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Let $U$ and $V$ be algebraic varieties, and $f:U\rightarrow V$ a Galois covering of de-
gree $n$, defined over a field $k$ ; let $A$ and $A_{0}$ be Albanese varieties attached
to $U$ and $V$ respectively. Then, in the preceding paper [3], we have proved,
among several other results, the following two statements:

1) Suppose that $V$ is embedded in some projective space. Let $C$ be a
generic hyperplane section curve on $V$ over $k$ and $W=f^{-1}(C)$ the inverse im-
age of $C$ on $U$ ; let $J$ and $J_{0}$ be Jacobian varieties attached to (the normaliza-
tion of) $W$ and $C$ respectively. Then the curve $W$ generates $A$ and we have
the inequality

$(*)$ $\dim J-\dim A\geqq\dim J_{0}-\dim A_{0}$ .
2) Suppose that $U$ and $V$ are complete and non-singular. Then, under

the assumption that the degree $n$ is prime to the characteristic of the uni-
versal domain, the equality $\dim \mathfrak{D}_{0}(U)=\dim \mathfrak{D}_{0}(A)$ implies the equality $\dim$

$\mathfrak{D}_{0}(V)=\dim \mathfrak{D}_{0}(A_{0})^{1)}$

In the present paper, we shall generalize these results to an arbitrary
( $i$ . $e$ . not necessarily Galois) covering $f:U\rightarrow V$. Moreover, the result 2) will
be replaced by a better one, $i$ . $e$ . the inequality

$(**)$ $\dim \mathfrak{D}_{0}(U)-\dim \mathfrak{D}_{0}(A)\geqq\dim \mathfrak{D}_{0}(V)-\dim \mathfrak{D}_{0}(A_{0})$ .
Here we note that the numbers on the both sides of $(*)$ and $(**)$ are non-
negative (cf. Lang [4] and Igusa [1]) and that the assumption on the degree
$n$ in $(**)$ is essential as easily seen in Igusa [2]. It seems to be worth noting
that the inequalities $(*)$ and $(**)$ may be rewritten in the following forms:

$(*)^{\prime}$ $\dim J-\dim J_{0}\geqq\dim A-\dim A_{0}$ .
$(**)^{\prime}$ $\dim \mathfrak{D}_{0}(U)-\dim \mathfrak{D}_{0}(V)\geqq\dim \mathfrak{D}_{0}(A)-\dim \mathfrak{D}_{0}(A_{0})$ .

The numbers on the both sides of $(*)^{\prime}$ and $(**)^{\prime}$ are also non-negative. As in
[3], using the formula of Hurwitz on the genera of curves, we can deduce
from $(*)$ ‘ an estimation of the irregularity of the covering variety $U$ of $V$.
In addition to these two inequalities, we shall prove, for this arbitrary covering
$f:U\rightarrow V$, some analogous results to the main theorems in [3].

1) For a complete, non-singular variety $W$, we donote by $\mathfrak{D}_{0}(W)$ the space of the
linear differential forms of the first kind on $W$.
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1. Preliminaries.

Let $f:U\rightarrow V$ be a covering of degree $n$ , defined over an algebraically
closed field $k$ . Then the function field $k(U)$ of $U$ over $k$ may be considered
as a separable extension over $k(V)$ of degree $n$ . Let $K^{*}$ be the smallest Galois
extension over $k(V)$ containing $k(U)$ , which is clearly a regular extension over
$k$ . We denote by $G$ and $H$ the Galois groups of $K^{*}/k(V)$ and $K^{*}/k(U)$ respec-
tively. Now let $U^{*}$ be the normalization of $V$ in $K^{*}$ . Then we have the
Galois coverings

$f^{*}:$ $U^{*}\rightarrow V$ and $f^{\prime}$ : $U^{*}\rightarrow U$ ,

defined over $k$ , and we have

(1) $f^{*}=f\circ f^{\prime}$ .

