}$ for any point $\omega$ in $\Omega$ . This result contains the assertion.

$SuFFICIENCY$ ; Suppose $I$ is not proper. Then there exists a non-zero
element $\sigma$ in $R_{0}$ such that $\sigma e\in I$. Since $\sigma\neq 0$ , we can find an element $e_{0}$ in
$E_{0}$ such that $\omega(\sigma)\neq 0$ for $\omega$ in $\gamma(e_{0})$ . Since $\sigma e\in I$, we get $\omega(\sigma)\omega(e)=\omega(\sigma e)\in\omega(I)$

and so $\omega(e)\in\omega(I)$ . This means that $\omega(I)$ is not proper in $A_{\omega}$ for $\omega$ in $\gamma(e_{0})$.
Hence the set of points $\omega$ , for which $\omega(I)$ is not proper in $A_{\omega}$ , is not of first
category. This completes the proof.

DEFINITION 2.5: An element $\sigma$ in $R_{0}$ is called a left (right) $R_{0}$-spectrum
of an element $a$ in a Banach algebra $A$ over $R_{0}$ if the left (right) ideal of $A$

generated by $a-\sigma e$ is proper.
Combining Definition 2.5 with Lemma 2.3 we have the following

LEMMA 2.4: An element $\sigma$ in $R_{0}$ is a left $R_{0}$ -spectmm of an element $a$ in
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a Banach algebra $A$ over $R_{0}$ if and only if $\omega(\sigma)$ is a left spectrum of $\omega(a)$ in
$A_{\omega}$ for almost all points $\omega$ in S2.

DEFINITION 2.6: A left (right) ideal $I$ of a Banach algebra $A$ over $R_{0}$ is
said to be properly maximal if it is proper and if there is no proper left
(right) ideal of $A$ containing $I$ except for $I$ itself.

The proof of the following lemma is easy and will be omitted.
LEMMA 2.5: Given any proper left ideal I of a Banach algebra $A$ over $R_{0}$ ,

there exists at least one properly maximal left ideal of $A$ containing $I$.
DEFINITION 2.7: A Banach algebra $A$ over $R_{0}$ is said to be left-sidedly

(right-sidedly) simple if it has no left (right) proper ideal of $A$ except for
the zero ideal (0). A Banach algebra over $R_{0}$ is said to be one-sidedly simple
if it is left-sidedly simple or right-sidedly simple.

As an immediate consequence of Lemma 2.4, we have the following
LEMMA 2.6: Let a be a left $R_{0}$ -spectrum of an element $a$ in a Banach

algebra $A$ over $R_{0}$ and let $P(t)=0_{0}+\sigma_{1}t+\cdots+\sigma_{n}t^{n}$ be a polynomial of $t$ with
$\sigma_{i}\in R_{0}(0\leqq i\leqq n)$ . We set $P(\sigma)=\sigma_{0}+0_{1}\sigma+\cdots+\sigma_{n}\sigma^{n}$ for $\sigma$ in $R_{0}$ and $P(a)=\sigma_{0}e$

$+o_{1}a+\cdots+\sigma_{n}a^{n}$ for $a$ in A. Then
1) $\Vert\sigma\Vert\leqq\Vert a\Vert$ and
2) $P(\sigma)$ is a left $R_{0}$ -spectrum of $P(a)$ .
DEFINITION 2.8: An element $\sigma$ in $R_{0}$ is called a mixed $R_{0}$-spectrum of an

element $a$ in a Banach algebra $A$ over $R_{0}$ if $\omega(\sigma)$ is a left or right spectrum
of $\omega(a)$ in $A_{\omega}$ for almost all points $\omega$ in $I2$ .

DEFINITION 2.9: For an element $a$ in a Banach algebra $A$ over $R_{0}$ , we set
$\Vert a\Vert_{\infty}=\lim\Vert a^{n}\Vert^{1/n}$ and $\Vert a\Vert_{0}=\sup$ ( $\Vert\sigma\Vert$ ; $\sigma$ being a mixed $R_{0}$-spectrum of $a$).

(If there is no mixed $R_{0}$-spectrum of $a$ , we set $\Vert a\Vert_{0}=0$ . We shall see in
Corollary 2 of Theorem $C$ that there exists at least one mixed $R_{0}$-spectrum
for any element in a Banach algebra over $R_{0}$ if J2 is Stonian.)

It is known that $\lim\Vert a^{n}\Vert^{1/n}$ exists, but we shall give an alternative proof
of this fact in the next section (Theorem C).

DEFINITION 2.10: A Banach algebra $A$ over $R_{0}$ is called a $B^{*}$-algebra
over $R_{0}$ if it is a $B^{*}$ -algebra in complex scalar case and if it satisfies the
condition : $(\sigma a)^{c\prime}\triangleright=\sigma^{*}a^{*}$ for $0$ in $R_{0}$ and for $a$ in $A$ , where $0^{*}$ is the function
in $R_{0}$ whose value at $\omega\in\Omega$ is the complex conjugate $\omega(\sigma)$ of $\omega(\sigma)$ .

