On coverings of algebraic varieties

By Makoto Ishida

(Received Dec. 9, 1960)

Let U and V be algebraic varieties, and $f: U \to V$ a Galois covering of degree n, defined over a field k; let A and A_0 be Albanese varieties attached to U and V respectively. Then, in the preceding paper [3], we have proved, among several other results, the following two statements:

1) Suppose that V is embedded in some projective space. Let C be a generic hyperplane section curve on V over k and $W = f^{-1}(C)$ the inverse image of C on U; let J and J_0 be Jacobian varieties attached to (the normalization of) W and C respectively. Then the curve W generates A and we have the inequality

(*)
$$\dim J - \dim A \ge \dim J_0 - \dim A_0.$$

2) Suppose that U and V are complete and non-singular. Then, under the assumption that the degree n is prime to the characteristic of the universal domain, the equality dim $\mathfrak{D}_0(U) = \dim \mathfrak{D}_0(A)$ implies the equality dim $\mathfrak{D}_0(V) = \dim \mathfrak{D}_0(A_0)$.

In the present paper, we shall generalize these results to an arbitrary (i. e. not necessarily Galois) covering $f: U \to V$. Moreover, the result 2) will be replaced by a better one, i.e. the inequality

$$(**) \qquad \dim \mathfrak{D}_0(U) - \dim \mathfrak{D}_0(A) \ge \dim \mathfrak{D}_0(V) - \dim \mathfrak{D}_0(A_0).$$

Here we note that the numbers on the both sides of (*) and (**) are nonnegative (cf. Lang [4] and Igusa [1]) and that the assumption on the degree n in (**) is essential as easily seen in Igusa [2]. It seems to be worth noting that the inequalities (*) and (**) may be rewritten in the following forms:

$$(*)'$$
 $\dim J - \dim J_0 \ge \dim A - \dim A_0$.

$$(**)'$$
 $\dim \mathfrak{D}_0(U) - \dim \mathfrak{D}_0(V) \ge \dim \mathfrak{D}_0(A) - \dim \mathfrak{D}_0(A_0)$.

The numbers on the both sides of (*)' and (**)' are also non-negative. As in [3], using the formula of Hurwitz on the genera of curves, we can deduce from (*)' an estimation of the irregularity of the covering variety U of V. In addition to these two inequalities, we shall prove, for this arbitrary covering $f: U \to V$, some analogous results to the main theorems in [3].

¹⁾ For a complete, non-singular variety W, we denote by $\mathfrak{D}_0(W)$ the space of the linear differential forms of the first kind on W.

1. Preliminaries.

Let $f: U \to V$ be a covering of degree n, defined over an algebraically closed field k. Then the function field k(U) of U over k may be considered as a separable extension over k(V) of degree n. Let K^* be the smallest Galois extension over k(V) containing k(U), which is clearly a regular extension over k. We denote by G and H the Galois groups of $K^*/k(V)$ and $K^*/k(U)$ respectively. Now let U^* be the normalization of V in K^* . Then we have the Galois coverings

$$f^*: U^* \to V$$
 and $f': U^* \to U$,

defined over k, and we have

$$f^* = f \circ f'.$$

We denote also by the same letters G and H the Galois groups of these coverings respectively, which consist of everywhere biregular, birational transformations T_{σ}^* of U^* into itself defined over k (cf. [3]). We set

$$n' = [U^* : U] = (H : 1),$$

 $n^* = n'n = [U^* : V] = (G : 1),$

and decompose G into the cosets of H as follows:

$$G = \sum_{i=1}^n HT^*_{\rho_i}.$$

Now we list here some results in [3], which we shall need in the following arguments, without proof. Let A^* be an Albanese variety attached to U^* and α^* a canonical mapping of U^* into A^* , both defined over k, such that there exists a simple point p^* on U^* with $\alpha^*(p^*)=0$. Then each element T^*_{σ} of G determines an automorphism η^*_{σ} of A^* and a constant point a^*_{σ} of A^* , both rational over k, such that

(2)
$$\alpha^* \circ T^*_{\sigma}(u^*) = \eta^*_{\sigma} \circ \alpha^*(u^*) + a^*_{\sigma},$$

where u^* is a generic point of U^* over k. The mapping $T^*_{\sigma} \to \eta^*_{\sigma}$ is a group homomorphism.

