On almost-analytic tensors of mixed type in a K-space

By Sumio SAWAKI

(Received Nov. 21, 1960) (Revised Dec. 16, 1960)

§ 0. Introduction.

Let X_n be an *n*-dimensional differentiable manifold with local coordinates $\{x^i\}^{1}$. On this manifold a tensor field φ_j^i such that

$$\varphi_r^i \varphi_i^r = -\delta_i^i$$

is called an almost-complex structure and a differentiable manifold X_n with such an almost-complex structure is called an almost-complex manifold or an almost-complex space²⁾.

An almost-complex space X_n with an almost-complex structure satisfying

$$(0.2) g_{rs}\varphi_j^r\varphi_i^s = g_{ji}$$

where g_{ji} is a positive definite Riemannian metric tensor is called an almost-Hermitian space³⁾. In this place, it is easily verified that $\varphi_{ji} = -\varphi_{ij}$ where $\varphi_{ji} = \varphi_j^{\ r} g_{ri}$.

On the other hand, A. Frölicher⁴⁾ proved that there exists an almost-complex structure on the six dimensional sphere S^6 , and T. Fukami and S. Ishihara⁵⁾ proved that the structure on S^6 is an almost-Hermitian one satisfying

$$(0.3) V_j \varphi_{ih} + V_i \varphi_{jh} = 0$$

where V_j denotes the operator of covariant derivation with respect to the Riemannian connection.

In this paper, by a K-space⁶⁾ we shall always mean an n-dimensional almost-Hermitian space satisfying the condition (0.3).

Now, a necessary and sufficient condition that in a compact K-space a vector be almost-analytic (see § 1) has been obtained for a contravariant vector by S. Tachibana in [10] and for a covariant vector by the author in [7].

¹⁾ Through this paper the Latin indices run over the values 1, 2, ..., n.

^{2), 3)} K. Yano [13, p. 228].

⁴⁾ A. Frölicher [3].

⁵⁾ T. Fukami and S. Ishihara [4].

⁶⁾ S. Tachibana [10].

166 S. Sawaki

Recently⁷⁾ the author has obtained a necessary and sufficient condition for a contravariant pure tensor or a covariant pure tensor in a compact K-space to be almost-analytic.

The main purpose of this paper is to do exactly the same thing for a pure tensor of mixed type in a compact K-space and to summarise these results. In the last section we shall give a generalization of Bochner's theorem⁸⁾ in a compact Kählerian space as an application of these results.

§ 1. Almost-analytic tensors of mixed type.

In an *n*-dimensional almost-Hermitian space X_n , we consider the operators

$$O_{i\,h}^{\mathit{ml}} = \frac{1}{2} \left(\delta_i^{\mathit{m}} \delta_h^{\mathit{l}} - \varphi_i^{\mathit{m}} \varphi_h^{\mathit{l}} \right), \qquad \quad *O_{i\,h}^{\mathit{ml}} = \frac{1}{2} \left(\delta_i^{\mathit{m}} \delta_h^{\mathit{l}} + \varphi_i^{\mathit{m}} \varphi_h^{\mathit{l}} \right)$$

and call a tensor pure (hybrid) in two indices if it is annihilated by transvection of *O(O) on these indices⁹⁾. For instance, if $*O^{mj_1}_{i_1l}T^{lj_2\cdots j_q}_{mi_2\cdots i_p}=0$, then $T^{j_1\cdots j_q}_{i_1\cdots i_p}$ is called pure in j_1 , i_1 and if $O^{ml}_{i_1i_2}T^{j_1\cdots j_q}_{mli_3\cdots i_p}=0$, then it is called hybrid in i_1 , i_2 .

By a pure tensor we mean that it is pure in every pair of indices.

The following propositions which we shall use later on will be easily verified.

$$\begin{array}{ll} \text{Proposition 1.} & *O_{i\,h}^{\it ml} + O_{i\,h}^{\it ml} = A \;, & *O_{t\,\,i}^{\it ms} *O_{i\,s}^{\it th} = *O_{i\,\,l}^{\it mh} \;, \\ & O_{t\,s}^{\it ml} O_{i\,s}^{\it th} = O_{i\,\,l}^{\it mh} \;, & *O_{t\,\,l}^{\it ms} O_{i\,s}^{\it th} = O_{t\,\,l}^{\it ms} *O_{i\,s}^{\it th} = 0 \end{array}$$

where A is an identity operator.

Proposition 2.
$$*O_{ih}^{ab}V_j\varphi_{ab}=0$$
, $O_{ib}^{ah}V_j\varphi_a{}^b=0$.

PROPOSITION 3. If a tensor is pure (hybrid) in i, j and pure (hybrid) in j, h, then it is pure in i, h, and if it is pure in i, j and hybrid in j, h, then it is hybrid in i, h.

PROPOSITION 4. If a tensor is pure and at the same time hybrid in two given indices, then it vanishes.

Proposition 5. If a tensor $T_{\dots, \dots, \dots, j}$ is pure (hybrid) in i, j, then we have

$$\varphi_h{}^i T_{\cdots i \cdots j \cdots} = \varphi_j{}^i T_{\cdots h \cdots i \cdots} \qquad (-\varphi_j{}^i T_{\cdots h \cdots i \cdots})$$

and if a tensor $T_{\dots,h}^{\dots,j}$ is pure (hybrid) in j, i, then

$$\varphi_h{}^iT^{\cdots j\cdots}_{\cdots i\cdots} = \varphi_i{}^jT^{\cdots i\cdots}_{\cdots h\cdots} \qquad (-\varphi_i{}^jT^{\cdots i\cdots}_{\cdots h\cdots}).$$

We say that a pure tensor $T_{i,\cdots i_q}^{j_1\cdots j_q}$ $(p,q\geq 0)$ is almost-analytic if it satisfies

⁷⁾ S. Sawaki [8].

⁸⁾ S. Bochner [2].

⁹⁾ K. Yano [13, p. 228].

$$(1.2) \qquad V_h T_{i_1 \cdots i_p}^{j_1 \cdots j_q} + \varphi_h^s V_s (\varphi_t^{j_1} T_{i_1 \cdots i_p}^{tj_1 \cdots j_q}) - \sum_{r=1}^p \varphi_h^s (V_{i_r} \varphi_s^{t}) T_{i_1 \cdots t_r \cdots i_p}^{j_1 \cdots \cdots j_q}$$

$$+ \sum_{r=1}^q \varphi_h^s (V_t \varphi_s^{j_r} - V_s \varphi_t^{j_r}) T_{i_1 \cdots i_p}^{j_1 \cdots t \cdots j_q} = 0^{10)} \qquad \text{for} \quad q \ge 1$$

and

$$(1.3) \qquad \qquad V_h T_{i_1\cdots i_p}^{j_1\cdots j_q} + \varphi_h{}^s \overline{V}_s(\varphi_{i_1}{}^t T_{ti_2\cdots i_p}^{j_1\cdots j_q}) \\ - \sum_{r=1}^p \varphi_h{}^s (\overline{V}_{i_r} \varphi_s{}^t) T_{i_1\cdots t\cdots i_p}^{j_1\cdots \cdots j_q} + \sum_{r=1}^q \varphi_h{}^s (\overline{V}_t \varphi_s{}^{j_r} - \overline{V}_s \varphi_t{}^{j_r}) T_{i_1\cdots i \cdots j_p}^{j_1\cdots t\cdots j_q} = 0 \qquad \text{for} \quad p \ge 1$$

where $(\mathcal{V}_{i_r}\varphi_s^t)T_{i_1\cdots i_p}^{j_1\cdots j_q}$ etc. mean $(\mathcal{V}_{i_r}\varphi_s^t)T_{i_1\cdots i_{r-1}ti_{r+1}\cdots i_p}^{j_1\cdots j_q}$ etc.. These are generalizations of analytic tensors in a Kählerian space¹¹.

Since $T_{i_1\cdots i_p}^{j_1\cdots j_q}$ is a pure tensor, if $p,\,q\!\geq\!1$, then (1.2) and (1.3) are equivalent to each other.

§ 2. Identities in a K-space.