We denote also by the same letters $G$ and $H$ the Galois groups of these cover-
ings respectively, which consist of everywhere biregular, birational transfor-
mations $T_{\sigma}^{*}$ of $U^{*}$ into itself defined over $k$ (cf. [3]). We set

$n^{\prime}=[U^{*} : U]=(H:1)$ ,

$n^{*}=n^{\prime}n=[U^{*} : V]=(G:1)$ ,

and decompose $G$ into the cosets of $H$ as follows:

$G=\sum_{i=I}^{n}HT_{\rho_{i}}^{*}$ .

Now we list here some results in [3], which we shall need in the follow-
ing arguments, without proof. Let $A^{*}$ be an Albanese variety attached to $U^{*}$

and $\alpha^{*}$ a canonical mapping of $U^{*}$ into $A^{*}$ , both defined over $k$ , such that
there exists a simple point $p^{*}$ on $U^{*}$ with $\alpha^{*}(p^{*})=0$ . Then each element T*
of $G$ determines an automorphism $\eta_{\sigma}^{*}$ of $A^{*}$ and a constant point $a_{\sigma}^{*}$ of $A^{*}$ ,
both rational over $k$, such that

(2) $\alpha^{*}\circ T_{\sigma}^{*}(u^{*})=\eta_{\sigma}^{*}\circ\alpha^{*}(u^{*})+a_{\sigma}^{*}$ ,

where $u^{*}$ is a generic point of $U^{*}$ over $k$ . The mapping $T_{\sigma}^{*}\rightarrow\eta_{\sigma}^{*}$ is a group
homomorphism.

The main theorem in [3] asserts that there exist Albanese varieties $A$

and $A_{0}$ attached to $U$ and $V$ respectively, defined over $k$ , which are quotient
abelian varieties of $A^{*}$ and have the following properties: Let $\mu^{\prime}$ and $\mu^{*}$

be the canonical separable homomorphisms of $A^{*}$ onto $A$ and $A_{0}$ respectively.
Then canonical mappings $\alpha$ and $\alpha_{0}$ of $U$ and $V$ into $A$ and $A_{0}$ may be taken
to satisfy the relations

$\alpha\circ f^{\prime}=\mu^{\prime}\circ\alpha^{*}$

(3) on $U^{*}$,
$\alpha_{0}\circ f^{*}=\mu^{*}\circ\alpha^{*}$
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respectively. We set $C_{\sigma}^{*}=(\eta_{\sigma}^{*}-\delta_{A}*)(A^{*})^{2)}$ and let $C^{*}$ be the abelian subvariety
of $A^{*}$ , generated by all $C_{\sigma}^{*}$ for all $T_{\sigma}^{*}$ in $G$ . Then the kernel $C_{G}^{*}$ of $\mu^{*}$ is the
algebraic subgroup of $A^{*}$ defined over $k$ , which is the union of $C^{*}$ and all its
translations by $a_{\sigma}^{*}$ for all $T_{\sigma}^{*}$ in $G$ . The kernel $C_{H}^{*}$ of $\mu^{\prime}$ is defined for $H$, in
a simillar way as $C_{G}^{*}$ for $G$ . Since $C_{G}^{*}$ contains $C_{H}^{*}$ and $\angle l^{\prime}$ is canonical, there
exists a homomorphism $\mu$ of $A$ onto $A_{0}$ , defined over $k$ , such that we have

(4) $\mu^{*}=\mu\circ\mu^{\prime}$ on $A^{*}$ .
Since $\mu^{*}$ is separable and $\mu^{\prime}$ is surjective, the homomorphism $\mu$ is also separa-
ble. Moreover, by (1), (3) and (4), we have

$\alpha_{0}\circ f\circ f^{\prime}=\mu\circ\mu^{\prime}\circ\alpha^{*}=\mu\circ\alpha\circ f^{\prime}$

and so, as $f^{\prime}$ is surjective, we have

(5) $\alpha_{0}\circ f=\mu\circ\alpha$ on $U$ .
Then it is easily verified that the abelian variety $A_{0}=A^{*}/C_{G}^{*}$ is also the
quotient abelian variety of $A$ with respect to the algebraic subgroup $\mu^{\prime}(C_{G}^{*})$

and the homomorphism $\mu$ defined in (4) is the canonical separable homomor-
phism of $A$ onto $A_{0}$ (cf. Rosenlicht [5]). Moreover, we have seen that a
canonical mapping $\alpha_{0}$ of $V$ into $A_{0}$ may be taken to satisfy (5).