The main theorem in [3] asserts that there exist Albanese varieties A and A_0 attached to U and V respectively, defined over k, which are quotient abelian varieties of A^* and have the following properties: Let μ' and μ^* be the canonical separable homomorphisms of A^* onto A and A_0 respectively. Then canonical mappings α and α_0 of U and V into A and A_0 may be taken to satisfy the relations

(3)
$$\alpha \circ f' = \mu' \circ \alpha^* \\ \alpha_0 \circ f^* = \mu^* \circ \alpha^*$$
 on U^* ,

respectively. We set $C_{\sigma}^* = (\eta_{\sigma}^* - \delta_A^*)(A^*)^2$ and let C^* be the abelian subvariety of A^* , generated by all C_{σ}^* for all T_{σ}^* in G. Then the kernel C_{σ}^* of μ^* is the algebraic subgroup of A^* defined over k, which is the union of C^* and all its translations by a_{σ}^* for all T_{σ}^* in G. The kernel C_H^* of μ' is defined for H, in a simillar way as C_{σ}^* for G. Since C_{σ}^* contains C_H^* and μ' is canonical, there exists a homomorphism μ of A onto A_0 , defined over k, such that we have

$$\mu^* = \mu \circ \mu' \quad \text{on } A^*.$$

Since μ^* is separable and μ' is surjective, the homomorphism μ is also separable. Moreover, by (1), (3) and (4), we have

$$\alpha_0 \circ f \circ f' = \mu \circ \mu' \circ \alpha^* = \mu \circ \alpha \circ f'$$

and so, as f' is surjective, we have

(5)
$$\alpha_0 \circ f = \mu \circ \alpha \quad \text{on } U.$$

Then it is easily verified that the abelian variety $A_0 = A^*/C_G^*$ is also the quotient abelian variety of A with respect to the algebraic subgroup $\mu'(C_G^*)$ and the homomorphism μ defined in (4) is the canonical separable homomorphism of A onto A_0 (cf. Rosenlicht [5]). Moreover, we have seen that a canonical mapping α_0 of V into A_0 may be taken to satisfy (5).

The following formulas will be used in the next section.

(6)
$$\mu^* \circ \eta_{\sigma}^* = \mu^* \text{ on } A^*, \quad \mu^*(a_{\sigma}^*) = 0 \text{ for all } T_{\sigma}^* \text{ in } G.$$

$$\mu' \circ \eta_{\tau}^* = \mu' \text{ on } A^*, \quad \mu'(a_{\tau}^*) = 0 \text{ for all } T_{\tau}^* \text{ in } H.$$

(7)
$$\eta_{\sigma_{1}}^{*}(a_{\sigma_{2}}^{*}) = a_{\sigma_{1}\sigma_{2}}^{*} - a_{\sigma_{1}}^{*} \text{ for all } T_{\sigma_{1}}^{*}, T_{\sigma_{2}}^{*} \text{ in } G.$$

2. The endomorphism ρ .

First we prove the existence of an endomorphism of A, which plays an important role in the proof of the inequality (**).

