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Let U and V be algebraic varieties, and f: U— V a Galois covering of de-
gree #, defined over a field %; let A and A, be Albanese varieties attached
to U and V respectively. Then, in the preceding paper [3], we have proved,
among several other results, the following two statements :

1) Suppose that ¥ is embedded in some projective space. Let C be a
generic hyperplane section curve on V over kand W=s"(C) the inverse im-
age of Con U; let J and J, be Jacobian varieties attached to (the normaliza-
tion of) W and C respectively. Then the curve W generates A and we have
the inequality

(%) dim/—dim A = dim J,—dim A4, .

2) Suppose that U and V are complete and non-singular. Then, under
the assumption that the degree » is prime to the characteristic of the uni-
versal domain, the equality dim D(U)=dim D,(A4) implies the equality dim
D V)= dim Dy(A4,)."

In the present paper, we shall generalize these results to an arbitrary
(i. e. not necessarily Galois) covering f: U— V. Moreover, the result 2) will
be replaced by a better one, i.e. the inequality

(%) dim Dy(U) — dim Dy(A) = dim D(V) — dim Dy(A4,) .

Here we note that the numbers on the both sides of (¥) and (%) are non-
negative (cf. Lang and Igusa and that the assumption on the degree
n in (+x) is essential as easily seen in Igusa [2]. It seems to be worth noting
that the inequalities (¥) and (x+) may be rewritten in the following forms:

(*)’ dim J—dim J, = dim A—dim A,.

()’ dim Dy(U)—dim Dy (V)=dim Dy(A)—dim Dy(A4,) .
The numbers on the both sides of (x)’ and (xx)’ are also non-negative. As in
[3], using the formula of Hurwitz on the genera of curves, we can deduce
from (¥)’ an estimation of the irregularity of the covering variety U of V.

In addition to these two inequalities, we shall prove, for this arbitrary covering
f:U— V, some analogous results to the main theorems in [3].

1) For a complete, non-singular variety W, we donote by ®o(W) the space of the
linear differential forms of the first kind on W.
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1. Preliminaries.

Let f: U— V be a covering of degree », defined over an algebraically
closed field k. Then the function field 2(U) of U over k may be considered
as a separable extension over k(V) of degree n. Let K* be the smallest Galois
extension over %(V) containing &(U), which is clearly a regular extension over
k. We denote by G and H the Galois groups of K*/k(V) and K*/k(U) respec-
tively. Now let U* be the normalization of V' in K*. Then we have the
Galois coverings

. U*>V and f:U*-U,
defined over %, and we have
M) Fr=ref.
We denote also by the same letters G and H the Galois groups of these cover-

ings respectively, which consist of everywhere biregular, birational transfor-
mations T of U* into itself defined over & (cf. [3]). We set

w=[U*:Ul=(H:1),
w*=nn=[U%:V]=(G:1),

and decompose G into the cosets of H as follows:
G=3HT% .
i=1

Now we list here some results in [3], which we shall need in the follow-
ing arguments, without proof. Let A* be an Albanese variety attached to U*
and a* a canonical mapping of U* into A*, both defined over &, such that
there exists a simple point p* on U* with a*(p*)=0. Then each element T%
of G determines an automorphism %¥ of A* and a constant point aFf of A¥,
both rational over %, such that

(2 a* o T¥(u*) = n¥ o a*(u*)+ak,

where #* is a generic point of U* over k. The mapping TF — 7¥ is a group
homomorphism.

The main theorem in [3] asserts that there exist Albanese varieties A
and A, attached to U and V respectively, defined over %, which are quotient
abelian varieties of A* and have the following properties: Let x’ and u*
be the canonical separable homomorphisms of A* onto A and A, respectively.
Then canonical mappings « and «, of U and V into A and A, may be taken
to satisfy the relations

a °f/ — #/ o ¥

(3) on U¥,
(XO Df* — /‘L* o a*
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respectively. We set CF = (n¥—0,4)(A*)» and let C* be the abelian subvariety
of A*, generated by all C¥ for all 7F in G. Then the kernel C} of u* is the
algebraic subgroup of A* defined over &, which is the union of C* and all its
translations by gF for all 7F in G. The kernel C} of u’ is defined for H, in
a simillar way as C% for G. Since C¥ contains C} and u’ is canonical, there
exists a homomorphism x of A onto A,, defined over &, such that we have

4) p¥=pop’  on A*
Since u* is separable and g’ is surjective, the homomorphism x is also separa-
ble. Moreover, by (1), (3) and (4), we have

aoofof/:ﬂoﬂ’oa*:lu,oaof/

and so, as f’/ is surjective, we have

®) ayof=pea on U.