The following formulas will be used in the next section.
$\mu^{*}\circ\eta_{\sigma}^{*_{\lrcorner}}=\mu^{*}$ on $A^{*}$, $\mu^{*}(a_{\sigma}^{*})=0$ for all $T_{\sigma}^{*}$ in $G$ .

(6)
$\mu^{\prime}\circ\eta_{\tau}^{*}=\mu^{\prime}$ on $A^{*}$ , $\mu^{\prime}(a_{\tau}^{*})=0$ for all $T_{\tau}^{*}$ in $H$ .

(7) $\eta_{\sigma}^{*_{1}}(a_{\sigma_{*}}^{*})=a_{\sigma_{1}\sigma_{l}}^{*}-a_{\sigma_{1}}^{*}$ for all $T_{\sigma}^{*_{1}},$ $T_{lz}^{*}$ in $G$ .

2. The endomorphism $\rho$ .
First we prove the existence of an endomorphism of $A$ , which plays an

important role in the proof of the inequality $(**)$ .
LEMMA. There exists an endomorphism $\rho$ of $A$ , defined over $k$, such that

we have

(8) $\rho\circ\mu^{\prime}=\mu^{\prime}\circ\sum_{i=1}^{n}\eta_{\rho_{i}}^{*}$ on $A^{*}$ .
PROOF. Since $\mu^{\prime}$ is the canonical homomorphism, we have only to prove that

the kernel of the homomorphism $\mu^{\prime}\circ\sum_{i=1}^{n}\eta_{\rho_{i}}^{*}$ of $A^{*}$ into $A$ contains the kernel
$C_{H}^{*}$ of $\mu^{\prime}$ . First we fix an element $T_{\tau}^{*}$ in $H$. Then, for $i=1$ , $\cdot$ . $n$ , each ele-
ment $T_{d\iota}^{*}\circ T_{\tau}^{*}$ belongs to one and only one coset $HT_{\rho_{f}}^{*}$ . Clearly the mapping
$i\rightarrow j=s(i)$ defines a permutation of the set $\{$ 1, $\cdots$ , $n\}$ . Hence we can write

2) For an abelian variety $B$, we denote by $\delta_{B}$ the identity automorphism of $B$.
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$\mu^{\prime}\circ\sum_{i=1}^{n}\eta_{\rho_{i^{o}}}^{*}(\eta_{r}^{*}-\delta_{A*})=\mu^{\prime}\circ\sum_{i}(\eta_{\rho_{l}\tau}^{*}-\eta_{\rho_{i}}^{*})$

$=\mu^{\prime}\circ\sum_{i}(\eta_{\tau_{i}}^{*}\eta_{\rho(i)}^{*_{S}}-\eta_{\rho_{i}}^{*})$

with some $T_{\tau_{i}}^{*}$ in $H$ and so, by (6),

$=\mu^{\prime}\circ\sum_{i}(\eta_{\rho_{s(i)}}^{*}-\eta_{\rho_{i}}^{*})=0$ ,

$i$ . $e$ . we have

$(\mu^{\prime}\circ\sum_{i=1}^{n}\eta_{\rho_{i}}^{*})(\eta_{r}^{*}-\delta_{A*})(A^{*})=0$ .

On the other hand, by (7), we have

$(\mu^{\prime}\circ\sum_{i\overline{-}1}^{n}\eta_{\rho}^{*_{a}})(a_{r}^{*})=\mu^{\prime}(\sum_{i}(a_{\rho_{i}\tau}^{*}-a_{\rho_{\dot{t}}}^{*}))=\mu^{\prime}(\sum_{i}(a_{\tau_{t}\rho_{s(t)}}^{*}-a_{\rho_{v}}^{*})$

with some $T_{\tau_{i}}^{*}$ in $H$. Then, also by (7) and (6), we have

$\mu^{\prime}(a_{\tau_{i}\rho_{s(i)}}^{*})=\mu^{\prime}(a_{\tau_{i}}^{*}+\eta_{\tau_{l}}^{*}(a_{\rho_{s(i)}}^{*}))=\mu^{\prime}(a_{\rho_{s(i)}}^{*})$

and so
$(\mu^{\prime}\circ\sum_{i=\perp}^{n}\eta_{\rho_{i}}^{*})(a_{r}^{*})=\mu^{\prime}(\sum_{i}(a_{\rho_{s(i)}}^{*}-a_{\rho_{i}}^{*}))=0$ .