Lemma. There exists an endomorphism ρ of A, defined over k, such that we have

(8)
$$\rho \circ \mu' = \mu' \circ \sum_{i=1}^n \eta_{\rho_i}^* \quad on \ A^*.$$

PROOF. Since μ' is the canonical homomorphism, we have only to prove that the kernel of the homomorphism $\mu' \circ \sum_{i=1}^{n} \eta_{\rho_i}^*$ of A^* into A contains the kernel C_H^* of μ' . First we fix an element T_{τ}^* in H. Then, for $i=1,\dots,n$, each element $T_{\rho_i}^* \circ T_{\tau}^*$ belongs to one and only one coset $HT_{\rho_j}^*$. Clearly the mapping $i \to j = s(i)$ defines a permutation of the set $\{1,\dots,n\}$. Hence we can write

²⁾ For an abelian variety B, we denote by δ_B the identity automorphism of B.

$$\mu' \circ \sum_{i=1}^{n} \eta_{\rho_{i}}^{*} \circ (\eta_{\tau}^{*} - \delta_{A*}) = \mu' \circ \sum_{i} (\eta_{\rho_{i}\tau}^{*} - \eta_{\rho_{i}}^{*})$$
$$= \mu' \circ \sum_{i} (\eta_{\tau_{i}}^{*} \eta_{\rho_{S(i)}}^{*} - \eta_{\rho_{i}}^{*})$$

with some $T_{\tau_i}^*$ in H and so, by (6),

$$=\mu'\circ\sum_{i}(\eta_{
ho_{\mathcal{S}(i)}}^{*}\!-\!\eta_{
ho_{i}}^{*})\!=\!0$$
 ,

i.e. we have

$$(\mu' \circ \sum_{i=1}^{n} \eta_{\rho_i}^*)(\eta_{\tau}^* - \delta_{A*})(A^*) = 0.$$

On the other hand, by (7), we have

$$(\mu' \circ \sum_{i=1}^{n} \eta_{\rho_{i}}^{*})(a_{\tau}^{*}) = \mu'(\sum_{i} (a_{\rho_{i}\tau}^{*} - a_{\rho_{i}}^{*})) = \mu'(\sum_{i} (a_{\tau_{i}\rho_{s(i)}}^{*} - a_{\rho_{i}}^{*}))$$

with some $T_{\tau_i}^*$ in H. Then, also by (7) and (6), we have

$$\mu'(a_{\tau_i\rho_{s(i)}}^*) = \mu'(a_{\tau_i}^* + \eta_{\tau_i}^*(a_{\rho_{s(i)}}^*)) = \mu'(a_{\rho_{s(i)}}^*)$$

and so

$$(\mu' \circ \sum_{i=1}^n \eta_{\theta_i}^*)(a_{\mathfrak{r}}^*) = \mu'(\sum_i (a_{\theta_{\delta(i)}}^* - a_{\theta_i}^*)) = 0.$$

Therefore we have $(\mu' \circ \sum_{i=1}^n \eta_{\rho_i}^*)(C_H^*) = 0$.

The endomorphism ρ satisfies the relation

$$\mu \circ \rho = n\mu \quad \text{on } A.$$

In fact, by (8), (4) and (6), we have

$$\mu \circ \rho \circ \mu' = \mu \circ \mu' \circ \sum_{i=1}^{n} \eta_{\rho_i}^* = \mu^* \circ \sum_{i} \eta_{\rho_i}^* = n\mu^* = n\mu \circ \mu'.$$

Then, as μ' is surjective, we have (9).

Now we prove that the abelian subvariety $\rho(A)$ of A is isogenous to A_0 , an Albanese variety attached to V. We have, by (6), $n'\mu' = \mu' \circ \sum_{H} \eta_{\tau}^{*3}$ and so, by (8),

$$n'\rho\circ\mu'=n'\mu'\circ\sum_{i=1}^n\eta_{\rho_i}^*=\mu'\circ\sum_H\eta_{\tau}^*\circ\sum_i\eta_{\rho_i}^*=\mu'\circ\sum_G\eta_{\sigma}^*$$
.