Let X_n be an almost-Hermitian space, and let R_{kji}^h be the curvature tensor formed by the Riemannian connection. We put

(2.1)
$$R_{ji} = R_{rji}{}^{r}, \qquad R_{kjih} = R_{kji}{}^{r}g_{rh}, \qquad R^{*}{}_{kj} = \frac{1}{2}\varphi^{ab}R_{abrj}\varphi_{k}{}^{r},$$
$$R^{*k}{}_{j} = R^{*}{}_{rj}g^{rk}, \qquad R^{*}{}_{k}{}^{j} = R^{*}{}_{kr}g^{rj}.$$

The identity of Ricci $^{12)}$ is expressed in the following form for any tensor $T_{i_1\cdots i_p}^{j_1\cdots j_q}$:

Transvecting (2.2) with φ^{kh} , we have

$$\varphi^{kh} \nabla_{k} \nabla_{h} T_{i_{1} \cdots p}^{j_{1} \cdots j_{q}} = \frac{1}{2} \sum_{r=1}^{q} R_{khs}^{\ \ j_{r}} T_{i_{1} \cdots m}^{j_{1} \cdots s \cdots j_{q}} \varphi^{kh} - \frac{1}{2} \sum_{r=1}^{p} R_{khi}^{\ \ s} T_{i_{1} \cdots s \cdots j_{q}}^{j_{1} \cdots s \cdots j_{q}} \varphi^{kh}$$

or denoting i_l for some l $(1 \le l \le p)$ by t

(2.3)
$$\varphi^{kh} V_{k} V_{h} T_{i_{1} \cdots i_{p}}^{j_{1} \cdots j_{q}} = \frac{1}{2} \sum_{r=1}^{q} R_{khs}^{j_{r}} T_{i_{1} \cdots i_{p}}^{j_{1} \cdots s \cdots j_{q}} \varphi^{kh} - \frac{1}{2} \sum_{r=1}^{p} R_{khi_{r}}^{s} T_{i_{1} \cdots i_{m} s \cdots i_{p}}^{j_{1} \cdots s \cdots j_{q}} \varphi^{kh}$$

where $\varphi^{kh} = \varphi_r^{\ h} g_r^{\ k}$.

If $T_{i_1\cdots i_p}^{j_1\cdots j_q}$ is a pure tensor, transvecting (2.3) with $\varphi_{i_l}{}^t$, we have

¹⁰⁾ S. Tachibana [11], S. Kotō [5] and S. Sawaki [8].

¹¹⁾ K. Yano and S. Bochner [12].

¹²⁾ J. A. Schouten [9].

168 S. Sawaki

$$(2.4) \qquad \varphi_{i_{1}}{}^{t}\varphi^{kh} V_{k} V_{h} T_{i_{1}\cdots i_{1}m}^{j_{1}\cdots j_{q}}$$

$$= \frac{1}{2} \sum_{r=1}^{q} \varphi^{\kappa h} R_{khs}{}^{j_{r}} \varphi_{i}{}^{s} T_{i_{1}\cdots i_{p}}^{j_{1}\cdots t_{i_{j}q}} - \sum_{r=1}^{p} \varphi^{kh} R_{khi_{r}}{}^{s} \varphi_{s}{}^{t} T_{i_{1}\cdots i_{p}m}^{j_{1}\cdots i_{j}q}$$

$$= \sum_{r=1}^{q} R^{*} \iota_{r}^{j_{r}} T_{i_{1}\cdots i_{p}}^{j_{1}\cdots t_{i_{j}q}} - \sum_{r=1}^{p} R^{*t} \iota_{r} T_{i_{1}\cdots i_{p}}^{j_{1}\cdots i_{p}q}.$$

For the tensor φ_j^i we have

(2.5)
$$\varphi_{h}^{s} \nabla_{s} \nabla^{h} \varphi_{k}^{t} = -\frac{1}{2} - \varphi^{sh} (\nabla_{s} \nabla_{h} \varphi_{k}^{t} - \nabla_{h} \nabla_{s} \varphi_{k}^{t})$$

$$= -\frac{1}{2} \varphi^{sh} (R_{sha}^{t} \varphi_{k}^{a} - R_{shk}^{a} \varphi_{a}^{t})$$

$$= -R^{*}_{k}^{t} + R^{*t}_{k}$$

where $\nabla^h = g^{hr} \nabla_r$, and by (0.1) we have easily

$$\varphi_{j}^{r} \nabla_{h} \varphi_{r}^{i} = -\varphi_{r}^{i} \nabla_{h} \varphi_{j}^{r}.$$

In the rest of the paper, unless otherwise stated, we shall only consider a K-space. Taking account of (0.3), we get

$$egin{aligned} *O_{ji}^{ab} \mathcal{V}_a arphi_{bh} &= \mathcal{V}_j arphi_{ih} + arphi_j{}^a arphi_i{}^b \mathcal{V}_a arphi_{bh} \ &= \mathcal{V}_j arphi_{ih} + arphi_j{}^a arphi_i{}^b \mathcal{V}_h arphi_{ab} \ &= *O_{ib}^{ab} \mathcal{V}_h arphi_{ab} \end{aligned}$$

and hence by virtue of Proposition 2, we find

$$*O_{ji}^{ab}\nabla_a\varphi_{bh}=0.$$

Moreover from (0.3) we have the following

$$\nabla_r \varphi_i^{\ r} = 0.$$

Since by (2.7) and Proposition 5 we have $\varphi_i {}^l \nabla_l \varphi_{jh} = \varphi_j {}^l \nabla_i \varphi_{lh}$, the Nijenhuis tensor defined by

$$N_{ii}{}^{h} = \varphi_{i}{}^{l}(\nabla_{l}\varphi_{i}{}^{h} - \nabla_{i}\varphi_{l}{}^{h}) - \varphi_{i}{}^{l}(\nabla_{l}\varphi_{i}{}^{h} - \nabla_{i}\varphi_{l}{}^{h})$$

can be easily written as

$$(2.9) N_{ji}{}^{h} = 2\varphi_{j}{}^{l}(\nabla_{l}\varphi_{i}{}^{h} - \nabla_{i}\varphi_{l}{}^{h}).$$

By using (0.3) the equation (2.9) turns to

$$(2.10) N_{ji}{}^{h} = 4\varphi_{j}{}^{r}\nabla_{r}\varphi_{i}{}^{h}$$

from which we find

$$(2.11) N_{j(ih)} = 0.$$

The following properties which are also valid in an almost-complex space can be easily verified.

(2.12)
$${}^*O_{ii}^{ab}N_{ab}{}^h = 0$$
, $O_{ib}^{ah}N_{ia}{}^b = 0$. (13)

Furthermore the following relations can be proved:

(2.13)
$$R^*_{ri} = R^*_{ir}, \quad (\nabla_i \varphi_{kj}) \nabla_r \varphi^{kj} = R_{ir} - R^*_{ir}.$$

Indeed, since φ^{kj} is hybrid in k,j and $\nabla_k \varphi_{ji}$ is pure in k,j because of (2.7), we have by Proposition 4

$$(2.14) (\nabla_k \varphi_{ji}) \varphi^{kj} = 0.$$

If we operate V_r to (2.14), then by making use of the Ricci's identity and antisymmetry of φ^{kj} , we have

As the left hand side is symmetric with respect to i and r, we have

$$R^*_{ir} = R^*_{ri}$$

and therefore

$$(\nabla_i \varphi_{kj}) \nabla_r \varphi^{kj} = R_{ir} - R_{ir}^*$$

Thus by virtue of (2.10), (2.11) and (2.13), we have

$$(2.15) N_{rii}N_k^{ji} = N_{iir}N_k^{ji} = 16(R_{rk} - R_{rk}^*)$$

where $N_k^{ji} = N_{kr}^{i} g^{rj}$ etc. and from (2.5) we have

$$\varphi^{sh} \nabla_s \nabla_h \varphi_k^{\ t} = 0.$$

§ 3. Lemmas.

In this section we shall give some lemmas which will be used to prove the main theorem of this paper in § 4. Let $T_{i,\cdots ip}^{j_i\cdots j_q}$ be a pure tensor in a K-space and we consider the following two cases.

1) The case $p \ge 0$, $q \ne 1$ or $p \ge 2$, q = 1.

If $T_{i_1\cdots i_p}^{j_1\cdots j_q}$ is almost-analytic, then from (1.2) and (1.3) we have respectively

and

¹³⁾ K. Yano [13].

¹⁴⁾ S. Tachibana [10].