Therefore we have $(\mu^{\prime}\circ\sum_{i=1}^{n}\eta_{\rho}^{*_{t}})(C_{H}^{*})=0$ .
The endomorphism $\rho$ satisfies the relation

(9) $\mu\circ\rho=n\mu$ on $A$ .
In fact, by (8), (4) and (6), we have

$\mu\circ\rho\circ\mu^{\prime}=\mu\circ\mu^{\prime}\circ\sum_{\dot{\iota}=1}^{n}\eta_{\rho_{i}}^{*}=\mu^{*}\circ\sum_{i}\eta_{\rho_{i}}^{*}=n\mu^{*}=n\mu\circ\mu^{\prime}$ .

Then, as $\mu^{\prime}$ is surjective, we have (9).

Now we prove that the abelian subvariety $\rho(A)$ of $A$ is isogenous to $A_{0}$ ,

an Albanese variety attached to $V$. We have, by (6), $n^{\prime}\mu^{\prime}=\mu^{\prime}\circ\sum_{H}\eta_{\tau}^{*3)}$ and so,

by (8),

$n^{\prime}\rho\circ\mu^{\prime}=n^{\prime}\mu^{;_{o}}\sum_{i=1}^{n}\eta_{\rho_{i}}^{*}=\mu^{\prime}\circ\sum_{H}\eta_{\tau^{o}}^{*}\sum_{i}\eta_{\rho_{i}}^{*}=\mu^{\prime}\circ\sum_{G}\eta_{\sigma}^{*}$ .

Since the intersection $C_{G}^{*}\cap(\sum_{G}\eta_{\sigma}^{*})(A^{*})$ is a finite subgroup of $A^{*}$ (cf. [3]) and

$thekerne1C_{H}^{*}$ of $\mu^{\prime}iscontainedinC_{G}^{*},$ $\mu^{\prime}inducesahomomorphismof(\sum_{(j}\eta_{\sigma}^{*})(A^{*})$

onto $n^{\prime}\rho(\mu^{\prime}(A^{*}))$ with a finite kernel. As we have $\mu^{\prime}(A^{*})=A,$ $\rho(A)$ is isogenous
to $(\sum_{G}\eta_{\sigma}^{*})(A^{*})$ , which is isogenous to $A_{0}$ (cf. Th. 2 of [3]).

3) The signs
$\sum_{H}$

and
$\sum_{G}$

mean the sums ranged over all the elements of $H$ and $G$

respectively.
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Next we assume that the degree $ni_{S}$ prime to the characteristic of the
universal domain. Let $a$ be any point of the intersection $\rho(A)\cap(\rho-n\delta_{A})(A)$ .
Then we have $a=\rho(a^{\prime})=(\rho-n\delta_{A})(a^{\prime/})$ with some $a^{\prime},$ $a^{\prime\prime}$ in $A$ . Operating $\mu$ on
this relation, we have, by (9), $\mu(na^{\prime})=n/x(a^{\prime})=0,$ $i$ . $e$ . $na^{\prime}$ belongs to the kernel

of $\mu$ . So $na=\rho(na^{\prime})$ belongs to $(\rho\circ\mu^{\prime})(C_{G}^{*})$ , which is also written as $(\mu^{\prime}\circ\sum_{t=1}^{n}\eta_{\rho_{i}}^{*})$