Suppose $A$ is a $B^{*}$-algebra over $R_{0}$ . Since (0) for $\omega$ in $\Omega$ turns out a
closed two-sided ideal, it is self-adjoint, and so the local Banach algebra $A_{\omega}$

of $A$ with respect to $\omega$ constitutes a $B^{*}$-algebra over $C$ by using a result of
I. Kaplansky [6, Theorem 7.3]. We call it the local $B^{*}$-algebra of $A$ with
respect to $\omega$ .

DEFINITION 2.11: A Banach algebra $A$ over $R_{0}$ is said to be regular if
$\omega(a)=0$ for almost all points $\omega$ in $\Omega$ implies $a=0$ .
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2. Stonian Case. In this section, we assume that J2 is a Stonian space.
Denote by $E_{0}$ the set of projections in $N_{0}$ and by $E_{0}(0))$ for $\omega$ in the set $\Omega$ of
those projections $e_{0}(\omega)$ in $E_{0}$ which satisfies the condition: $\omega(e_{0}(\omega))=1$ (as in
2, \S 1). Then one sees easily that we may replace the $E_{0}$ used in Section 1 in
defining (0) , $\Vert a\Vert_{\omega}$ , and $A_{\omega}$ by the $E_{0}$ here mentioned.

Let $A$ be a Banach algebra over $R_{0}$ . Since the function: $\omega\rightarrow\Vert a\Vert_{\omega}$ of $\Omega$

into $B(\Omega)$ (the space of real-valued bounded functions on 2) is upper semi-
continuous, it is equal to a uniquely determined continuous function on $\Omega$

outside a certain first category set in $\Omega$ by a theorem of Baire and Hausdorff.
Denote it by $|a|$ . Then the mapping . $|$ of $A$ into $(N_{0})_{+}$ satisfies the follow-
ing conditions: $(a)|a|\geqq 0$ for $a$ in $A,$ $(b)|\sigma a|=|\sigma||a|$ for $0$ in $R_{0}$ and $a$ in
$A,$ $(c)|a+b|\leqq|a|+|b|$ for $a,$

$b$ in $A$ , and $(d)\omega(|a|)=\Vert\omega(a)\Vert$ for almost all
$\omega$ in $\Omega$ , where we denote by $|\sigma|$ the continuous function on $\Omega$ , whose value
at $\omega$ is equal to $|\omega(\sigma)|$ for $\omega$ in J2. The mapping $|\cdot|$ having the properties
$(a)-(d)$ is uniquely determined. We shall call it the pseudo $R_{0}$-norm of $A$ .
Moreover, a pseudo $R_{0}$ -norm is called an $R_{0}$ -norm if it satisfies the further
condition : $(a^{\prime})|a|=0$ for $a$ in $A$ implies $a=0$ . If $A$ is a $B^{*}$-algebra over
$R_{0}$ , the pseudo $R_{0}$-norm satisfies the condition: $(e)|a^{*}a|=|a|^{2}$ for $a$ in $A$ .
In fact, if $A$ is a $B^{*}$-algebra over $R_{0},$ $A_{\omega}$ is a $B^{*}$-algebra for any $\omega$ in $\Omega$ , and
so $\Vert\omega(a^{*}a)\Vert=\Vert\omega(a)\Vert^{2}$ for $\omega$ in $\Omega$ and $a$ in $A$ . This implies that $|a^{*}a|=|a|^{2}$

for all $a$ in $A$ .
DEFINITION 2.12: For an element $a$ of a Banach algebra $A$ over $R_{0}$ , we

set $|a|_{\infty}=order-\lim|a^{n}|^{1/n}$ and $|a|_{0}=LUB(|0$ ; being a mixed $R_{0}$-spectrum
of $a$), where by LUB we mean the least upper bound.

We show that order- $\lim|a^{n}|^{1/n}$ exists. In fact, for almost all $\omega$ in $\Omega$ ,
$\omega(|a^{n}|^{1/n})=\Vert\omega(a^{n})\Vert^{1/n}$ and so $\omega(order-\varliminf|a^{n}|^{1/n})=\varliminf\Vert\omega(a^{n})\Vert^{I/n}$ and $\omega(order-$

$\varlimsup|a^{n}|^{1/n})=\varlimsup\Vert\omega(a^{n})\Vert^{1/n}$ . Since $\varliminf\Vert\omega(a^{n})\Vert^{1/n}=\varlimsup\Vert\omega(a^{n})\Vert^{1/n}$ for all $\omega$ in
$\Omega$ , we get $\omega(order-\varliminf|a^{n}|^{1/n})=\omega(order-\varlimsup|a^{n}|^{1/n})$ for almost all $\omega$ in $\Omega$ . This
implies that order- $\lim|a^{n}|^{1/n}=order-\lim|a^{n}|^{1/n}$ . Hence we can conclude that
order- $\lim|a^{n}|^{1/n}$ exists.

The proof of the following lemma goes through like in Lemma 2.1 and
will be omitted.

LEMMA 2.7: Suppose $A$ is a Banach algebra over $R_{0}$ . If a scalar $t_{0}$ is not
a left spectrum of $\omega(a)(a\in A)$ in $A_{\omega}$ for some $\omega$ in $\Omega$ , then there exist a neigh-
bourhood $U$ at $t_{0}$ in the complex plane and a projection $e_{0}$ in $E_{0}(\omega)$ such that
$e_{0}(te-a)$ has a left inverse in $e_{0}A$ for any $t$ in $U$.