Since the intersection $C^*_G \cap (\sum_G \eta^*_\sigma)(A^*)$ is a finite subgroup of A^* (cf. [3]) and the kernel C^*_H of μ' is contained in C^*_G , μ' induces a homomorphism of $(\sum_G \eta^*_\sigma)(A^*)$ onto $n'\rho(\mu'(A^*))$ with a finite kernel. As we have $\mu'(A^*) = A$, $\rho(A)$ is isogenous to $(\sum_G \eta^*_\sigma)(A^*)$, which is isogenous to A_0 (cf. Th. 2 of [3]).

³⁾ The signs $\sum\limits_{H}$ and $\sum\limits_{G}$ mean the sums ranged over all the elements of H and G respectively.

Next we assume that the degree n is prime to the characteristic of the universal domain. Let a be any point of the intersection $\rho(A) \cap (\rho - n\delta_A)(A)$. Then we have $a = \rho(a') = (\rho - n\delta_A)(a'')$ with some a', a'' in A. Operating μ on this relation, we have, by (9), $\mu(na') = n\mu(a') = 0$, i. e. na' belongs to the kernel of μ . So $na = \rho(na')$ belongs to $(\rho \circ \mu')(C_G^*)$, which is also written as $(\mu' \circ \sum_{i=1}^n \eta_{\rho_i}^*)$ (C_G^*) by (8). However, by the similar argument as in the proof of Lemma, we can show that $(\mu' \circ \sum_i \eta_{\rho_i}^*)(C_G^*) = 0$, because we have not used there the fact that T_{τ}^* is in H. Hence we have na = 0, i.e. $\rho(A) \cap (\rho - n\delta_A)(A)$ is a finite subgroup of A. Since, clearly, $\rho(A)$ and $(\rho - n\delta_A)(A)$ generate A, A is isogenous to the direct product $\rho(A) \times (\rho - n\delta_A)(A)$. Let x be a generic point of A over k. Then the mapping $\varphi(x) = \rho(x) \times (\rho - n\delta_A)(x)$ defines an isogeny of A onto $\rho(A) \times (\rho - n\delta_A)(A)$ and, conversely, the mapping $\varphi'(\rho(x) \times (\rho - n\delta_A)(x)) = \rho(x) - \rho(x)$ $(\rho - n\delta_A)(x) = nx$ defines also an isogeny of $\rho(A) \times (\rho - n\delta_A)(A)$ onto A. Since we have $\varphi' \circ \varphi = n\delta_A$ and n is assumed to be prime to the characteristic of the universal domain, φ and φ' are separable. Let $\tilde{\mu}$ be the canonical separable homomorphism of $\rho(A) \times (\rho - n\delta_A)(A)$ onto $\rho(A)$ with the kernel $0 \times (\rho - n\delta_A)(A)$ (cf. Rosenficht [5]). Then, as we have $(\rho \circ \mu')(C_G^*) = 0$ as stated above, $\varphi(\mu')$ (C_G^*) is contained in $0 \times (\rho - n\delta_A)(A)$ and so we have $(\tilde{\mu} \circ \varphi)(\mu'(C_G^*)) = 0$. Since μ is canonical, there exists an isogeny ψ of A_0 onto $\rho(A)$ such that $\tilde{\mu} \circ \varphi =$ $\psi \circ \mu$. Since $\tilde{\mu}$ and φ are separable and μ is surjective, ψ is also separable. Conversely we have, by (9), $(\mu \circ \varphi')(0 \times (\rho - n\delta_A)(A)) = \mu((\rho - n\delta_A)(A)) = 0$. Hence, by the similar arguments, we can prove the existence of a separable isogeny of $\rho(A)$ onto A_0 .

Then, together with the result in 1, we have the following

THEOREM 1. Let the notations be as explained above. Then the quotient abelian variety $A_0 = A/\mu'(C_G^*)$ is an Albanese variety attached to V and a canonical mapping α_0 of V into A_0 may be taken to satisfy the relation: $\alpha_0 \circ f = \mu \circ \alpha$, where μ is the canonical homomorphism of A onto A_0 . On the other hand, $\rho(A)$ is isogenous to A_0 , where ρ is the endomorphism of A defined in (8). Moreover, if the degree n is prime to the characteristic of the universal domain, then there exist separable isogenies between $\rho(A)$ and A_0 .