In this place, by Propositions 2, 3 and (2.7) $\varphi_h^s(\nabla_t \varphi_s^{j_1}) T_{i_1 \cdots i_p}^{tj_2 \cdots j_q}$ is hybrid in h, j_1 and hence by Proposition 1 it can be written as

$$\varphi_h{}^{s} \nabla_t \varphi_s{}^{j_1} T_{i_1 \cdots i_p}^{tj_2 \cdots j_q} = *O_{ht}^{sj_1} \varphi_s{}^a (\nabla_b \varphi_a{}^t) T_{i_1 \cdots i_p}^{bj_2 \cdots j_q}.$$

Similarly we have

$$\sum_{r=1}^p \varphi_h{}^s(\overline{V}_{i_r}\varphi_s{}^t)T_{i_1\cdots i_r i_p}^{j_1\cdots j_q} = *O_{ht}^{sj_1}\sum_{r=1}^p \varphi_s{}^a(\overline{V}_{i_r}\varphi_a{}^b)T_{i_1\cdots b\cdots i_p}^{tj_2\cdots j_q}$$

and

$$\sum_{r=2}^{q} \varphi_h{}^{s} (\mathcal{V}_t \varphi_s{}^{jr} - \mathcal{V}_s \varphi_t{}^{jr}) T_{i_1 \cdots i_p}^{j_1 \cdots t \cdots j_q} = -\frac{1}{2} O_{ht}^{sj_1} \sum_{r=2}^{q} N_{sb}{}^{jr} T_{i_1 \cdots i_p}^{tj_2 \cdots b \cdots j_q}$$

because of (2.9).

Thus the equation (3.1) can be written in the following

$$(3.3) \qquad *O_{ht}^{sj_1} \left[2 \overline{V}_s T_{i_1 \cdots i_p}^{tj_2 \cdots j_q} + \varphi_s^{a} (\overline{V}_b \varphi_a^{\ t}) T_{i_1 \cdots i_p}^{bj_2 \cdots j_q} \right. \\ \left. - \sum_{r=1}^{p} \varphi_s^{\ a} (\overline{V}_{i_r} \varphi_a^{\ b}) T_{i_1 \cdots b \cdots i_p}^{tj_2 \cdots j_q} \right] - \frac{1}{2} O_{ht}^{sj_1} \left[\sum_{r=2}^{q} N_{sb}^{\ j_r} T_{i_1 \cdots b \cdots j_q}^{tj_2 \cdots b \cdots j_q} \right] = 0.$$

If we operate $*O^{nl}_{kj_1}$ and $O^{nl}_{kj_1}$ to (3.3), then we have by Proposition 1 respectively

$$(3.4) V_h T_{i_1\cdots i_p}^{j_1\cdots j_q} + \varphi_h{}^s \varphi_t{}^{j_1} V_s T_{i_1\cdots i_p}^{tj_2\cdots j_q}$$

$$+\varphi_h^{s}(\nabla_t\varphi_s^{j_1})T_{i_1\cdots i_p}^{t_{j_2\cdots j_q}}-\sum_{r=1}^p\varphi_h^{s}(\nabla_{i_r}\varphi_s^{t_1})T_{i_1\cdots t-i_p}^{j_1\cdots j_q}=0$$

and

(3.5)
$$\sum_{r=2}^{q} N_{ht}^{j_r} T_{i_1 \cdots i_p}^{j_1 \cdots i_r j_q} = 0.$$

Consequently by (3.5), the equation (3.2) turns to

$$\begin{split} & V_h T_{i_1\cdots i_p}^{j_1\cdots j_q} + \varphi_h{}^s \varphi_{i_1}{}^t V_s T_{ti_2\cdots i_p}^{j_1\cdots j_q} - \sum_{r=2}^p \varphi_h{}^s (V_{i_r} \varphi_s{}^t) T_{i_1\cdots t \cdots i_p}^{j_1\cdots m_{j_q}} \\ & + \varphi_h{}^s (V_s \varphi_{i_1}{}^t - V_{i_1} \varphi_s{}^t) T_{ti_2\cdots i_p}^{j_1\cdots j_q} + \varphi_h{}^s (V_t \varphi_s{}^{j_1} - V_s \varphi_t{}^{j_1}) T_{i_1\cdots i_p}^{tj_2\cdots j_q} = 0 \end{split}$$

and then by (2.9) we have

(3.6)
$$V_{h}T_{i_{1}\cdots i_{p}}^{j_{1}\cdots j_{q}} + \varphi_{h}^{s}\varphi_{i_{1}}^{t}V_{s}T_{ti_{s}\cdots i_{p}}^{j_{1}\cdots j_{q}} - \sum_{r=2}^{p}\varphi_{h}^{s}(V_{i_{r}}\varphi_{s}^{t})T_{i_{1}\cdots t}^{j_{1}\cdots j_{q}} + \frac{1}{2}N_{hi_{1}}^{t}T_{ti_{s}\cdots i_{p}}^{j_{1}\cdots j_{q}} - \frac{1}{2}N_{ht}^{j_{1}}T_{i_{1}\cdots i_{p}}^{tj_{s}\cdots j_{q}} = 0.$$

By the same way as in the preceding arguments we can express (3.6) in the following

$$(3.7) *O_{hi_{1}}^{st} [2V_{s}T_{ti,\cdots ip}^{j_{1}\cdots j_{q}} - \sum_{r=2}^{p} \varphi_{s}^{a} (V_{i_{r}}\varphi_{a}^{b}) T_{ti,\cdots b-ip}^{j_{1}\cdots \cdots j_{q}}]$$

$$+ \frac{1}{2} O_{hi_{1}}^{st} [N_{st}^{b}T_{bi_{2}\cdots ip}^{j_{1}\cdots j_{q}} - N_{sb}^{j_{1}}T_{ti,\cdots iq}^{bj_{2}\cdots j_{q}}] = 0.$$

Operating $*O_{kl}^{hi_1}$ and $O_{kl}^{hi_1}$, we have respectively

$$(3.8) V_h T_{i,\cdots ip}^{j_1\cdots jq} + \varphi_h^s \varphi_{i_1}^{l} V_s T_{ti_2\cdots tp}^{j_1\cdots jq} - \sum_{r=2}^p \varphi_h^s (V_{i_r} \varphi_s^{l}) T_{i_1\cdots i_r lp}^{j_1\cdots i_r jq} = 0,$$

and

$$N_{hi_1}{}^t T_{ti_2\cdots i_n}^{j_1\cdots j_q} = N_{ht}{}^{j_1} T_{i_2\cdots i_n}^{tj_2\cdots j_q}.$$

Next, from (3.5), we have

$$(3.10) N_{ht}^{j_2} T_{i_1 \dots i_p}^{j_1 t j_3 \dots j_q} = -(N_{ht}^{j_3} T_{i_1 \dots i_p}^{j_1 j_2 t j_4 \dots j_q} + \dots + N_{ht}^{j_q} T_{i_1 \dots i_p}^{j_1 \dots j_{q-1} t}).$$

Since N_{ht}^{jr} is pure in h, t because of (2.12) and $T_{i_1, \dots, i_p}^{j_1 j_2 \dots t \dots j_q}$ is pure in j_2, t , by virtue of Proposition 3, the right hand side of (3.10) is pure in h, j_2 . On the other hand by (2.12) the left hand side of (3.10) is hybrid in h, j_2 . Accordingly, by Proposition 4, we find

$$N_{ht}{}^{j_2}T^{j_1tj_3\cdots j_q}_{i_1\cdots\cdots i_p}=0\;,\qquad N_{ht}{}^{j_3}T^{j_1j_2tj_3\cdots j_q}_{i_1\cdots\cdots i_p}+\cdots+N_{ht}{}^{j_q}T^{j_1\cdots j_{q-1}t}_{i_1\cdots\cdots i_p}=0$$

and similarly from the last equation, we have

$$N_{ht}{}^{j_s}T_{i_1.....i_{\rho}}^{j_1j_2l_3...j_q}=0 \ , \qquad N_{ht}{}^{j_s}T_{i_1......i_{\rho}}^{j_1j_2j_3lj_3...j_q}+ \cdots + N_{ht}{}^{j_q}T_{i_1.....i_{\rho}}^{j_1...j_{q-1}t}=0 \ .$$

Repeating this process, we have

$$(3.11) N_{ht}^{jr}T_{i_1,\dots,i_p}^{j_1\dots t\dots j_q} = 0 \text{for every } r = 2, 3, \dots, q.$$

When $p \ge 1$, $q \ge 2$, the left hand side of (3.9) is pure in j_1, j_2 but the right hand side is hydrid in j_1, j_2 . Hence by Proposition 4, we have

$$N_{hi_1}{}^t T_{ti_2\cdots i_0}^{j_1\cdots j_q} = N_{hi_1}{}^{j_1} T_{i_1\cdots i_0}^{tj_2\cdots j_q} = 0.$$

Also for the case $p \ge 2$, q = 1, (3.12) holds good. In fact, in this case, from (3.9) we have

$$(3.13) N_{hi_1}{}^t T^{j_1}_{ti_2\cdots i_j} = N_{hi}{}^{j_1} T^t_{i_1\cdots i_p}.$$

Here the left hand side of (3.13) is hybrid in i_1 , i_2 but the right hand side is pure in i_1 , i_2 . Therefore both members vanish.