Let $A$ be a regular Banach algebra over $R_{0}$ . It is easy to see that the
pseudo $R_{0}$-norm of $A$ becomes an $R_{0}$-norm.

LEMMA 2.8: An element $a$ in a regular Banach algebra $A$ over $R_{0}$ is con-
tained in $R_{0}e$ if and only if $\omega(a)$ is contained in $\omega(R_{0}e)$ for $ an\dot{y}\omega$ in J2.
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PROOF: The necessity is obvious, so we need only to see the sufliciency.
Since $\omega(a)$ is in $\omega(R_{0}e)$ for $\omega$ in $\Omega$ , we can find a complex number $\beta_{\omega}$ such
that $\omega(a)=\beta_{\omega}\omega(e)$ . Hence, given a natural number $n$ , there exists a projection
$e_{0}(\omega)$ in $E_{0}(\omega)$ such that $|e_{0}(\omega Xa-\beta_{\omega}e)|<1/n,$ $i$ . $e$ . $|e_{0}(\omega)(a-\beta_{\omega}e)|\leqq(1/n)e_{0}(\omega)$ .
Associate $e_{0}(\omega)$ and $\beta_{\omega}$ with $\omega$ in $\Omega$ . Since $\Omega$ is Stonian, it is compact and
so it contains a finite number of points $\omega_{1},$ $\cdots$ , $\omega_{m}$ such that $\Omega=U(\gamma(e_{0}(\omega_{i}))$ ;
$1\leqq i\leqq m)$ . Moreover, we can find an orthogonal set of projections $e_{0}^{(1)},$ $\cdots$ ,
$e_{0}^{(m)}$ in $E_{0}$ such that $e_{0}^{(i)}\leqq e_{0}(\omega_{i})$ $(1 \leqq i\leqq m)$ and such that $\oplus(e_{0}^{(i)} ; 1\leqq i\leqq m)$

$=1$ . Since $e_{0}^{(i)}\leqq e_{0}(\omega_{i})(1\leqq i\leqq m)$, we have $|e_{0}^{(t)}(a-\beta_{\omega_{i}}e)|\leqq(1/n)e_{0^{i)}}((1\leqq i\leqq m)$ .
Summing up these inequalities, we get $|a-\tau_{n}e|\leqq 1/n$ , where $\tau_{n}=\sum_{i=1}^{n}\beta_{\omega_{i}}e_{0}^{(i)}$ .
Hence $\{\tau_{n}\}$ is a uniform Cauchy sequence of elements in $R_{0}$ and so there is
a uniform limit, say, $\tau$ in $R_{0}$ . Hence there exists a natural number $n_{0}(\geqq n)$

such that $|\tau e-\tau_{n0}e|\leqq 1/n$ and so $|a-\tau e|\leqq 2/n$ . By making $ n\rightarrow\infty$ , we get
$|a-\tau e|=0$ . Since $A$ is regular, this implies that $a=\tau e$ . This completes the
proof.

We are now in a position to prove the following generalization of the
spectral radius theorem of I. Gelfand [1, Satz 8‘].

THEOREM $C$ : It holds that $\Vert a\Vert_{\infty}=\Vert a\Vert_{0}$ for any element $a$ in a Banach
algebra $A$ over $R_{0}$ .

REMARK: The local interpretation of the theorems $C,$ $D$ corresponds to
the theorem of I. Gelfand and the theorem of M. Mazur and I. Gelfand, and
their proofs given below are the translation of those which the author gave
earlier in Japanese [12]. C. E. Rickart [13] has obtained a similar proof
independently.

PROOF OF THEOREM $C$ : LOCAL PROOF: We first give an alternative proof
of the theorem of I. Gelfand by making no use of the theory of function of
a complex variable as a frame work of S. Kametani [4]. Suppose $A$ is a
Banach algebra over the field $C$ of complex numbers with an identity $e$ . We
know that, if an element $a$ in $A$ has a left inverse and right inverse, then
they are unique and equal to each other. Hence a complex number is a (left

or right) spectrum of $a$ if and only if it is a spectrum of $a$ in a closed, com-
mutative subalgebra of $A$ containing $a$ . Therefore, we can assume without
loss of generality that $A$ is commutative.

First, we see that $\Vert a\Vert_{0}\leqq\varliminf\Vert a^{n}\Vert^{1/n}$ . Indeed, if $\varliminf\Vert a^{n}\Vert^{1/n}<|t|^{-1}$ for a
scalar $t$, then there exists a natural number $n$ such that $\Vert a^{n}\Vert^{1/n}<|t|^{-1}$ . Hence

the series $t\sum_{m=0}^{\infty}(ta)^{m}=t(\sum^{n-1}(ta)^{m})(\sum_{km=0=0}^{\infty}(ta)^{nk})$ is convergent and its limit is equal to

the inverse of $t^{-1}e-a$ . This shows that $t$ is never a spectrum of $a$ and the
assertion follows.