3. The inequality (*).

In this section, we suppose that V is embedded in some projective space. Let C be a generic hyperplane section curve on V over k; let $W=f^{-1}(C)$ and $W^*=f^{*-1}(C)$ be the inverse images of C on U and U^* respectively, which are irreducible curves. The curves C, W and W^* are defined over a regular extension K of k; let \overline{K} be the algebraic closure of K. Let W' and $W^{*'}$ be

complete, non-singular curves, which are birationally equivalent to W and W^* over \bar{K} respectively. Then, in a natural way, we can define the Galois coverings

$$g^*: W^{*\prime} \to C$$
 and $g': W^{*\prime} \to W'$,

defined over \overline{K} and with the Galois groups isomorphic to G and H respectively (cf. $\lceil 3 \rceil$).

Let J^* be a Jacobian variety attached to $W^{*\prime}$. Then, by Lang [4] as seen in [3], $W^{*\prime}$ generates A^* and so there exists a homomorphism λ^* of J^* onto A^* . For each element T^*_{σ} in G, there correspond the automorphisms \mathcal{E}^*_{σ} and η^*_{σ} of J^* and A^* , respectively, by the relations of type (2). These automorphisms satisfy the following relations:

(10)
$$\lambda^* \circ \xi_{\sigma}^* = \eta_{\sigma}^* \circ \lambda^* \quad \text{on } J^*.$$

$$(\sum_{H} \xi_{\tau}^*)(J^*) \sim J, \quad (\sum_{G} \xi_{\sigma}^*)(J^*) \sim J_0,$$

$$(\sum_{H} \eta_{\tau}^*)(A^*) \sim A, \quad (\sum_{G} \eta_{\sigma}^*)(A^*) \sim A_0,$$

$$(11)$$

where J and J_0 are Jacobian varieties attached to W' and C respectively (cf. [3]). Then, by (10), λ^* induces, in a natural way, the homomorphisms λ of $(\sum_{H} \xi_{\tau}^*)(J^*)$ onto $(\sum_{H} \eta_{\tau}^*)(A^*)$ and λ_0 of $(\sum_{G} \xi_{\sigma}^*)(J^*)$ onto $(\sum_{G} \eta_{\sigma}^*)(A^*)$. Since we have

$$\sum_{G} \xi_{\sigma}^{*} = (\sum_{H} \xi_{\tau}^{*})(\sum_{i=1}^{n} \xi_{\rho_{i}}^{*}),$$

 $(\sum_{G} \xi_{\sigma}^{*})(J^{*})$ is contained in $(\sum_{H} \xi_{\tau}^{*})(J^{*})$ and so the kernel of λ_{0} is contained in that of λ . On the other hand, as λ and λ_{0} are surjective, the dimensions of the kernels of λ and λ_{0} are equal to $\dim J - \dim A$ and $\dim J_{0} - \dim A_{0}$, by (11), respectively. Hence we have the following

THEOREM 2. Let the notations be as explained above. Then we have the inequality

$$\dim J - \dim J_0 \ge \dim A - \dim A_0$$
.

Let Z be a k-closed algebraic subset of V, containing all the points on V which ramify in the covering $f: U \to V$. Then, since W' is unramified over every point of $C-C \cap Z$ (cf. [3]), we have easily the following corollary by Theorem 2 and the formula of Hurwitz.

COROLLARY. If the dimension of Z is less than dim V-1, then we have the inequality

$$\dim A \leq \dim A_0 + (n-1)(\dim J_0 - 1).$$

Here we note that the dimension of J_0 does not depend on the choice of

⁴⁾ The sign \sim means the isogenous relation between abelian varieties.

the generic curve C but depends only on V.