Moreover, if we notice that the first definition of the almost-analytic tensor (1.2) or (1.3) is equivalent to respectively

$$\begin{split} & V_h T_{i_1\cdots i_p}^{j_1\cdots j_q} + \varphi_h{}^s V_s(\varphi_t{}^{jm} T_{i_1\cdots i_p}^{j_1\cdots t\cdots j_q}) \\ & \qquad \qquad - \sum_{r=1}^p \varphi_h{}^s (V_{ir} \varphi_s{}^t) T_{i_1\cdots t\cdots i_p}^{j_1\cdots t\cdots j_q} + \sum_{r=1}^q \varphi_h{}^s (V_t \varphi_s{}^{jr} - V_s \varphi_t{}^{jr}) T_{i_1\cdots t\cdots i_p}^{j_1\cdots t\cdots j_q} = 0 \end{split}$$

or

$$\begin{split} & V_h T^{j_1\cdots j_q}_{i_1\cdots i_p} + \varphi_h{}^s V_s (\varphi_{im}{}^t T^{j_1\cdots \cdots j_q}_{i_1\cdots t\cdots i_p}) \\ & \qquad \qquad - \sum_{r=1}^p \varphi_h{}^s (\mathcal{V}_{ir} \varphi_s{}^t) T^{j_1\cdots \cdots j_q}_{i_1\cdots t\cdots i_p} + \sum_{r=1}^q \varphi_h{}^s (\mathcal{V}_t \varphi_s{}^{j_r} - \mathcal{V}_s \varphi_t{}^{j_r}) T^{j_1\cdots t\cdots j_q}_{i_1\cdots \cdots i_p} = 0 \; \text{,} \end{split}$$

then by the same way as in the preceding paragrph we shall have also the

following relations:

$$(3.14) N_{him}{}^t T_{i_1\cdots i_n}^{j_1\cdots j_q} = 0, \text{for every } m = 2, 3, \cdots, p.$$

Now, since our space is a K-space, for $p \ge 1$ (3.8) turns to

$$\nabla_{h} T_{i_{1} \cdots i_{p}}^{j_{1} \cdots j_{q}} + \varphi_{h}^{s} \varphi_{i_{1}}^{t} \nabla_{s} T_{t i_{2} \cdots i_{p}}^{j_{1} \cdots j_{q}} + \frac{1}{4} \sum_{r=2}^{p} N_{h i_{r}}^{t} T_{i_{1} \cdots i_{r} i_{p}}^{j_{1} \cdots j_{q}} = 0$$

because of (2.10) and moreover using (3.14) it becomes

$$(3.15) V_h T_{i_1\cdots i_p}^{j_1\cdots j_q} + \varphi_h^s \varphi_{i_1}^{t} V_s T_{ti_2\cdots i_p}^{j_1\cdots j_q} = 0 or *O_{hi_1}^{st} V_s T_{ti_2\cdots i_p}^{j_1\cdots j_q} = 0.$$

For $q \ge 1$ we get from (3.4)

$$(3.16) \qquad \qquad *O_{ht}^{sj_1} \mathcal{V}_s T_{i_1 \cdots i_p}^{tj_2 \cdots j_q} = 0.$$

Since $N_{ht}^{j_r}T^{j_1\cdots t\cdots j_q}_{i_1\cdots \cdots i_p}=0$ is equivalent to $N_{abt}N^{abj_r}T^{j_1\cdots t\cdots j_q}_{i_1\cdots \cdots i_p}=0$, by (2.15), from (3.11) and (3.12) we have

(3.17)
$$(R_t^{jr} - R^*_t^{jr}) T_{i_1 \cdots i_p}^{j_1 \cdots t_r j_q} = 0 \qquad \text{for every } r = 1, 2, \cdots, q.$$

Similarly from (3.12) and (3.14), we have

(3.18)
$$(R_{ir}^{\ t} - R^*_{ir}^{\ t}) T_{i_1 \cdots i_r i_r}^{j_1 \cdots j_q} = 0 \qquad \text{for every } r = 1, 2, \cdots, p.$$

Thus we have (3.15), (3.16), (3.17) and (3.18) as a necessary condition for a pure tensor in a K-space to be almost-analytic and it is evident that conversely this is also a sufficient condition. Hence we have the following

Lemma 3.1. In a K-space, a pure tensor $T_{i_1\cdots i_p}^{j_1\cdots j_q}$ $(p\geq 0,\ q\neq 1\ or\ p\geq 2,\ q=1)$ is almost-analytic if and only if

$$(1) \qquad \qquad {}^*O^{s\,t}_{hi_1} \Gamma_s T^{j_1\cdots jq}_{ti_2\cdots i_p} = 0 \ \ (p \ge 1) \quad \text{or} \quad {}^*O^{sj_1}_{ht} \Gamma_s T^{tj_1\cdots jq}_{i_1\cdots i_p} = 0 \ \ (q \ge 1) \ ,$$

$$(2) \qquad \qquad (R^{jr}_t - R^*_{t^j}) T^{j_1\cdots t\cdots jq}_{i_1\cdots i_p} = 0 \quad \text{for every} \quad r = 1, 2, \cdots, q \ ,$$

$$(3) \qquad \qquad (R^{ir}_t - R^*_{ir}) T^{j_1\cdots iq}_{i_1\cdots t\cdots ip} = 0 \quad \text{for every} \quad r = 1, 2, \cdots, p \ .$$

$$(2) (R_t^{jr} - R_t^{*jr}) T_{i \dots i \dots j q}^{j_1 \dots t \dots j q} = 0 \text{for every } r = 1, 2, \dots, q,$$

(3)
$$(R_{ir}^{t} - R^*_{ir}) T_{imt}^{j_1 \dots j_q} = 0$$
 for every $r = 1, 2, \dots, p$.

Remark 1. In a K-space, if the rank of the matrix $||R_{ji}-R^*_{ji}||$ is n, then there exists no almost-analytic tensor $T_{i_1\cdots i_q}^{j_1\cdots j_q}$ $(p\geq 0, q\neq 1 \text{ or } p\geq 2, q=1)$ other than the zero tensor.

As we remarked in (3.14), the former of the condition (1), for example, can be replaced by

$$*O_{hir}^{st} \nabla_s T_{i_1 \cdots i_r i_p}^{j_1 \cdots j_q} = 0$$
 for every $r = 1, 2, \cdots, p$

which means that $V_h T_{i_1 \cdots i_p}^{j_1 \cdots j_q}$ is pure in h, i_r $(r=1, 2, \cdots, p)$. By the same method as in (3.4), we have for any m ($1 \le m \le q$)

from which we get

$$*O_{ht}^{sjm} \nabla_s T_{i_1 \cdots i_p}^{j_1 \cdots i_p j_q} = 0$$
 for every $m = 1, 2, \cdots, q$.

Thus on taking account of Proposition 3, we have the following lemma which corresponds to the definition of analytic tensor in a Kählerian space.

Lemma 3.2. In a K-space, a pure tensor $T_{i_1\cdots i_p}^{j_1\cdots j_q}$ $(p\geq 0, q\neq 1 \text{ or } p\geq 2, q=1)$ is almost-analytic if and only if

- $\nabla_h T^{j_1\cdots j_q}_{i_1\cdots i_p}$ is a pure tensor, (1)
- (2)
- $$\begin{split} &(R_t^{jr} R_t^{*jr})T_{i_1 \cdots i_p}^{j_1 \cdots t \cdots j_q} = 0 \qquad \text{for every} \quad r = 1, 2, \cdots, q, \\ &(R_{ir}^{\ t} R_{ir}^{*t})T_{i_1 \cdots t \cdots i_p}^{j_1 \cdots \cdots j_q} = 0 \qquad \text{for every} \quad r = 1, 2, \cdots, p. \end{split}$$
 (3)

Remark 2. By an *O-space¹⁵⁾ we mean an n-dimensional almost-Hermitian space satisfying $*O_n^{ab}V_a\varphi_{bh}=0$. An *O-space is a more general space than a K-space, because by (2.7) a K-space is an *O-space. As we can see the preceding paragraph, in an *O-space a pure tensor $T_{i_1\cdots i_q}^{j_1\cdots j_q}$ $(p\geq 0, q\neq 1 \text{ or } p\geq 2, q=1)$ is almost-analytic if and only if

(1)
$$*O_{hi_1}^{st} \nabla_s T_{ti_2 \cdots i_p}^{j_1 \cdots j_q} - \sum_{r=2}^p \varphi_h^{\ s} (\nabla_{i_r} \varphi_s^{\ t}) T_{i_1 \cdots t \cdots i_p}^{j_1 \cdots \cdots j_q} = 0 \ (p \ge 1) \text{ or } (3.4) \ (q \ge 1),$$

- (2)
- $$\begin{split} N_{ht}{}^{jr}T_{i_1\cdots t\cdots j_q}^{j_1\cdots t\cdots j_q} &= 0 \qquad \text{for every} \quad r = 1, 2, \cdots, q, \\ N_{hir}{}^tT_{i_1\cdots t\cdots i_p}^{j_1\cdots t\cdots j_q} &= 0 \qquad \text{for every} \quad r = 1, 2, \cdots, p. \end{split}$$

If the rank of the matrix $||N^{ab}{}_{j}N_{abi}||$ is n, then there exists no almost-analytic tensor $T_{i_1\cdots i_p}^{j_1\cdots j_q}$ $(p\geq 0, q\neq 1 \text{ or } p\geq 2, q=1)$ other than the zero tensor.