In order to see that $\varlimsup\Vert a^{n}\Vert^{1/n}\leqq\Vert a\Vert_{0}$ , suppose the contrary. Set $\psi(t)$
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$=(e-ta)^{-1}$ . This function is defined and continuous on $(t;\Vert a\Vert_{0}<|t|^{-I})$ . We
then use the following Lagrange’s formula:

(1) $(1/n)\sum_{i=1}^{n}(t\zeta_{i})^{-k}\psi(t\zeta_{i})=a^{k}(e-t^{n}a^{n})^{-1}$

for $0\leqq k\leqq n$ and $\Vert a\Vert_{0}<|t|^{-1}$ , where $\zeta_{i}’ s(1\leqq i\leqq n)$ are the n-th roots of 1.
From the elementary theory of the Riemann integral of continuous functions
it follows that the left-hand side of the above formula (1) has a limit as
$ n\rightarrow\infty$ and hence

(2) $(1/2\pi)\int_{0^{\pi}}^{2}(t\zeta)^{-k}\psi(t\zeta)d\theta=a^{k}c(t)$ ,

where $\zeta=e^{\sqrt{-1}}\theta,$ $ 0\leqq\theta\leqq 2\pi$ and $c(t)=\lim(e-t^{n}a^{n})^{-1}$ . By making $k=0$ , we can
see the existence of $c(t)$ . Since $\psi(t)$ is continuous with respect to the com-
plex variable $t,$ $c(t)$ is continuous on $(t;\Vert a\Vert_{0}<|t|^{-1})$ with respect to the real
variable $t$. Moreover, one sees easily that

(3) $c(t)=e$ if $\varliminf\Vert a^{n}\Vert^{1/n}<|t|^{-1}$ .
Therefore, we can select two numbers $t,$ $t_{1}$ such that $\Vert a\Vert_{0}<|t|^{-1}<|t_{1}|^{-1}$

$<\varlimsup\Vert a^{n}\Vert^{1/n}$ and that $c(t)$ has an inverse. Multiplying $t_{1}^{k}$ to both sides in (2),

we get

(4) $(1/2\pi)\int_{0}^{2\pi}t_{1}^{k}(t\zeta)^{-k}\psi(t\zeta)d\theta=t_{1}^{k}a^{k}c(t)$ .

Since $(t_{1}t^{-1})^{k}\rightarrow 0$ as $ k\rightarrow\infty$ , we have $(t_{1}a)^{k}c(t)\rightarrow 0$ as $ k\rightarrow\infty$ , and, by multiplying
$c(t)^{-1}$ , we get $(t_{1}a)^{k}\rightarrow 0$ as $ k\rightarrow\infty$ . This implies that $\varlimsup\Vert a^{n}\Vert^{1/n}\leqq|t_{1}|^{-1}$ , which
is a contradiction. Hence we must have $\varlimsup\Vert a^{n}\Vert^{1/n}\leqq\Vert a\Vert_{0}$ , which shows,
combining with the other inequality already obtained, the validity of the
assertion.

GLOBAL PROOF: Return now to the general case. Let $A$ be a Banach
algebra over $R_{0}$ and $a$ an arbitrary (but fixed) element in $A$ . We can assume
without loss of generality that $A$ is commutative by the same reason as in
the local proof.

First we see that

(5) $\omega(|a|_{\infty})=\Vert\omega(a)\Vert_{\infty}$ for $\omega$ in $\Omega$ .
In defining $|a|_{\infty}$ we used the fact that $\lim\Vert\omega(a^{n})\Vert^{1/n}$ exists. As this now
has been established, the use of $|a|_{\infty}$ is legitimate. Suppose for a point $\omega$ in
$I2$ , we have $\omega(|a|_{\infty})<\Vert\omega(a)\Vert_{\infty}$ . Take a complex number $t$ such that $\omega(|a|_{\infty})$

$<|t|<\Vert\omega(a)\Vert_{\infty}$ . Then there exists a projection $e_{0}$ in $E_{0}(\omega)$ such that $|e_{0}a|_{\infty}$

$=e_{0}|a|_{\infty}<|t|$ . Hence a natural number $n$ and a projection $e_{0}^{\prime}$ in $E_{0}(\omega)$ can be
found such that $|(e_{0}^{\prime}a)^{n}|^{1/n}<|t|$ , which implies that, for $|t|<|t^{\prime}$ , $e_{0}^{\prime}(t^{\prime-1}e-a)$

has an inverse in $e_{0}^{\prime}A$ by a similar argument as in the proof of the fact that
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$\Vert a\Vert_{0}\leqq\lim\Vert a^{n}\Vert^{1/n}$ in the local proof. From this it follows that, for $|t|<|t^{\prime}$ ,
$\omega(t^{\prime-1}e-a)$ has an inverse in $A_{\omega}$ , and we have $\Vert\omega(a)\Vert_{\infty}\leqq|t|$ . This contradicts
the choice of $t$ . Thus we get 1 $\omega(a)\Vert_{\infty}\leqq\omega(|a|_{\infty})$ .