$(C_{G}^{*})$ by (8). However, by the similar argument as in the proof of Lemma,
we can show that $(\mu^{\prime}\circ\sum_{i}\eta_{\rho_{\iota}}^{*})(C_{G}^{*})=0$ , because we have not used there the fact

that $T_{\tau}^{*}$ is in $H$. Hence we have $na=0,$ $i$ . $e$ . $\rho(A)\cap(\rho-n\delta_{A})(A)$ is a finite
subgroup of $A$ . Since, clearly, $\rho(A)$ and $(\rho-n\delta_{A})(A)$ generate $A,$ $A$ is isogenous
to the direct product $\rho(A)\times(\rho-n\delta_{A})(A)$ . Let $x$ be a generic point of $A$ over
$k$ . Then the mapping $\varphi(x)=\rho(x)\times(\rho-n\delta_{A})(x)$ defines an isogeny of $A$ onto
$\rho(A)\times(\rho-n\delta_{A})(A)$ and, conversely, the mapping $\varphi^{\prime}(\rho(x)\times(\rho-n\delta_{A})(x))=\rho(x)-$

$(\rho-n\delta_{A})(x)=nx$ defines also an isogeny of $\rho(A)\times(\rho-n\delta_{A})(A)$ onto $A$ . Since we
have $\varphi^{\prime}\circ\varphi=n\delta_{A}$ and $n$ is assumed to be prime to the characteristic of the
universal domain, $\varphi$ and $\varphi^{\prime}$ are separable. Let $\tilde{\mu}$ be the canonical separable
homomorphism of $\rho(A)\times(\rho-n\delta_{A})(A)$ onto $\rho(A)$ with the kernel $0\times(\rho-n\delta_{A})(A)$

(cf. $Rosen[icht[5]$). Then, as we have $(\rho\circ\mu^{\prime})(C_{G}^{*})=0$ as stated above, $\varphi(\mu^{\prime}$

$(C_{G}^{*}))$ is contained in $0\times(\rho-n\delta_{A})(A)$ and so we have $(\tilde{\mu}\circ\varphi)(\mu^{\prime}(C_{G}^{*}))=0$ . Since
$\mu$ is canonical, there exists an isogeny $\psi$ of $A_{0}$ onto $\rho(A)$ such that $\tilde{\mu}\circ\varphi=$

$\psi\circ\mu$ . Since $\tilde{\mu}$ and $\varphi$ are separable and $\mu$ is surjective, $\psi$ is also separable.
Conversely we have, by (9), $(\mu\circ\varphi^{\prime})(0\times(\rho-n\delta_{A})(A))=\mu((\rho-n\delta_{A})(A))=0$ . Hence,
by the similar arguments, we can prove the existence of a separable isogeny
of $\rho(A)$ onto $A_{0}$ .

Then, together with the result in 1, we have the following
THEOREM 1. Let the notations be as explained above. Then the quotient

abelian variety $A_{0}=A/\mu^{\prime}(C_{G}^{*})$ is an Albanese variety attached to $V$ and a canoni-
cal mapping $\alpha_{0}$ of $V$ into $A_{0}$ may be taken to satisfy the relation: $\alpha_{0}\circ f=\mu\circ\alpha$ ,

where $\mu$ is the canonical homomorphism of $A$ onto $A_{0}$ . On the other hand, $\rho(A)$

is isogenous to $A_{0}$ , where $\rho$ is the endomorphism of A defined in (8). Moreover,

if the degree $n$ is prime to the characteristic of the universal domain, then there
exist separable isogenies between $\rho(A)$ and $A_{0}$ .

3. The inequality $(*)$ .
In this section, we suppose that $V$ is embedded in some projective space.

Let $C$ be a generic hyperplane section curve on $V$ over $k$ ; let $W=f^{-1}(C)$ and
$W^{*}=f^{*-1}(C)$ be the inverse images of $C$ on $U$ and $U^{*}$ respectively, which
are irreducible curves. The curves $C,$ $W$ and $W^{*}$ are defined over a regular
extension $K$ of $k$ ; let $\overline{K}$ be the algebraic closure of $K$. Let $W^{\prime}$ and $W^{*}‘$ be



216 M. ISHIDA

complete, non-singular curves, which are birationally equivalent to $W$ and $W^{*}$

over $\overline{K}$ respectively. Then, in a natural way, we can define the Galois cover-
ings

$g^{*}:$ $W^{*\prime}\rightarrow C$ and $g^{\prime}$ : $W^{*\gamma}\rightarrow W^{\prime}$ ,

defined over $\overline{K}$ and with the Galois groups isomorphic to $G$ and $H$ respectively
(cf. [3]).