2) The case p = q = 1.

Let T_{ij} be an almost-analytic tensor. In this case we can not make use of the relations (3.17) and (3.18). But since (3.8) and (3.9) hold good, we have

$$(3.19) V_h T_i{}^j + \varphi_h{}^s \varphi_i{}^t V_s T_i{}^j = 0,$$

$$(3.20) N_{ht}{}^{j}T_{i}{}^{t} - N_{hi}{}^{t}T_{t}{}^{j} = 0.$$

On the other hand, we have from (3.1)

$$\nabla_h T_i^j + \varphi_h^s \varphi_t^j \nabla_s T_i^t + \varphi_h^s (\nabla_t \varphi_s^j) T_i^t - \varphi_h^s (\nabla_i \varphi_s^t) T_i^j = 0$$

or using (2.10)

$$V_h T_i{}^j + \varphi_h{}^s \varphi_t{}^j V_s T_i{}^t - \frac{1}{4} N_{ht}{}^j T_i{}^t + \frac{1}{4} N_{ht}{}^t T_t{}^j = 0$$
 ,

from which we have by (3.20)

$$(3.21) V_h T_i^j + \varphi_h^s \varphi_i^j V_s T_i^t = 0.$$

Consequently we see that (3.19) and (3.20) are equivalent to (3.21) and (3.20). Thus we have the following

Lemma 3.3. In a K-space, a pure tensor T_i^j is almost-analytic if and only if

- $*O_{ht}^{sj}V_{s}T_{i}^{t}=0$, (1)
- $N_{ht}{}^{j}T_{i}{}^{t}-N_{hi}{}^{t}T_{t}{}^{j}=0$

where (1) may be replaced by $*O_{hi}^{st} \mathcal{V}_s T_t^{j} = 0$.

¹⁵⁾ S. Kotō [5].

Lemma 3.4. In a K-space, a pure tensor T_i^j is almost-analytic if and only if

- (1) $\nabla_h T_i^j$ is pure tensor,
- $N_{ht}{}^{j}T_{i}{}^{t}-N_{hi}{}^{t}T_{t}{}^{j}=0$. (2)

Remark 3. In an *O-space, a pure tensor is almost-analytic if and only if

- $*O_{hi}^{st} \nabla_s T_t^j = 0$, (1)
- $N_{ht}^{j}T_{i}^{t}-N_{hi}^{t}T_{t}^{j}=0$. (2)

§ 4. Main theorem.

First by using Lemma 3.1 and Lemma 3.3 we shall prove the following two theorems.

Theorem 4.1. In a compact K-space, a necessary and sufficient condition that a pure tensor $T_{i_1\cdots i_p}^{j_1\cdots j_q}$ $(p\geq 0,\ q\neq 1\ or\ p\geq 2,\ q=1)$ be almost-analytic is that it satisfies

(1)
$$V^h V_h T^{j_1 \dots j_q}_{i_1 \dots i_p} + \sum_{r=1}^q R_t^{j_r} T^{j_1 \dots t \dots j_q}_{i_1 \dots \dots i_p} - \sum_{r=1}^p R_{i_r}^{t} T^{j_1 \dots j_q}_{i_1 \dots t \dots i_p} = 0 ,$$

- $$\begin{split} &(R_t{}^{jr}\!-\!R^*{}_t{}^{j_r})T^{j_1\cdots t\cdots j_q}_{i_1,\dots,i_p}=0 \qquad \text{for every} \quad r\!=\!1,2,\cdots,q\,,\\ &(R_{ir}{}^t\!-\!R^*{}_{ir}{}^t)T^{j_1\cdots t\cdots j_q}_{i_1\cdots t\cdots i_p}=0 \qquad \text{for every} \quad r\!=\!1,2,\cdots,p\,. \end{split}$$
 (2)
- (3)

Proof. If $T_{i_1\cdots i_p}^{j_1\cdots j_q}$ is almost-analytic, then from Lemma 3.1 we have (2), (3) and

$$(4.1) -P_{hi...i_p}^{j_1...j_q} \stackrel{\text{def}}{=} \nabla_h T_{i_1...i_p}^{j_1...j_q} + \varphi_h^s \varphi_{i_1}^{i_1} \nabla_s T_{ii_1...i_p}^{j_1...j_q} = 0 \text{for } p \ge 1.$$

Operating V_h to (4.1) and using (2.8) we have

$$(4.2) V^h V_h T_{i_1\cdots i_p}^{j_1\cdots j_q} + \varphi_h^{s} (V^h \varphi_{i_1}^{t}) V_s T_{ti_2\cdots i_p}^{j_1\cdots j_q} + \varphi_h^{s} \varphi_{i_1}^{t} V^h V_s T_{ti_2\cdots i_p}^{j_1\cdots j_q} = 0.$$

By virtue of (2.4) and (2.13), (4.2) can be written as

$$(4.3) \qquad \qquad V^{h} V_{h} T_{i,\cdots ip}^{j_{1}\cdots j_{q}} + \varphi_{h}^{s} (V^{h} \varphi_{i,}^{l}) V_{s} T_{it,\cdots ip}^{j_{1}\cdots j_{q}}$$

$$+ \sum_{i=1}^{q} R^{*}_{i}^{j_{r}} T_{i_{1},\cdots i_{p}}^{j_{1}\cdots t_{i}} - \sum_{i=1}^{p} R^{*}_{i_{r}}^{t} T_{i_{1},\cdots t_{i}}^{j_{1}\cdots j_{q}} = 0.$$

On the other hand, operating \mathcal{V}_s to

$$(\nabla^h \varphi_{i_1}^{t}) T_{ti_2 \cdots i_p}^{j_1 \cdots j_q} = 0$$

which is equivalent to

$$(R_{i_1}{}^t - R^*_{i_1}{}^t) T^{j_1 \cdots j_q}_{ti_2 \cdots i_p} = 0$$

and transvecting with φ_h^s , we have

$$(4.4) \qquad \qquad \varphi_{\scriptscriptstyle h}{}^{\scriptscriptstyle s} (\overline{\it V}_{\scriptscriptstyle s} \overline{\it V}^{\scriptscriptstyle h} \varphi_{{\scriptscriptstyle i},}{}^{\scriptscriptstyle t}) T_{ti_{\scriptscriptstyle 2} \cdots i_{\scriptscriptstyle p}}^{\; \jmath_{\scriptscriptstyle 1} \cdots \jmath_{\scriptscriptstyle q}} + \varphi_{\scriptscriptstyle h}{}^{\scriptscriptstyle s} (\overline{\it V}^{\scriptscriptstyle h} \varphi_{i,}{}^{\scriptscriptstyle t}) \overline{\it V}_{\scriptscriptstyle s} T_{ti_{\scriptscriptstyle 2} \cdots i_{\scriptscriptstyle p}}^{\; \jmath_{\scriptscriptstyle 1} \cdots \jmath_{\scriptscriptstyle q}} = 0 \; .$$

On account of (2.16), from (4.4) it follows that

$$\varphi_h{}^s(\nabla^h\varphi_{i,}{}^t)\nabla_sT_{ti,\cdot\cdot tp}^{j_1\cdots j_q}=0.$$

Consequently, (4.3) becomes

$$V^h V_h T^{j_1 \cdots j_q}_{i_1 \cdots i_p} + \sum_{r=1}^q R^*_{\ t}{}^{j_r} T^{j_1 \cdots t \cdots j_q}_{i_1 \cdots \cdots i_p} - \sum_{r=1}^p R^*_{\ i_r}{}^t T^{j_1 \cdots \cdots j_q}_{i_1 \cdots t \cdots i_p} = 0 \; , \label{eq:varphi}$$

or using (2) and (3)