On the contrary, suppose $\Vert\omega(a)\Vert_{\infty}<\omega(|a|_{\infty})$ . Take a real number $t$ such
that 1 $\omega(a)\Vert_{\infty}<t<\omega(|a|_{\infty})$ . Then there exists a natural number $n$ such that
$\Vert\omega(a^{n})\Vert^{1/n}<t$ and so we can take a projection $e_{0}$ in $E_{0}(\omega)$ such that $|(e_{0}a)^{n}|^{1/n}$

$<t,$ $i$ . $e$ . $|(t^{-1}e_{0}a)^{n}|<1$ . Hence $|(l^{-1}e_{0}a)^{nk}|<1$ for all natural number $k$ and so
$|(t^{-1}e_{0}a)^{nk}|^{1/(nk)}<1$ . By making $ k\rightarrow\infty$ , we get $|e_{0}a|_{\infty}\leqq t$ , that is, $\omega(|a|_{\infty})\leqq t$.
This is a contradiction. Thus we get $\Vert\omega(a)\Vert_{\infty}=\omega(|a|_{\infty})$ .

Further we have

(6) $\Vert a\Vert_{\infty}=\Vert|a|_{\infty}\Vert$ .

In fact, for a projection $e_{0}$ in $E_{0}(\omega)$ , we have $\Vert e_{0}a\Vert\leqq\Vert a\Vert$ and so $\Vert\omega(a)H\leqq\Vert a\Vert$

for (an arbitrary) $a$ in $A$ and $\omega$ in $\Omega$ . Hence we get $\Vert\omega(a)\Vert_{\infty}\leqq\Vert a\Vert_{\infty}$ ; namely,
$\Vert|a|_{\infty}\Vert\leqq\Vert a\Vert_{\infty}$ by (5). On the other hand, any character of $A$ , that is to
say, a homomorphism of $A$ onto $C$, is naturally considered as a character of
$A_{\omega}$ for some $\omega$ in $\Omega$ and therefore, by making use of a theorem of S. Mazur
and I. Gelfand [1, Satz 3] or the local part of Theorem $D$ (which follows
from the local part of Theorem $C$ and the latter was shown to hold), we get
$\Vert a\Vert_{\infty}\leqq\sup(\Vert\omega(a)\Vert_{\infty};\omega\in\Omega)=\Vert|a|_{\infty}\Vert$ . This completes the proof of (6).

Moreover, we have

(7) I $ a\Vert_{0}=\Vert|a|_{0}\Vert$ .
In fact, for an $R_{0}$-spectrum $\sigma$ of $a,$ $\Vert\sigma\Vert\leqq\Vert a\Vert_{0}$ and so $|\sigma|\leqq\Vert a\Vert_{0}$ ; namely,
$\Vert|a|_{0}\Vert\leqq\Vert a\Vert_{0}$ . On the other hand, $|\sigma|\leqq|a|_{0}$ and so $\Vert 0\Vert\leqq\Vert|a|_{0}\Vert$ ; namely,
$\Vert a\Vert_{0}=\Vert|a|_{0}\Vert$ . Thus we get (7).

In view of (6) and (7), in order to show Theorem $C$ , it remains only to
see that

(8) $|a|_{0}=|a|_{\infty}$ .
It is not hard to see that

(9) $|a|_{0}\leqq|a|_{\infty}$ .
In fact, due to Lemma 2.4, for an $R_{0}$-spectrum $\sigma$ of $a,$ $\omega(\sigma)$ is a spectrum of
$\omega(a)$ in $A_{\omega}$ for almost all points $\omega$ in $\Omega$ and so we have from (5) $|\omega(\sigma)|\leqq\omega(|a|_{\infty})$

for almost all $\omega$ in $\Omega$ ; namely, $|\sigma|\leqq|a|_{\infty}$ . This implies that $|a|_{0}\leqq|a|_{\infty}$ .
We see that

(10) if $A$ is a commutative $B^{*}$-algebra over $R_{0}$ , then (8) holds.

Suppose $A$ is a commutative $B^{*}$-algebra over $R_{0}$ . Since $|a^{*}a|=|a|^{2}$ , we
have $|a|_{\infty}=|a|$ . The element $|a^{*}a|$ in $R_{0}$ is an $R_{0}$-spectrum of $a^{*}a$ , because
$\omega(|a^{*}a|)(=\Vert\omega(a^{*}a)\Vert_{\infty})$ is a spectrum of $\omega(a^{*}a)$ for any point $\omega$ in $\Omega$ . Hence,



Local theory in function analysis $2\mathcal{T}$

in view of (9), we have $|a^{*}a|_{0}=|a^{*}a$ . In order to see (10), it remains only
to see that $|a^{*}a|_{0}=|a|_{0}^{2}$ .