REMARK. By Theorem 2, there are the following two possibilities as for the relations between the numbers $\dim J - \dim A$ and $\dim J_0 - \dim A_0$:

(a)
$$\dim J - \dim A = \dim J_0 - \dim A_0.$$

(b)
$$\dim J - \dim A > \dim J_0 - \dim A_0$$
.

We can give examples of the above two cases respectively.

The example of (a): Consider the case where U and V are algebraic curves. Or, consider an unramified covering of a normal algebraic surface of degree 3 in the projective space of dimension 3 (cf. §4 of [3]).

The example of (b): Let X be a normal variety with the irregularity larger than 1. Let s and t be rational integers larger than 1 and let U=X(s)(t) and V=X(st) be the t-fold symmetric product of the s-fold symmetric product of X and the st-fold symmetric product of X respectively. Then, taking their normalizations, we have a covering $f:U\to V$ of degree larger than 1. Using the above notations, we have clearly $\dim A = \dim A_0$. On the other hand, the genus of C is not less than the irregularity of V and so it is larger than 1. Then, by the formula of Hurwitz, any covering curve of C has the genus larger than that of C, i.e. we have $\dim J > \dim J_0$.

4. The inequality (**).

In this section, we suppose that U and V are complete and non-singular. (But the non-singularity of U^* is not necessary.) Let θ be an element of $\mathfrak{D}_0(A)$ such that there exists an element ω_0 of $\mathfrak{D}_0(V)$ and $\delta\alpha(\theta) = \delta f(\omega_0)$. Then we have

$$\delta \rho(\theta) = n\theta.$$

In fact, by (3), (1), (2) and the definition of f^* , we have

$$\begin{split} \delta\alpha^* \circ \delta\mu'(\theta) &= \delta f' \circ \delta\alpha(\theta) = \delta f' \circ \delta f(\omega_0) = \delta f^*(\omega_0) = \delta T^*_{\theta_i} \circ \delta f^*(\omega_0) \\ &= \delta T^*_{\theta_i} \circ \delta\alpha^* \circ \delta\mu'(\theta) = \delta\alpha^* \circ \delta\eta^*_{\theta_i} \circ \delta\mu'(\theta) \,. \end{split}$$

Here we used the fact that, as $\delta \mu'(\theta)$ is of the first kind on A^* , it is invariant by the translation of $a_{\rho_i}^*$. Since $\delta \alpha^*$ is injective by Igusa [1], we have

$$\delta \mu'(\theta) = \delta \eta_{\rho_i}^* \circ \delta \mu'(\theta)$$

and so, by (8),

$$n\delta\mu'(\theta) = \delta(\sum_{i=1}^n \eta_{\rho_i}^*) \circ \delta\mu'(\theta) = \delta\mu' \circ \delta\rho(\theta)$$
.

Since μ' is separable and surjective, $\delta\mu'$ is injective (cf. Igusa [1]) and so we have (12).

Now we assume that the degree n is prime to the characteristic of the

universal domain. Then we have

(13)
$$\delta\mu(\mathfrak{D}_0(A_0)) = \delta\rho(\mathfrak{D}_0(A)).$$

In fact, by (9) and the assumption on n, we have

$$\delta\mu(\mathfrak{D}_0(A_0)) = \delta\rho \circ \delta\mu(\mathfrak{D}_0(A_0)) \subset \delta\rho(\mathfrak{D}_0(A))$$
.

Moreover, as μ is separable and surjective, $\delta\mu$ is injective and so we have

$$\dim \delta \mu(\mathfrak{D}_0(A_0)) = \dim \mathfrak{D}_0(A_0) = \dim A_0$$
,

which is equal to dim $\rho(A)$ by Theorem 1. Now we consider the endomorphism ρ of A as a homomorphism ρ' of A onto another abelian variety $\rho(A)$. Denoting by ι the injection of $\rho(A)$ into A, we have $\iota \circ \rho' = \rho$ and so $\delta \rho = \delta \rho' \circ \delta \iota$. Then we have

$$\delta \rho(\mathfrak{D}_0(A)) = \delta \rho' \circ \delta \iota(\mathfrak{D}_0(A)) \subset \delta \rho'(\mathfrak{D}_0(\rho(A)))$$

and so

$$\dim \delta \rho(\mathfrak{D}_0(A)) \leq \dim \delta \rho'(\mathfrak{D}_0(\rho(A))) \leq \dim \mathfrak{D}_0(\rho(A)) = \dim \rho(A) = \dim A_0.$$