In order to prove the converse, we consider a pure tensor $T_{i_1\cdots i_p}^{j_1\cdots j_q}$ satisfying (1), (2) and (3), and writing out the square of $P_{hi_1\cdots i_p}^{j_1\cdots j_q}$ we have

$$\frac{1}{2} P_{hi_1\cdots i_p}^{j_1\cdots j_1} P_{j_1\cdots j_q}^{hi_1\cdots i_p} = (\overline{V}_h T_{i_1\cdots i_p}^{j_1\cdots j_q}) \overline{V}^h T_{j_1\cdots j_q}^{i_1\cdots i_p} + \varphi_h{}^s \varphi_{i_1}{}^t (\overline{V}_s T_{ti_2\cdots i_p}^{j_1\cdots j_q}) \overline{V}^h T_{j_1\cdots j_q}^{i_1\cdots i_p}$$

where $P_{j_1\cdots j_q}^{hi_1\cdots i_p}=P_{sa_1\cdots a_p}^{b_1\cdots b_q}g^{sh}g^{a_1i_1}\cdots g^{a_pi_p}g_{b_1j_1}\cdots g_{b_qj_q}$ etc.. Thus we have

$$(4.7) \qquad \frac{1}{2} P_{hi\cdots ip}^{j_1\cdots j_q} P_{j_1\cdots j_q}^{hi_1\cdots i_p} + \nabla^h (T_{j_1\cdots j_q}^{i_1\cdots i_p} P_{hi\cdots i_p}^{j_1\cdots j_q})$$

$$= \frac{1}{2} P_{hi\cdots ip}^{j_1\cdots j_q} P_{j_1\cdots j_q}^{hi_1\cdots i_p} + (\nabla^h T_{j_1\cdots j_q}^{i_1\cdots i_p}) P_{hi\cdots i_p}^{j_1\cdots j_q} + T_{j_1\cdots j_q}^{i_1\cdots i_p} \nabla^h P_{hi_1\cdots i_p}^{j_1\cdots j_q}$$

$$= T_{j_1\cdots j_q}^{i_1\cdots i_p} \nabla^h P_{hi\cdots i_p}^{j_1\cdots j_q}.$$

By Green's theorem, from (4.7), we have

$$\int_{\mathcal{X}_n} \left[T^{i_1 \cdots i_p}_{j_1 \cdots j_q} \nabla^h P^{j_1 \cdots j_q}_{hi_1 \cdots i_p} - \frac{1}{2} P^{j_1 \cdots j_q}_{hi_1 \cdots i_p} P^{hi_1 \cdots i_p}_{j_1 \cdots j_q} \right] d\sigma = 0$$

where $d\sigma$ means the volume element of the K-space X_n .

(4.8) shows that if $V^h P_{hi...ig}^{j_i...j_g} = 0$ i.e. if (4.2) holds good, then we have

$$P_{hi\cdots ip}^{j_1\cdots j_q}=0$$
.

But from (1), (2) and (3), we have (4.2). Thus from Lemma 3.1 it follows that $T_{i,\cdots ip}^{j_1\cdots j_q}$ is almost-analytic. Also for $q\geq 1$ exactly the same method can be applied.

Theorem 4.2. In a compact K-space, a necessary and sufficient condition that a pure tensor T_i^j be almost-analytic is that it satisfies

- (1) $\nabla^h \nabla_h T_i{}^j + R_t{}^j T_i{}^t R_i{}^t T_i{}^j = 0,$
- $(2) N_{st}^{j} \nabla^{s} T_{i}^{t} = 0,$
- (3) $N_{ht}{}^{j}T_{i}{}^{t} N_{hi}{}^{t}T_{i}{}^{j} = 0$

where the condition (2) may be replaced by $N_i^{s,t}V_sT_t^j=0$.

Proof. Let T_i^j be an almost-analytic tensor. From Lemma 3.3, we have

$$(4.9) -P_{hi}{}^{j} \stackrel{\text{def}}{=} \nabla_{h} T_{i}{}^{j} + \varphi_{h}{}^{s} \varphi_{i}{}^{j} \nabla_{s} T_{i}{}^{t} = 0$$

and (3).

Operating \mathcal{P}^h to (4.9) and making use of (2.4) and (2.8), we have

$$\begin{split} (4.10) & \qquad - \mathbf{V}^h P_{hi}{}^j = \mathbf{V}^h \mathbf{V}_h T_i{}^j + \varphi_h{}^s (\mathbf{V}^h \varphi_t{}^j) \mathbf{V}_s T_i{}^t + \varphi_h{}^s \varphi_t{}^j \mathbf{V}^h \mathbf{V}_s T^t \\ & = \mathbf{V}^h \mathbf{V}_h T_i{}^j - \frac{1}{4} - N^s \dot{t}^j \mathbf{V}_s T_i{}^t + R^* \dot{t}^j T_i{}^t - R^* \dot{t}^t T_t{}^j = 0 \; . \end{split}$$

 $V_sT_i^t$ is pure in s,t because of $P_{hi}^j=0$ but $N^{s_t^j}$ is hybrid in s,t because of (2.12) and therefore by Proposition 4 we have $N^{s_t^j}V_sT_i^t=0$.

Consequently, from (4.10) we have

(4.11)
$$\nabla^{h}\nabla_{h}T_{i}^{j} + R^{*}_{t}^{j}T_{i}^{t} - R^{*}_{i}^{i}T_{t}^{j} = 0$$

and

$$(4.12) N_{st}{}^{j} \nabla^{s} T_{i}{}^{t} = 0.$$

Moreover, on multiplying (3) by N^{hi}_{k} and using (2.15) we get

$$16(R_k^t - R_k^*)T_t^j - N^{hi}_k N_{ht}^j T_i^t = 0$$

or

(4.13)
$$16(R_i^t - R^*_i^t)T_i^j - N^{hr}_i N_{ht}^j T_r^t = 0.$$

Similarly multiplying (3) by N^h_{kj} , we get

$$(4.14) N_{hi}^{r} N^{hj}_{s} T_{r}^{s} - 16(R_{t}^{j} - R^{*}_{t}^{j}) T_{i}^{t} = 0.$$

From (4.13) and (4.14), we have

$$(4.15) R_t^* T_i^t - R_i^* T_t^j = R_t^j T_i^t - R_i^t T_t^j$$

and therefore (4.11) turns to

$$\nabla^{h}\nabla_{h}T_{i}^{j} + R_{i}^{j}T_{i}^{t} - R_{i}^{t}T_{i}^{j} = 0.$$

To prove the converse, let T_i^j be a pure tensor and suppose that it satisfies (1), (2) and (3). Calculating the square of P_{hi}^j , we have easily the following

(4.17)
$$\frac{1}{2} P_{hi}{}^{j} P^{hi}{}_{j} + \nabla^{h} (T^{i}{}_{j} P_{hi}{}^{j}) = T^{i}{}_{j} \nabla^{h} P_{hi}{}^{j}.$$

Hence by virtue of Green's theorem, we have

(4.18)
$$\int_{X_n} \left[T^i{}_j \nabla^h P_{hi}{}^j - \frac{1}{2} P_{hi}{}^j P^{hi}{}_j \right] d\sigma = 0$$

which shows that in a compact K-space $\nabla^h P_{hi}{}^j = 0$ is equivalent to $P_{hi}{}^j = 0$.

On the other hand, from (1), (2) and (3), we have (4.10). Thus by virtue of Lemma 3.3, T_i^j becomes almost-analytic.

Finally we must show that (2) may be replaced by $N_i^s V_s T_t^j = 0$. In fact, if T_i^j is almost-analytic, from Lemma 3.3 we have also

Operating \mathcal{V}^h to (4.19) and using (2.4) and (2.8), we have

$$\nabla^h \nabla_h T_i{}^j + \varphi_h{}^s (\nabla^h \varphi_i{}^t) \nabla_s T_i{}^j + R^*{}_t{}^j T_i{}^t - R^*{}_i{}^t T_i{}^j = 0$$

or by (2.10) and (4.15)

(4.20)
$$\nabla^h \nabla_h T_i{}^j - \frac{1}{4} N^{s,t} \nabla_s T_i{}^j + R_i{}^j T_i{}^t - R_i{}^t T_i{}^j = 0 .$$

Hence by (4.16), we find

$$(4.21) N_i^{s,t} \nabla_s T_t^j = 0.$$

For the converse, the same method as that used in the preceding paragraph can be applied.