Then it is easily verified that the abelian variety A,= A*/C% is also the
quotient abelian variety of A with respect to the algebraic subgroup #/(C¥)
and the homomorphism g defined in (4) is the canonical separable homomor-
phism of A onto A, (cf. Rosenlicht [5]). Moreover, we have seen that a
canonical mapping a, of V into A, may be taken to satisfy (5).

The following formulas will be used in the next section.

p¥op¥=u* on A*, u¥*@a¥)=0 for all TF in G.
popfF=p" on A¥% u'(a¥)=0 for all 7% in H.

%) 7E5(aE) = atg,—aZ for all T%, T% in G.

(©)

2. The endomorphism p.

First we prove the existence of an endomorphism of A, which plays an
important role in the proof of the inequality ().

LEMMA. There exists an endomorphism o of A, defined over k, such that
we have

@ pou =p' ek on A*.

-.
U
-

PRrROOF. Since #’ is the canonical homomorphism, we have only to prove that
the kernel of the homomorphism u’- ) 7% of A* into A contains the kernel
i=1

C% of p/. First we fix an element 7'F in H. Then, for i=1,---,n, each ele-
ment 7% - TF belongs to one and only one coset HT;. Clearly the mapping
i— 7 =s() defines a permutation of the set {1,:--,#}. Hence we can write

2) For an abelian variety B, we denote by &p the identity automorphism of B.
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noe 7]21' ° (7]:'5_611*) =p' o 2 (W;kgr_ﬂti)

i=1
= u' e 208 s 15
with some 7% in H and so, by (6),
=00 2 Wy =150 =0,
i.e. we have
(W' o 378N aE =5, A%) =0.
On the other hand, by (7), we have
> B @) = /(S (@he—at) = 1/ (S @y —a5)
with some 7% in H. Then, also by (7) and (6), we have
u(@d 0,0 ) = 1/ (ad; +nd (@, ) = w'(af,)
and so

(u' o 2 mENaE) = (S (e, —asN) =0.

Therefore we have (u/ - %77;,"1)((33‘[}): 0.
The endomorphism ,:)"satisﬁes the relation
) tep=np on A.
In fact, by (8), (4) and (6), we have

n
Iuo‘oolu,’:'uc'u/oanpi:ﬂ*ozﬂﬁi:ﬂﬂ*:nuoﬂ'.
1= 3

Then, as u’ is surjective, we have (9).
Now we prove that the abelian subvariety po(A4) of A is isogenous to A,
an Albanese variety attached to V. We have, by (6), »'u’ = p/ o 2)7¥ and so,
H

by (8),
npop =n'po 217705://° § ¥ g =M ;vyé“.
1= 1
Since the intersection C¥ (2 7¥)(A*) is a finite subgroup of A* (cf. [3]) and
G
the kernel C¥% of ¢ is contained in C%, ¢/ induces a homomorphism of (3 7F)(A*)
G

onto 7 o(u/(A¥)) with a finite kernel. As we have #/(A*)= A, o(4) is isogenous
to (%} 25(A*), which is isogenous to A, (cf. Th. 2 of [3].

3) The signs ¥, and 3} mean the sums ranged over all the elements of 4 and G
H G
respectively.
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Next we assume that the degree » is prime to the characteristic of the.
universal domain. Let @ be any point of the intersection p(A) N (o—nd,)(A).
Then we have ¢ = p(a’) =(0—nd,)(@”) with some «’,a” in A. Operating x on
this relation, we have, by (9), u(na’) =nu(a’) =0, i.e. na’ belongs to the kernel

of #. So na= p(na’) belongs to (o~ #’XC¥), which is also written as (u’ - Zn)ln;?‘i)