Let $J^{*}$ be a Jacobian variety attached to $W^{*\gamma}$ . Then, by Lang [4] as seen
in [3], $W^{*r}$ generates $A^{*}$ and so there exists a homomorphism $\lambda^{*}$ of $J^{*}$ onto
$A^{*}$ . For each element $T_{\sigma}^{*}$ in $G$ , there correspond the automorphisms $\xi_{\sigma}^{*}$ and
$\eta_{\sigma}^{*}$ of $I^{*}$ and $A^{*}$ , respectively, by the relations of type (2). These automor-
phisms satisfy the following relations:

(10) $\lambda^{*}\circ\xi_{\sigma}^{*}=\eta_{\sigma}^{*}\circ\lambda^{*}$ on $J^{*}$ .
$(\sum_{H}\xi_{\tau}^{*})(I^{*})\sim J$, $(\sum_{G}\xi_{\sigma}^{*})(J^{*})\sim J_{0}$ ,

(11)
$(\sum_{H}\eta_{\tau}^{*})(A^{*})\sim A$ , $(\sum_{U}\eta_{\sigma}^{*})(A^{*})\sim A_{0},4)$

where $J$ and $J_{0}$ are Jacobian varieties attached to $W^{\prime}$ and $C$ respectively (cf.

[3]). Then, by (10), $\lambda^{*}$ induces, in a natural way, the homomorphisms $\lambda$ of
$(\sum_{H}\xi^{*})(J^{*})$ onto $(\sum_{H}\eta_{\tau}^{*})(A^{*})$ and $\lambda_{0}$ of $(\sum_{G}\xi_{\sigma}^{*})(J^{*})$ onto $(\sum_{G}\eta_{\sigma}^{*})(A^{*})$ . Since we have

$\sum_{G}\xi_{\sigma}^{*}=(\sum_{H}\xi_{\tau}^{*})(\sum_{i=1}^{\eta}\xi_{\rho_{i}}^{*})$ ,

$(\sum_{G}\xi_{\sigma}^{*})(J^{*})$ is contained in $(\sum_{H}\xi_{\tau}^{*})(J^{*})$ and so the kernel of $\lambda_{0}$ is contained in

that of $\lambda$ . On the other hand, as $\lambda$ and $\lambda_{0}$ are surjective, the dimensions of
the kernels of $\lambda$ and $\lambda_{0}$ are equal to $\dim J-\dim$ $A$ and $\dim J_{0}-\dim A_{0}$ , by (11),

respectively. Hence we have the following
THEOREM 2. Let the notations be as explained above. Then we have the

inequality

$\dim J-\dim J_{0}\geqq\dim A-\dim A_{0}$ .
Let $Z$ be a k-closed algebraic subset of $V$, containing all the points on $V$

which ramify in the covering $f:U\rightarrow V$. Then, since $W^{\prime}$ is unramified over
every point of $C-C_{\cap}Z$ (cf. [3]), we have easily the following corollary by
Theorem 2 and the formula of Hurwitz.

$CoROLLARY$ . If the dimension of $Z$ is less than $\dim V-1$ , then we have the
inequality

$\dim A\leqq\dim A_{0}+$ ( $\uparrow\iota-$ l)(dim $J_{0}-1$).

Here we note that the dimension of $J_{0}$ does not depend on the choice of

4) The $sign\sim means$ the isogenous relation between abelian varieties.
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the generic curve $C$ but depends only on $V$.
REMARK. By Theorem 2, there are the following two possibilities as for

the relations between the numbers $\dim J-\dim$ $A$ and $\dim J_{0}-\dim A_{0}$ :
(a) $\dim J-\dim A=\dim J_{0}-\dim A_{0}$ .
(b) $\dim J-\dim A>\dim I_{0}-\dim A_{0}$ .