Take an arbitrary $R_{0}$-spectrum $\sigma$ of $a^{*}a$ . By Lemma 2.5, there exists a
properly maximal ideal (say, $J$) of $A$ containing $a^{*}a-\sigma e$ . Since $J$ is closed
by Lemma 2.1, $J$ is self-adjoint. Hence $A/J$ constitutes a simple $B^{*}$-algebra
over $R_{0}$ . Denote by-the natural homomorphism of $A$ onto $A/J$. For a non-
negative hermitian element $\overline{h}$ in $A/J,$ $|\overline{h}|$ is an $R_{0}$ -spectrum of $h$ . Since $A/J$ is
simple, we get $\overline{h}=|\overline{h}|\overline{e}$ . Any element in $A/J$ is expressed as a linear com-
bination of non-negative hermitian elements in $A/J$ and therefore, it is con-
tained in $R_{0}\overline{e}$ ; especially $\overline{a}=\tau\overline{e}$ , say. Then $\overline{a}^{*}\overline{a}=\tau^{*}\tau\overline{e}$ and so $\sigma=\tau^{*}\tau$ . Since
$a-\tau e\in J,$ $\tau$ is an $R_{0}$ -spectrum of $a$ in $A$ . Hence we get $|0|=\tau^{*}\tau\leqq|a|_{0}^{2}$ . By
making $|\sigma|\uparrow|a^{*}a|_{0}$ , we get $|a^{*}a|_{0}\leqq|a|_{0}^{2}$ . A similar argument shows the
other inequality and we reach the assertion (10).

We return again to the case that $A$ is a commutative Banach algebra
over $R_{0}$ . Denote by $\Gamma$ the set of characters of $A$ considered as an algebra
over $C$. Then $\Gamma$ constitutes a compact Hausdorff space with the usual Stone
topology. The algebra $A$ is homomorphic into the $B^{*}$-algebra $C(\Gamma)$ of com-
plex-valued continuous functions on $\Gamma$ . Denote the homomorphism by $\phi_{-}$

Since $R_{0}e$ is isomorphic onto $R_{0}$ , any character $\gamma$ of $R_{0}e$ satisfies the $condition_{-}$

$\gamma(\sigma^{*}e)=\overline{\gamma(\sigma e)}$ for $\sigma$ in $R_{0}$ . Hence we have $\gamma(\sigma^{*}e)=\overline{\gamma(\sigma e})$ for $\sigma$ in $R_{0}$ and $\gamma$ in
$\Gamma$ , and so $\phi(o^{*}e)=\phi(\sigma e)^{*}$ for $\sigma$ in $R_{0}$ . We set $ox=\phi(\sigma e)x$ for $0$ in $R_{0}$ and $x$ in
$C(\Gamma)$ . Then we have $(\sigma x)^{*}=(\phi(\sigma e)x)^{*}=\phi(\sigma e)^{*}x^{*}=\phi(o^{*}e)x^{*}=\sigma^{*}x^{*}$ for $\sigma$ in $R_{0}$ .

and $x$ in $C(\Gamma)$ , where $x^{*}$ is the function in $C(\Gamma)$ such that $\gamma(x^{*})=\overline{\gamma(x)}$ for $\Gamma$

in $\Gamma$ . Hence, with this scalar multiplication, $C(\Gamma)$ constitutes a $B^{*}$-algebra
over $R_{0}$ . We have from the remark (10)

(11) $|\phi(a)|_{0}=|\phi(a)|_{\infty}$ .
Since the set of characters of $A_{\omega}$ for $\omega$ in J2 coincides with the set of

characters of $\omega(\phi(A))$ as a subset of $\Gamma$ , we have $\Vert\omega(a)\Vert_{\infty}=\Vert\omega(\phi(a))\Vert_{\infty}$ . In
view of (5), thus, we get

(12) $|a|_{\infty}=|\phi(a)|_{\infty}$ .
Moreover, we have

(13) $|a|_{0}\geqq|\phi(a)|_{0}$ .
In fact, an $R_{0}$-spectrum $0$ of $\phi(a)$ in $C(\Gamma)$ is also an $R_{0}$-spectrum of $a$ in $A$

and so $|\phi(a)|_{0}\leqq|a|_{0}$ .
In view of (9) and (11)$-(13)$ , we can conclude that $|a|_{0}=|a|_{\infty}$ . This shows

(9) and completes the proof.
COROLLARY 1: It holds that $|a|_{0}=|a|_{\infty}$ for any element $a$ in a $Banac//$

algebra over $R_{0}$ .



28 T. ONO

COROLLARY 2: There exists at least one mixed $R_{0}$ -spectrum of an element
in a Banach algebra over $R_{0}$ .

PROOF: LOCAL PROOF: Let $A$ be a Banach algebra over $C$ and $a$ be an
element in $A$ . If $\Vert a\Vert_{\infty}\neq 0$, we have from Theorem $C\Vert a\Vert_{0}=\Vert a\Vert_{\infty}\neq 0$ . This
means that there exists a non-zero mixed spectrum of $a$ . Suppose next $\Vert a\Vert_{\infty}$

$=0$ . Then $0$ is the only possible mixed spectrum of $a$ . If $0$ is not a mixed
spectrum of $a$ , then $a$ has an inverse $b$ in $A$ such that $ab=ba=e$ . Since $b$

commutes with $a$ , we must have $1=\Vert e\Vert_{\infty}\leqq\Vert a\Vert_{\infty}\Vert b\Vert_{\infty}=0$ . This is a con-
tradiction. Hence $0$ is a mixed spectrum of $a$ if $\Vert a\Vert_{\infty}=0$ .