(C%) by (8). However, by the similar argument as in the proof of
we can show that (u' - X 75 )C%) =0, because we have not used there the fact

that 7% is in H. Hence we have na=0, i.e. po(A)N(o—nd,)(A) is a finite
subgroup of A. Since, clearly, o(A) and (0o—nd,)(A) generate A, A is isogenous
to the direct product p(A)X(po—nd,)(A). Let x be a generic point of A over
k. Then the mapping ¢(x)= o(x)X(p—nd,)(x) defines an isogeny of A onto
p(A) X (o—nd,)A) and, conversely, the mapping ¢'(o(x)X(p—nd)(x) = p(x)—
(0—nd . )(x) = nx defines also an isogeny of p(A)X(p—nd)(A) onto A. Since we
have ¢’-¢=mnd, and x is assumed to be prime to the characteristic of the
universal domain, ¢ and ¢’ are separable. Let /i be the canonical separable
homomorphism of o(A)X(0o—nd,)(A) onto p(A) with the kernel 0X(o—nd,)A)
(cf. Rosenlicht [57). Then, as we have (o 2/ )(C¥% =0 as stated above, ¢(u’
(C¥)) is contained in 0Xx(p—mnd,)(A) and so we have (g-¢)u'(C§)=0. Since
x4 is canonical, there exists an isogeny v~ of A, onto o(A) such that fg-p=
yropu. Since g and ¢ are separable and g is surjective, ¢ is also separable.
Conversely we have, by (9), (¢t° @ X 0X(0—nd)(A) = n{(0—nd)(A))=0. Hence,
by the similar arguments, we can prove the existence of a separable isogeny
of p(A) onto A,.

Then, together with the result in 1, we have the following

THEOREM 1. Let the notations be as explained above. Then the quotient
abelian variety A, = A/n/'(C¥) is an Albanese variety attached to V and a canoni-
cal mapping oy of V into A, may be taken to satisfy the relation: ay°f=p-«Q,
where p is the canonical homomorphism of A onto A,. On the other hand, p(A)
is isogenous to A,, where o is the endomorphism of A defined in (8). Moreover,
if the degree n is prime to the characteristic of the universal domain, then there
exist separable isogenies between p(A) and A,.

3. The inequality (¢).

In this section, we suppose that ¥ is embedded in some projective space.
Let C be a generic hyperplane section curve on V over k; let W=7"%C) and
W*=f*"(C) be the inverse images of C on U and U¥* respectively, which
are irreducible curves. The curves C, W and W* are defined over a regular
extension K of k; let K be the algebraic closure of K. Let W’ and W* be
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complete, non-singular curves, which are birationally equivalent to W and W*
over K respectively. Then, in a natural way, we can define the Galois cover-
ings

g¥W¥ -C and g’:W¥ —->W’,

defined over K and with the Galois groups isomorphic to G and H respectively
(cf. [3D.

Let J* be a Jacobian variety attached to W*/. Then, by Lang [4] as seen
in [3], W* generates A* and so there exists a homomorphism A* of J* onto
A*. For each element TF in G, there correspond the automorphisms &¥ and

7% of J* and A¥*, respectively, by the relations of type (2). These automor-
phisms satisfy the following relations:

10) Mo fX—=pko 2% on J¥.

ST~ (ZEDTD~To,
(1) '
X 7EA)~ A, (X XA~ Ay P

where J and /, are Jacobian varieties attached to W’ and C respectively (cf.
[3]. Then, by [10), A* induces, in a natural way, the homomorphisms A of
(X ENT™) onto (X 7F)A*) and 2, of (T EF(J*) onto (T 7¥)(A*). Since we have
H H G G

S =(SENT e,
(S EN(J*) is contained in (2{] EXYJ*) and so the kernel of A, is contained in
G I

that of 2. On the other hand, as 1 and 2, are surjective, the dimensions of
the kernels of 1 and 1, are equal to dim/—dim A and dimJ,—dim A4,, by (11),
respectively. Hence we have the following

THEOREM 2. Let the notations be as explained above. Then we have the
inequality

dim /—dimJ, = dim A—dim A,.

Let Z be a k-closed algebraic subset of V¥, containing all the points on V
which ramify in the covering f: U— V. Then, since W’ is unramified over
every point of C—CnN\Z (cf. [3]), we have easily the following corollary by
and the formula of Hurwitz.

COROLLARY. If the dimension of Z is less than dim V—1, then we have the
inequality

dim A =dim A,+(n—1)(dim J,—1).

Here we note that the dimension of J, does not depend on the choice of

4) The sign ~ means the isogenous relation between abelian varieties.
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the generic curve C but depends only on V.
REMARK. By there are the following two possibilities as for
the relations between the numbers dim/—dim A and dim/,—dim A4, :

(@) dim /—dim A=dim/,—dim A4,.
(b) dim /—dim A > dim /,—dim A4, .
We can give examples of the above two cases respectively.