Summarising these results and the result obtained by S. Tachibana for a contravariant vector, we have the following main theorem of this paper.

Theorem 4.3. In a compact K-space, a necessary and sufficient condition that a pure tensor $T_{i_1\cdots i_p}^{j_1\cdots j_q}$ $(p,q\geq 0)$ be almost-analytic is that it satisfies

I. In case p = 0, q = 1

(1)
$$\nabla^h \nabla_h v^j + R_t^j v^t = 0,$$

(2)
$$(R_t{}^j - R^*{}_t{}^j)v^t + \frac{1}{2} N_{ab}{}^j \vec{V}^a v^b = 0.$$

II. In case
$$p = q = 1$$

(1)
$$V^h V_h T_i{}^j + R_t{}^j T_i{}^t - R_i{}^t T_i{}^j = 0 ,$$

$$(2) N_{st}{}^{j} \nabla^{s} T_{i}{}^{t} = 0,$$

(3)
$$N_{ht}{}^{j}T_{i}^{t} - N_{hi}{}^{t}T_{i}^{j} = 0$$
,

where (2) may be replaced by $N_i^{s,t} \nabla_s T_t^j = 0$.

III. In other cases

(1)
$$V^h V_h T_{i_1 \cdots i_p}^{j_1 \cdots j_q} + \sum_{r=1}^q R_t^{j_r} T_{i_1 \cdots i_p}^{j_1 \cdots t \cdots j_q} - \sum_{r=1}^p R_{i_r}^{\ t} T_{i_1 \cdots t \cdots i_p}^{j_1 \cdots \cdots j_q} = 0 ,$$

(2)
$$(R_t^{jr} - R_t^{*jr}) T_{i_1, \dots, i_p}^{j_1 \dots t \dots j_q} = 0$$
 for every $r = 1, 2, \dots, q$,

(3)
$$(R_{ir}^{t} - R^*_{ir}^{t}) T^{j_1 \cdots j_q}_{i_1 \cdots i_p} = 0$$
 for every $r = 1, 2, \cdots, p$.

As a corollary to this theorem, we have

Theorem 4.5.16) In a compact K-space, a necessary and sufficient condition that a contravariant pure tensor $T^{j_1\cdots j_q}$ $(q\geq 2)$ be almost-analytic is that it satisfies

(2)
$$(R_t^{j_r} - R_t^{*j_r}) T^{j_1 \cdots t \cdots j_q} = 0$$
 for every $r = 1, 2, \cdots, q$.

Theorem 4.6.179 In a compact K-space, a necessary and sufficient condition that a covariant pure tensor $T_{i,\dots i_p}$ $(p \ge 1)$ be almost-analytic is that it satisfies

(2)
$$(R_{i_r}^t - R^*_{i_r}^t) T_{i_1 \cdots i_r} = 0 \quad \text{for every } r = 1, 2, \cdots, p.$$

Since in a Kählerian space $R_{ji} = R^*_{ji}$ and $N_{ji}^h = 0^{18}$, we have

Theorem 4.7.19) In a compact Kählerian space, a necessary and sufficient

^{16), 17)} S. Sawaki [8].

¹⁸⁾ K. Yano [13].

¹⁹⁾ K. Yano [13], S. Tachibana [11] and S. Sawaki and S. Kotō [6].

178 S. Sawaki

condition that a pure tensor $T_{i_1\cdots i_p}^{j_1\cdots j_q}$ (p, $q\!\geq\!0$) be almost-analytic is that it satisfies

$$V^h V_h T^{j_1 \dots j_q}_{i_1 \dots i_p} + \sum_{r=1}^q R_t^{j_r} T^{j_1 \dots t \dots j_q}_{i_1 \dots i_p} - \sum_{r=1}^p R_{i_r}^{t} T^{j_1 \dots j_q}_{i_1 \dots i_r i_p} = 0$$
.

§ 5. Applications.

Some applications of Theorem 4.3 in which tensors are covariant or contravariant have been given in a previous paper [8]. Especially, we have given applications to a harmonic tensor and a Killing tensor. In this place, we shall state a generalization of Bochner's theorem as another application of Theorem 4.3.

Let $T^{j_1\cdots j_q}_{i_1\cdots i_p}$ be an almost-analytic tensor in a K-space. If we put $\Phi=T^{j_1\cdots j_q}_{i_1\cdots i_p}T^{i_1\cdots i_p}_{j_1\cdots j_q}$, then the Laplacian of Φ can be written as

$$\Delta \varPhi = 2 \lceil (\not \! \Gamma_h T_{i_1 \cdots i_p}^{j_1 \cdots j_q}) \not \! \Gamma^h T_{j_1 \cdots j_q}^{i_1 \cdots i_p} + (\not \! \Gamma^h \not \! \Gamma_h T_{i_1 \cdots i_p}^{j_1 \cdots j_q}) T_{j_1 \cdots j_q}^{i_1 \cdots i_p} \rceil$$

and substituting

into (5.1), we have

$$\Delta \varPhi = 2 \left[(\mathcal{V}_h T_{i_1 \cdots i_p}^{j_1 \cdots j_q}) \mathcal{V}^h T_{j_1 \cdots j_q}^{i_1 \cdots i_p} + G \{T\} \right]$$

where

$$G\{T\} = \left(\sum_{r=1}^p R_{i_r}{}^t T_{i_1\cdots t\cdots i_p}^{j_1\cdots \cdots j_q} - \sum_{r=1}^q R_t{}^{j_r} T_{i_1\cdots t\cdots j_q}^{j_1\cdots t\cdots j_q}\right) T_{j_1\cdots j_q}^{i_1\cdots i_p} \,.$$

Thus, by Bochner's lemma²⁰⁾, we have the following

Theorem 5.1.²¹⁾ In a compact K-space, if an almost-analytic tensor $T_{i_1\cdots i_p}^{j_1\cdots j_q}$ $(p,q\geq 0)$ satisfies the inequality:

$$G\{T\} \ge 0$$
,

then we must have $G\{T\} = 0$ and $\nabla^h T_{i_1 \cdots i_p}^{j_1 \cdots j_q} = 0$.

Furthermore, if, at every point of the space, we denote by M and m the algebraically largest and the smallest eigenvalues of the matrix $||R_{ji}||$ respectively, then we have

$$G\{T\} \ge (pm-qM)T_{i_1\cdots i_p}^{j_1\cdots j_q}T_{j_1\cdots j_q}^{i_1\cdots i_p}$$

and hence we have

Theorem $5.2.^{22)}$ In a compact K-space, if M and m have the meaning just stated and if

$$pm-qM \ge 0$$
,

then every almost-analytic tensor $T_{i_1\cdots i_q}^{j_1\cdots j_q}$ $(p,q\geq 0)$ must satisfy $\nabla_h T_{i_1\cdots i_q}^{j_1\cdots j_q}=0$.

²⁰⁾ S. Bochner [1] or K. Yano and S. Bochner [12, p. 30].

^{21), 22),} For Kählerian case, see S. Bochner [2].

If $pm-qM \ge 0$ everywhere and pm-qM > 0 somewhere, then there exists no almost-analytic tensor other than the zero tensor.

As a corollary to this theorem, we can state

Theorem 5.3.²³⁾ In a compact Einstein K-space, there exists no almost-analytic tensor $T_{i,\dots ip}^{j_1\dots j_q}$ other than the zero tensor, if either R is positive and p > q or R is negative and p < q, where $R = g^{ji}R_{ji}$.

Also, for R = 0 or p = q, every almost-analytic tensor must have vanishing covariant derivative.