GLOBAL PROOF: Let $A$ is a Banach algebra over $R_{0}$ and $a$ be an element
in $A$ . By the same reason as in the local proof, $a$ has a non-zero mixed $R_{0^{-}}$

spectrum if 1 $a\Vert_{\infty}\neq 0$ . Hence we assume that $\Vert a\Vert_{\infty}=0$ . Then $\Vert\omega(a)\Vert_{\infty}=0$

for almost all $\omega$ in $\Omega$ . We have seen that $0$ is a mixed spectrum of $\omega(a)$ if
$\Vert\omega(a)\Vert_{\infty}=0$ . Hence, by the definition of mixed $R_{0}$-spectrum, $0$ is a mixed
$R_{0}$-spectrum of $a$ for this case. This completes the proof.

As a consequence of Theorem $C$ , we shall prove the following generali-
zation of a theorem of S. Mazur and I. Gelfand [1, Satz 3].

THEOREM $D$ : Every one-sidedly simple Banach algebra over $R_{0}$ is isomorphic
onto $R_{0}$ .

PROOF: Let $A$ be a left-sidedly simple Banach algebra over $R_{0}$ and $a$ be
an element in $A$ . It must be shown that $a\in R_{0}e$ . By Corollary 2 of Theorem
$C$ , there exists a mixed $R_{0}$ -spectrum $\sigma$ of $a$ . By taking $a-\sigma e$ instead of $a$ ,

we can assume that $a$ has $0$ as one of its mixed $R_{0}$-spectrums.
If there exists no non-zero projection $e_{0}$ in $E_{0}$ such that $e_{0}a$ has a left

inverse in $e_{0}A$ , Lemma 2.7 shows that $\omega(0)$ is a left spectrum of $\omega(a)$ for all
$\omega$ in $\Omega$ , and so $0$ is a left $R_{0}$ -spectrum of $a$ . Hence the left ideal $I$ of $A$

generated by $a$ is proper. Since $A$ is left-sidedly simple, we must have $I=0$

and so $a=0$ .
In the rest of the proof, we shall show that there exists actually no non-

zero projection $e_{0}$ in $E_{0}$ such that $e_{0}a$ has a left inverse in $e_{0}A$ . Suppose the
contrary. Then there exists a non-zero projection $e_{0}$ in $E_{0}$ such that $e_{0}a$ has
a left inverse $b$ in $e_{0}A$ . Since $0$ is a mixed $R_{0}$ -spectrum of $e_{0}a$ , and since $e_{0}a$

has a left inverse in $e_{0}A,$ $0$ is a right $R_{0}$-spectrum of $e_{0}a$ , and so $0$ is a right
$R_{0}$ -spectrum of $e_{0}^{\prime}a$ for any projection $e_{0}^{\prime}$ in $e_{0}A$ . On the other hand, since
$be_{0}a=e_{0}$ , we have $(e_{0}ab)a=e_{0}a\neq 0$ , and so $e_{0}ab\neq 0$ . Hence, by the left-sided
simplicity of $A$ , we can conclude that there exists at least one point $\omega$ in $\Omega$

such that $\omega(e_{0}ab)$ has a left inverse in $A_{\omega}$ . Therefore, by Lemma 2.7, there
exists a non-zero projection $e_{0}^{\prime}$ in $e_{0}A$ such that $e_{0}^{\prime}ab$ has a left inverse $c$ in
$e_{0^{\prime}}A$ . Since $(e_{0}^{\prime}ab)^{2}=e_{0}^{\prime}ab$ , multiplying $c$ from the left, we get $e_{0}^{\prime}ab=e_{0}^{\prime}$ . This
implies that $0$ is not a $R_{0}$-spectrum of $e_{0}^{\prime}a$ . This is a contradiction. Hence
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such a case does not occur. This completes the proof.

3. Converse Theorems. In connection with Theorem $C$ and $D$, we shall
state and prove the following

THEOREM $C^{\prime}$ : S2 is Stonian if Theorem $C$ holds for any Banach algebra
over $R_{0}$ .

PROOF: Suppose $(\sigma_{\iota} ; \ell\in I)$ be a bounded below family of elements in $N_{0-}$

It must be shown that under the validity of Theorem $C$ , the GLB of this
family exists in $N_{0}$ . Denote by $D(\Omega)(B(\Omega))$ the set of complex-valued (real-
valued) bounded functions on $\Omega$ . Then $D(\Omega)$ constitutes a commutative $B^{*}-$

algebra over $R_{0}$ . Denote by $x$ the GLB of the family in $B(\Omega)$ and by $A$ the
closed subalgebra of $D(\Omega)$ generated by $x$ and $R_{0}$ . Then $A$ constitutes a $B^{*}-$

algebra over $R_{0}$ . Since $A$ is a commutative $B^{*}$-algebra over $R_{0}$ , it holds that
$\Vert x\Vert_{\infty}=\Vert x\Vert$ . Hence there exists an $R_{0}$-spectrum, say, $\sigma$ of $x$ in $A$ due to the
hypothesis that Theorem $C$ holds.