We can give examples of the above two cases respectively.
The example of (a): Consider the case where $U$ and $V$ are algebraic curves.

Or, consider an unramified covering of a normal algebraic surface of degree
3 in the projective space of dimension 3 (cf. \S 4 of [3]).

The example of (b): Let $X$ be a normal variety with the irregularity
larger than 1. Let $s$ and $t$ be rational integers larger than 1 and let $U=$

$X(s)(t)$ and $V=X(st)$ be the t-fold symmetric product of the s-fold symmetric
product of $X$ and the st-fold symmetric product of $X$ respectively. Then,
taking their normalizations, we have a covering $f:U\rightarrow V$ of degree larger
than 1. Using the above notations, we have clearly $\dim A=\dim A_{0}$ . On the
other hand, the genus of $C$ is not less than the irregularity of $V$ and so it is
larger than 1. Then, by the formula of Hurwitz, any covering curve of $C$

has the genus larger than that of $C,$ $i$ . $e$ . we have $\dim J>\dim J_{0}$ .

4. The inequality $(**)$ .

In this section, we suppose that $U$ and $V$ are complete and non-singular.
(But the non-singularity of $U^{*}$ is not necessary.) Let $\theta$ be an element of
$\mathfrak{D}_{0}(A)$ such that there exists an element $\omega_{0}$ of $\mathfrak{D}_{0}(V)$ and $\delta\alpha(\theta)=\delta f(\omega_{0})$ . Then
we have

(12) $\delta\rho(\theta)=n\theta$ .
In fact, by (3), (1), (2) and the definition of $f^{*}$ , we have

$\delta\alpha^{*}\circ\delta\mu^{\prime}(\theta)=\delta f^{\prime}\circ\delta\alpha(\theta)=\delta f^{\prime}\circ\delta f(\omega_{0})=\delta f^{*}(\omega_{0})=\delta T_{\rho_{i^{O}}}^{*}\delta f^{*}(\omega_{0})$

$=\delta T_{\rho_{i^{O}}}^{*}\delta\alpha^{*}0\delta\mu^{\prime}(\theta)=\delta\alpha^{*}\circ\delta\eta_{\rho_{i}}^{*}\circ\delta\mu^{\prime}(\theta)$ .
Here we used the fact that, as $\delta\mu^{\prime}(\theta)$ is of the first kind on $A^{*}$ , it is invariant
by the translation of $a_{\rho_{\iota}}^{*}$ . Since $\delta\alpha^{*}$ is injective by Igusa [1], we have

$\delta\mu^{\prime}(\theta)=\delta\eta_{\rho_{i}}^{*}\circ\delta\mu^{\prime}(\theta)$

and so, by (8),

$n\delta\mu^{\prime}(\theta)=\delta(\sum_{i=1}^{n}\eta_{\rho_{i}}^{*})\circ\delta\mu^{\prime}(\theta)=\delta\mu^{\prime}\circ\delta\rho(\theta)$ .

Since $\mu^{\prime}$ is separable and surjective, $\delta\mu^{\prime}$ is injective (cf. Igusa [1]) and so we
have (12).

Now we assume that the degree $n$ is prime to the characteristic of the
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universal domain. Then we have

(13) $\delta\mu(\mathfrak{D}_{0}(A_{0}))=\delta\rho(\mathfrak{D}_{0}(A))$ .
In fact, by (9) and the assumption on $n$ , we have

$\delta\mu(\mathfrak{D}_{0}(A_{0}))=\delta\rho\circ\delta_{l^{l}}(\mathfrak{D}_{0}(A_{0}))\subset\delta\rho(\mathfrak{D}_{0}(A))$ .
Moreover, as $l$ is separable and surjective, $\delta_{\angle}\iota$ is injective and so we have