Moreover, if a K-space (n > 4) is conformally flat, then the curvature tensor has the following form²⁴⁾

$$R_{kjih} = \frac{1}{n-2} (g_{kh}R_{ji} - g_{jh}R_{ki} + R_{kh}g_{ji} - R_{jh}g_{ki}) - \frac{R}{(n-1)(n-2)} (g_{kh}g_{ji} - g_{jh}g_{ki}).$$

Hence we have

$$R^*_{ji} = \frac{1}{n-2} \left(2R_{ji} - \frac{R}{n-1} g_{ji} \right)$$
,

from which it follows that

(5.3)
$$R_{ji} - R^*_{ji} = \frac{1}{n-2} \left\{ (n-4)R_{ji} + \frac{R}{n-1} g_{ji} \right\}.^{25}$$

Consequently, if $T_{i_1\cdots i_p}^{j_1\cdots j_q}$ ($p\geq 0$, $q\neq 1$ or $p\geq 2$, q=1) is an almost-analytic tensor, then by III of Theorem 4.3 we find

$$(5.4) (n-4)R_t^{j_r}T_{i_1\dots i_p}^{j_1\dots i_n j_q} + \frac{R}{n-1}T_{i_1\dots i_q}^{j_1\dots j_q} = 0,$$

(5.5)
$$(n-4)R_{ir}{}^{t}T_{i_{1}\cdots i_{r}-i_{p}}^{j_{1}\cdots j_{q}} + \frac{R}{n-1}T_{i_{1}\cdots i_{p}}^{j_{1}\cdots j_{q}} = 0$$

and therefore we have

$$\begin{split} G\{T\} &= (\sum_{r=1}^p R_{i_r}{}^t T_{i_1\cdots t\cdots i_p}^{j_1\cdots j_q} - \sum_{r=1}^q R_t{}^{j_r} T_{i_1\cdots t\cdots i_p}^{j_1\cdots t_j}) T_{j_1\cdots j_q}^{i_1\cdots i_p} \\ &= \frac{q-p}{(n-1)(n-4)} \, R T_{i_1\cdots i_p}^{j_1\cdots j_q} T_{j_1\cdots j_q}^{i_1\cdots i_p} \,. \end{split}$$

On the other hand it is known that in a conformally flat K-space the scalar curvature R is non-negative. Accordingly, if $q \ge p \ge 0$ and $q \ge 2$, then we have $G\{T\} \ge 0$.

Thus, from Theorem 5.1, we have

²³⁾ For Kählerian case, see S. Bochner [2].

²⁴⁾ K. Yano and S. Bochner [12, p. 78].

^{25), 26)} S. Tachibana [10].

Theorem 5.4.27) When a compact K-space (n > 4) is conformally flat, then for an almost-analytic tensor $T_{i_1 \cdots i_q}^{j_1 \cdots j_q}$ $(q \ge p \ge 0, q \ge 2)$ we have

$$V_h T_{i_1\cdots i_p}^{j_1\cdots j_q} = 0$$
.

Next we shall consider the case where the space in consideration is not necessarily compact.

If $T_{i_1\cdots i_p}^{j_1\cdots j_q}$ $(p\geq 0,\ q\neq 1\ \text{or}\ p\geq 2,\ q=1)$ is an almost-analytic tensor, then by Lemma 3.1, (5.4) and (5.5) hold good. Multiplying (5.4) and (5.5) by $T_{j_1\cdots j_q}^{i_1\cdots i_p}$ we have respectively

(5.6)
$$(n-4)R_t^{j_r}T_{i_1...i_p}^{j_1...i_p}T_{j_1...j_q}^{i_1...i_p} + \frac{R}{n-1}T_{i_1...i_p}^{j_1...j_q}T_{j_1...j_q}^{i_1...i_p} = 0$$

and

(5.7)
$$(n-4)R_{ir}{}^{t}T_{i_1\cdots i_r j_q}^{j_1\cdots j_q}T_{j_1\cdots j_q}^{i_1\cdots i_p} + \frac{R}{n-1}T_{i_1\cdots i_r}^{j_1\cdots j_q}T_{j_1\cdots j_q}^{i_1\cdots i_p} = 0.$$

Thus we have the following

Theorem 5.5.28) Let a K-space $(n \ge 4)$ is conformally flat. If the Ricci's form is positive definite, then there exists no almost-analytic tensor $T_{i_2\cdots i_p}^{j_1\cdots j_q}$ $(p \ge 0, q \ne 1 \text{ or } p \ge 2, p = 1)$ other than the zero tensor.

We remark here that in a conformally flat K-space $(n \ge 4)$ the Ricci's form can not be negative definite.²⁹⁾

Moreover, from III of Theorem 4.3 and Theorem 5.4, we have

Theorem 5.6. When a compact K-space (n > 4) is conformally flat, a necessary and sufficient condition that a pure tensor $T_{i_1\cdots i_p}^{j_1\cdots j_q}$ $(p \ge 0, q \ne 1 \text{ or } p \ge 2, q = 1)$ be almost-analytic is that it satisfies

(2)
$$R_t^{j_r} T_{i_1,\dots,i_p}^{j_1\dots t \dots j_q} + \frac{R}{(n-1)(n-4)} T_{i_1\dots i_p}^{j_1\dots j_q} = 0$$
 for every $r = 1, 2, \dots, q$,

(3)
$$R_{i_r}^{t} T_{i_1 \cdots i_p}^{j_1 \cdots j_q} + \frac{R}{(n-1)(n-4)} T_{i_1 \cdots i_p}^{j_1 \cdots j_q} = 0 \quad \text{for every} \quad r = 1, 2, \cdots, p.$$

If $p = q \ge 2$, then the condition (1) can be replaced by

$$\nabla_h T_{i,\dots,in}^{j_1\dots j_q} = 0$$
.

Finally we shall consider a K-space of constant curvature. Then the curvature has the following form

$$R_{kjih} = \frac{R}{n(n-1)} (g_{ji}g_{kh} - g_{jh}g_{ki})$$

from which we have

^{27), 28)} For the case $q \ge 2$, p = 0, these two theorems hold good in an *O-space which is conformally flat because of Theorem 5.4 in [8].

²⁹⁾ S. Tachibana [10].

(5.8)
$$R_{ki} = \frac{R}{n} g_{ki}^{30}$$
 and $R^*_{ki} = \frac{R}{n(n-1)} g_{ki}$

where R is an absolute constant. Hence if $T_{i_1\cdots i_p}^{j_1\cdots j_q}$ $(p\geq 0,\ q\neq 1)$ or $p\geq 2,\ q=1$ is an almost-analytic tensor, then we have from Lemma 3.1

$$\frac{(n-2)R}{n(n-1)} T_{i\cdots ip}^{j\cdots jq} = 0.$$

Thus we have the following

Theorem 5.7.31) Let a K-space ($n \ge 4$) is of constant curvature. If $R \ne 0$ then there exists no almost-analytic tensor $T_{i_1\cdots i_p}^{j_1\cdots j_q}$ ($p \ge 0$, $q \ne 1$ or $p \ge 2$, q = 1) other than the zero tensor.

In this place we shall remark the following fact. If R=0, then from (5.8) we have $R_{ki}=R^*_{ki}=0$, so our K-space becomes a Kählerian space.³²⁾ On the other hand it is known that there does not exist a K-space $(n \ge 4)$ of constant curvature with R < 0.³³⁾ Hence when a K-space $(n \ge 4)$ of constant curvature has non-vanishing scalar curvature, it is non-Kählerian and has a positive curvature.

Niigata University

References

- [1] S. Bochner, Vector fields and Ricci curvature, Bull. Amer. Math. Soc., 52(1946), 776-797.
- [2] S. Bochner, Tensor fields and Ricci curvature in Hermitian metric, Proc. Nat. Acad. Sci. U. S. A., 37(1951), 704-706.
- [3] A. Frölicher, Zur Differentialgeometrie der Komplexen Structuren, Math. Ann., 129(1955), 50-95.
- [4] T. Fukami and S. Ishihara, Almost-Hermitian structure on S⁶, Tôhoku Math. J., 7(1955), 151-156.
- [5] S. Kotō, Some theorems on almost Kählerian spaces, J. Math. Soc. Japan, 12 (1960), 422-433.
- [6] S. Sawaki and S. Kotō, On the analytic tensor in a compact Kaehler space, J. Fac. Niigata Univ. Ser. I, 1(1958), 77-84.
- [7] S. Sawaki, On almost-analytic vectors in almost-Hermitian spaces, J. Fac. Niigata Univ. Ser. I, 3(1960), 23-32.
- [8] S. Sawaki, On almost-analytic tensors in *O-spaces, Tôhoku Math. J., 13 (1961), 154-178.
- [9] J.A. Schouten, Ricci calculus, Springer, 1954.

³⁰⁾ K. Yano and S. Bochner [12, p. 21].

³¹⁾ For the case $q \ge 2$, p = 0, this theorem is valid in an *O-space which is of constant curvature because of Theorem 5. 4 in [8].

³²⁾ S. Kotō [5].

³³⁾ S. Tachibana [10].

- [10] S. Tachibana, On almost-analytic vectors in certain almost-Hermitian manifolds, Tôhoku Math. J., 11(1959), 351-363.
- [11] S. Tachibana, Analytic tensor and its generalization, Tôhoku Math. J., 12 (1960), 208-221.
- [12] K. Yano and S. Bochner, Curvature and Betti numbers, Ann. of Math. Studies 32, 1953.
- [13] K. Yano, The theory of Lie derivatives and its applications, Amsterdam, 1955.