We shall see that $\sigma$ is the GLB in question. In fact, for each $\ell$ in $I$,

being $x\leqq\sigma_{\iota}$ , we have $\Vert\sigma_{\iota}-x-\Vert\sigma_{\iota}-x\Vert\Vert\leqq\Vert\sigma_{\iota}-x\Vert$ . Combining this with Lemma
2.6, we get $\Vert\sigma_{\iota}-\sigma-\Vert 0_{\iota}-x\Vert\Vert\leqq\Vert\sigma_{\iota}-x\Vert$ . This implies that $\sigma_{\iota}-\sigma\geqq 0$ , that is,
$o\leqq 0_{\iota}$ . On the other hand, for $\tau$ in $R_{0}$ with $\tau\leqq 0_{\iota}$ for each $f$ in $I$, we have
$\tau\leqq x$ and the above method can be applied for this case to get $\tau\leqq 0$ . This
shows that $\sigma$ is the GLB of the family in question. This completes the proof.

THEOREM $D^{\prime}$ : S2 is Stonian if Theorem $D$ holds for any one-sidedly simple
Banach algebra over $R_{0}$ .

PROOF: We use the same notations $(\sigma_{\iota} ; \ell\in I),$ $D(\Omega),$ $x$, and $A$ as in the
proof of Theorem $C^{\prime}$ . It must be shown that, under the validity of Theorem
$D$ , the GLB of $(\sigma_{\iota} ; \ell\in I)$ exists in $N_{0}$ . In view of Lemm 2.5, there exists a
properly maximal ideal $J$ of $A$ . Since $J$ is closed, it is self-adjoint and so
$A/J$ constitutes a simple $B^{*}$-algebra over $R_{0}$ . By use of the validity of Theo-
rem $D,$ $A/J$ is isomorphic onto $R_{0}$ . Denote by $\varphi$ the homomorphism of $A$ onto
$R_{0}$ via $A/J$ and by $\sigma$ the image of $x$ according to $\varphi$ .

We shall see that $\sigma$ is the GLB in question. In fact, for $f$ in $I$, being
$x\leqq\sigma_{\iota}$ , it holds that $\Vert\sigma_{\iota}-x-\Vert\sigma_{\iota}-x\Vert\Vert\leqq\Vert\sigma_{\iota}-x\Vert$ . Applying $\varphi$ to the in-
equality, we get $\Vert\sigma_{\iota}-\sigma-\Vert 0_{\iota}-x\Vert\Vert\leqq\Vert\sigma_{\iota}-x\Vert$ . This implies that $\sigma_{\iota}-\sigma\geqq 0$ , that
is, $\sigma\leqq\sigma_{\iota}$ . The same argument leads us to show that, if $\tau$ satisfies $\tau\leqq\sigma_{\iota}$ for
all $\ell$ in $I$, or $\tau\leqq x$, it holds that $\tau\leqq\sigma$ . This shows that $\sigma$ is the GLB irh
question. This completes the proof.

Department of Engineering Mathematics
Nagoya University



30 T. ONO

References

[1] I. Gelfand, Normierte Ringe, Mat. Sbornik, 9 (1941), 3-24.
[2] D. B. Goodner, Projections in normed linear spaces, Trans. Amer. Math. Soc., 69

(1950), 89-108.
[3] M. Hasumi, The extension property of complex Banach spaces, T\^ohoku Math. J.,

10 (1958), 135-142.
[4] S. Kametani, An elementary proof of the fundamental theorem of normed fields,

J. Math. Soc. Japan, 4 (1952), 96-99.
[5] I. Kaplansky, Modules over opcrator algebras, Amer. Math. J., 6 (1953), 839-858.
[6] I. Kaplansky, Normed algebras, Duke Math. J., 16 (1949), 399-418.
[7] J. L. Kelley, Banach spaces with the extension property, Trans. Amer. Math. Soc.,

72 (1952), 323-326.
[8] L. Nachbin, A theorem of the Hahn-Banach type for linear transformations,

Trans. Amer. Math. Soc., 68 (1950), 28-46.
[9] M. Nakai, Some expectations in AW*-algebras, Proc. Japan Acad., 34 (1958),

411-416.
[10] T. Ono, Local theory of rings of operators I, J. Math. Soc. Japan, 10 (1958),

184-216.
[11] T. Ono, Local theory of rings of operators II, J. Math. Soc. Japan, 10 (1958),

438-458.
[12] T. Ono, An elementary proof of the fundamental theorem of normed rings,

Sugaku, 9 (1958), p. 236 (Japanese).
[13] C. E. Rickart, An elementary proof of a fundamental theorem in the theory of

Banach algebras, Mich. Math. J., 5 (1958), 75-78.
[14] H. Widom, Embedding in algebras of type I, Duke Math. J., 22 (1956), 309-324.


	Local theory in function ...
	\S 0. Introduction
	\S 1. $N$ -Spaces Over ...
	THEOREM $A$ ...
	THEOREM $B$ ...
	THEOREM $A^{\prime}$ ...
	THEOREM $B^{\prime}$ ...
	THEOREM (B) ...

	\S 2. Banach Algebras ...
	THEOREM $C$ ...
	THEOREM $D$ ...
	THEOREM $C^{\prime}$ ...
	THEOREM $D^{\prime}$ ...

	References