Therefore, the linear space $\delta \rho(\mathfrak{D}_0(A))$ of dimension $\leq \dim A_0$ contains the subspace $\delta \mu(\mathfrak{D}_0(A_0))$ of dimension $= \dim A_0$ and so we must have (13).

THEOREM 3. We assume that the degree n is prime to the characteristic of the universal domain. If, for an element ω_0 in $\mathfrak{D}_0(V)$, $\delta f(\omega_0)$ belongs to $\delta \alpha(\mathfrak{D}_0(A))$, then there exists an element θ_0 of $\mathfrak{D}_0(A_0)$ such that we have

$$\omega_0 = \delta \alpha_0(\theta_0)$$
.

PROOF. Let θ be an element of $\mathfrak{D}_0(A)$ such that $\delta f(\omega_0) = \delta \alpha(\theta)$. From the assumption on the degree n, $\frac{1}{n} \cdot \theta$ belongs to $\mathfrak{D}_0(A)$, and so, by (12), we have

$$\delta \rho \left(\frac{1}{n} \cdot \theta \right) = \frac{1}{n} \cdot \delta \rho(\theta) = \frac{1}{n} \cdot n\theta = \theta$$
,

i.e. θ is contained in $\delta \rho(\mathfrak{D}_0(A))$. Then, by (13), there exists an element θ_0 of $\mathfrak{D}_0(A_0)$ such that we have $\delta \mu(\theta_0) = \theta$. Hence, by (5), we have

$$\delta f(\omega_0) = \delta \alpha(\theta) = \delta \alpha \circ \delta \mu(\theta_0) = \delta f \circ \delta \alpha_0(\theta_0)$$
.

Since f is separable and surjective, δf is injective and so the statement of our theorem is proved.

Theorem 3 implies that, if an element ω_0 of $\mathfrak{D}_0(V)$ does not belong to the subspace $\delta\alpha_0(\mathfrak{D}_0(A_0))$, then also $\delta f(\omega_0)$ does not belong to the subspace $\delta\alpha(\mathfrak{D}_0(A))$ of $\mathfrak{D}_0(U)$. Since δf , $\delta \alpha$ and $\delta \alpha_0$ are injective, we have the following

COROLLARY. Under the same assumption on n as in Theorem 3, there holds the inequality

$$\dim \mathfrak{D}_0(U) - \dim \mathfrak{D}_0(A) \ge \dim \mathfrak{D}_0(V) - \dim \mathfrak{D}_0(A_0)$$
.

Especially, if dim $\mathfrak{D}_0(U) = \dim \mathfrak{D}_0(A)$, then we have the equality dim $\mathfrak{D}_0(V) = \dim \mathfrak{D}_0(A_0)$.

Department of Mathematics Tsuda College, Tokyo.

References

- [1] J. Igusa, A fundamental inequality in the theory of Picard varieties, Proc. Nat. Acad. Sci. U. S. A., 41 (1955), 317-320.
- [2] J. Igusa, On some problems in abstract algebraic geometry, Proc. Nat. Acad. Sci. U. S. A., 41 (1955), 964-967.
- [3] M. Ishida, On Galois coverings of algebraic varieties and Albanese varieties attached to them, J. Fac. Sci., Univ. Tokyo, Sec. I, 8 (1960), 577-604.
- [4] S. Lang, Abelian varieties, New York, 1959.
- [5] M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math., 78 (1956), 401-443.