The example of (a): Consider the case where U and 1 are algebraic curves.
Or, consider an unramified covering of a normal algebraic surface of degree
3 in the projective space of dimension 3 (cf. §4 of [3]).

The example of (b): Let X be a normal variety with the irregularity
larger than 1. Let s and ¢ be rational integers larger than 1 and let U=
X(s)® and V= X(st) be the ¢#-fold symmetric product of the s-fold symmetric
product of X and the s#-fold symmetric product of X respectively. Then,
taking their normalizations, we have a covering f:U— V of degree larger
than 1. Using the above notations, we have clearly dim A=dim 4,. On the
other hand, the genus of C is not less than the irregularity of V and so it is
larger than 1. Then, by the formula of Hurwitz, any covering curve of C
has the genus larger than that of C, i.e. we have dim /> dim /.

4. The ineguality (k).

In this section, we suppose that U and V are complete and non-singular.
(But the non-singularity of U¥* is not necessary.) Let § be an element of
D,(A) such that there exists an element w, of D(V) and da(d) =f(w,). Then
we have

12) 0o(0)=nb .
In fact, by (3), (1), (2) and the definition of f*, we have
da® o op'(0) = 0f " o 8a(0) = Of " o 3f(w,) = 0f ¥(w,) = 0T}, - 6 *(w,)
=0TF o0a*oou'(0)=da* - ong - on'(0).
Here we used the fact that, as du’(6) is of the first kind on A¥, it is invariant
by the translation of 7. Since da* is injective by Igusa [1], we have

ou'(0) = dng; o ou'(0)
and so, by (8),

131/ (6) = 833 7%) - 3u/(6) = O’ - 8p(B)

Since 4’ is separable and surjective, d¢’ is injective (cf. Igusa and so we

have [12).

Now we assume that the degree # is prime to the characteristic of the
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universal domain. Then we have

13) (D (Ay) = d0(D(A)) .
In fact, by (9) and the assumption on #, we have
0n(D(Ao)) = 80 2 Ou(D(A,)) C 0p(D(A)) .

Moreover, as u is separable and surjective, dx is injective and so we have

dim su4(D(Ay) = dim D(A4,) = dim A4, ,

which is equal to dim p(A) by [Theorem 1. Now we consider the endomor-
phism o of A as a homomorphism p’ of A onto another abelian varieiy op(A).
Denoting by ¢ the injection of p(A) into A, we have top’=p and so dp=
0p’°0t. Then we have

00(D(A)) = 00" 2 0U(D(A)) T 30" (De(0(A)))
and so

dim 00(Dy(A)) = dim 00'(D(o(A))) = dim Dy(0(A)) = dim p(A) = dim 4, .

Therefore, the linear space do(®,(A)) of dimension < dim A, contains the sub-
space 0u(D(A4,)) of dimension =dim A, and so we must have [I3).

THEOREM 3. We assume that the degree n is prime to the charvacteristic of
the universal domain. If, for an element w, in Dy V), 0f(w,) belongs to da(D(A)),
then therve exists an element 0, of D(A,) such that we have

@y = 0ay(b,) .
PRrROOF. Let 6 be an element of ®,(A) such that éf(w,) = da(d). From the

assumption on the degree #, % - § belongs to ©4(A), and so, by (12), we have

do(— - 0) =" - sp0)= 1 - np=0,

i.e. @ is contained in 0o(®,(A)). Then, by (13), there exists an element 6, of
D,(A4,) such that we have ou(@,)=6. Hence, by (5), we have

0f(wy) = 0a(f) = dax o 012(0,) = 0 f > 0t y(6,) .

Since f is separable and surjective, df is injective and so the statement of our
theorem is proved.

Theorem 3 implies that, if an element w, of ®,(V) does not belong to the
subspace 0a(Dy(A,)), then also §f(w,) does not belong to the subspace da(P,(A4))
of ®(U). Since 6f, da and d«, are injective, we have the following

COROLLARY. Under the same assumption on n as in Theovem 3, there holds
the inequality

dim D(U)—dim Dy(A) = dim D V)—dim T((A4,) .
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Especially, if dim D(U)=dim D(A), then we have the equality dim D,(V)=dim
D(Ao)-

1]
2]
[3]

[41
[5]
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