$\dim\delta\mu(\mathfrak{D}_{0}(A_{0}))=\dim \mathfrak{D}_{0}(A_{0})=\dim A_{0}$ ,

which is equal to $\dim\rho(A)$ by Theorem 1. Now we consider the endomor-
phism $\rho$ of $A$ as a homomorphism $\rho^{\prime}$ of $A$ onto another abelian varieiy $\rho(A)$ .
Denoting by $f$ the injection of $\rho(A)$ into $A$, we have $t\circ$ pi $=\rho$ and so $\delta\rho=$

$\delta\rho^{J_{\circ\delta}}f$ . Then we have
$\delta\rho(\mathfrak{D}_{0}(A))=\delta\rho^{\prime}\circ\delta_{C}(\mathfrak{D}_{0}(A))\subset\delta\rho^{\prime}(\mathfrak{D}_{0}(\rho(A)))$

and so
$\dim\delta\rho(\mathfrak{D}_{0}(A))\leqq\dim\delta\rho^{\prime}(\mathfrak{D}_{0}(\rho(A)))\leqq\dim \mathfrak{D}_{0}(\rho(A))=\dim\rho(A)=\dim A_{0}$ .

Therefore, the linear space $\delta\rho(\mathfrak{D}_{0}(A))$ of dimension $\leqq\dim A_{0}$ contains the sub-
space $\delta\mu(\mathfrak{D}_{0}(A_{0}))$ of dimension $=\dim A_{0}$ and so we must have (13).

THEOREM 3. We assume that the degree $n$ is prime to the characteristic of
the universal domain. If, for an element $\omega_{0}$ in $\mathfrak{D}_{0}(V),$ $\delta f(\omega_{0})$ belongs to $\delta\alpha(\mathfrak{D}_{0}(A))$,
then there exists an element $\theta_{0}$ of $\mathfrak{D}_{0}(A_{0})$ such that we have

$\omega_{0}=\delta\alpha_{0}(\theta_{0})$ .
PROOF. Let $\theta$ be an element of $\mathfrak{D}_{0}(A)$ such that $\delta f(\omega_{0})=\delta\alpha(\theta)$ . From the

assumption on the degree $n,$
$\frac{1}{n}$ . $\theta$ belongs to $\mathfrak{D}_{0}(A)$ , and so, by (12), we have

$\delta\rho$ ($\frac{1}{n}$ . $\theta)=\frac{1}{n}$ . $\delta\rho(\theta)=\frac{1}{n}$ . $ n\theta=\theta$ ,

$i$ . $e$ . $\theta$ is contained in $\delta\rho(\mathfrak{D}_{0}(A))$ . Then, by (13), there exists an element $\theta_{0}$ of
$\mathfrak{D}_{0}(A_{0})$ such that we have $\delta\mu(\theta_{0})=\theta$ . Hence, by (5), we have

$\delta f(\omega_{0})=\delta\alpha(\theta)=\delta\alpha\circ\delta\mu(\theta_{0})=\delta f\circ\delta\alpha_{0}(\theta_{0})$ .

Since $f$ is separable and surjective, $\delta f$ is injective and so the statement of our
theorem is proved.

Theorem 3 implies that, if an element $\omega_{0}$ of $\mathfrak{D}_{0}(V)$ does not belong to the
subspace $\delta\alpha_{0}(\mathfrak{D}_{0}(A_{0}))$, then also $\delta f(\omega_{0})$ does not belong to the subspace $\delta\alpha(\mathfrak{D}_{0}(A))$

of $\mathfrak{D}_{0}(U)$ . Since $\delta f,$ $\delta\alpha$ and $\delta\alpha_{0}$ are injective, we have the following
$CoROLLARY$ . Under the same assumption on $n$ as in Theorem 3, there holds

the inequality
$\dim \mathfrak{D}_{0}(U)-\dim \mathfrak{D}_{0}(A)\geqq\dim \mathfrak{D}_{0}(V)-\dim\Phi_{0}(A_{0})$ .
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Especially, if $\dim \mathfrak{D}_{0}(U)=\dim \mathfrak{D}_{0}(A)$, then we have the equality $\dim \mathfrak{D}_{0}(V)=\dim$

$\mathfrak{D}_{0}(A_{0})$.
Department of Mathematics

Tsuda College, Tokyo.
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