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§ 0. Introduction.

Let X, be an n-dimensional differentiable manifold with local coordinates
{x*}¥. On this manifold a tensor field ¢;* such that

0.1) )

is called an almost-complex structure and a differentiable manifold X, with
such an almost-complex structure is called an almost-complex manifold or an
almost-complex space?.

An almost-complex space X, with an almost-complex structure satisfying

0.2) &rPi P =&

where g;; is a positive definite Riemannian metric tensor is called an almost-
Hermitian space®. In this place, it is easily verified that ¢, =—¢;; where
Pji =P &ri-

On the other hand, A. Frolicher? proved that there exists an almost-
complex structure on the six dimensional sphere S% and T. Fukami and S.
Ishihara® proved that the structure on S¢ is an almost-Hermitian one satisfying

0.3) Vitoind V=0

where F; denotes the operator of covariant derivation with respect to the
Riemannian connection.

In this paper, by a K-space® we shall always mean an n-dimensional
almost-Hermitian space satisfying the condition [0.3).

Now, a necessary and sufficient condition that in a compact K-space a
vector be almost-analytic (see §1) has been obtained for a contravariant vector
by S. Tachibana in [10] and for a covariant vector by the author in [7].

1) Through this paper the Latin indices run over the values 1,2, .-+, n.
2), 3) K. Yano [13, p. 2287.

4) A. Frélicher [3]

5) T. Fukami and S. Ishihara [4].

6) S. Tachibana [10].
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Recently” the author has obtained a necessary and sufficient condition for
a contravariant pure tensor or a covariant pure tensor in a compact K-space
to be almost-analytic.

The main purpose of this paper is to do exactly the same thing for a
pure tensor of mixed type in a compact K-space and to summarise these results.
In the last section we shall give a generalization of Bochner’s theorem® in a
compact Kéhlerian space as an application of these results.

§1. Almost-analytic tensors of mixed type.

In an n-dimensional almost-Hermitian space X,, we consider the operators
1
(w1 Or=-5-QGroh—grel),  *OPi= 5 (OPO+oreh

and call a tensor pure (hybrid) in two indices if it is annihilated by trans-
vection of *O (0) on these indices”. For instance, if *Op) T4 71 =0, then
T{: 72 is called pure in jy, 4, and if Of,TY;9 =0, then it is called hybrid in
iy, 1o

By a pure tensor we mean that it is pure in every pair of indices.

The following propositions which we shall use later on will be easily

verified.

Proposition 1. *Opf4-Ori=A,  *Opi*Oik =*0Op;,
th — —
PO =0, *Op0R =O0p*0i =0
wheve A is an identity operator.
PropositioN 2. *OFFV0,,=0,  OFV,0,2=0.

Prorosition 3. If a tensor is pure (hybrid) in i,j and pure (hybrid) in j, h,
then it is pure in i, h, and if it is pure in i,j and hybvid in j, h, then it is hybrid
in i, h.

Prorosition 4. If a tensor is pure and at the same time hybrid in two given
indices, then it vanishes.

ProrosiTioN 5. If a tensor T35 is puve (hybrid) in i, j, then we have

and if a tensor T.L. is pure (hybﬁd Y in 3,1, then
e T =/ Tl (—@ /T,

We say that a pure tensor 777 (p,¢=0) is almost-analytic if it satisfies

Tidp

7) S. Sawaki [8]
8) S. Bochner [2].
9) K. Yano [13, p. 2287.



Almost-analytic tensors 167

L2 T e el T — 3 0009 Thy e
r=1
3 LT o) Thtrda = 010 for ¢=1
r=1
and
(1.3) N e I A CIN 8
— 2 00,9 Thoydt > @i Fip T i) Tytje=0  for p=1
r=1 7=1
where (7,9 T{;_;;'tj;jgg etc. mean (7, ¢, Tg';;_‘_;;’:‘l't'l:;;;’,'_yl’g etc.. These are generali-

zations of analytic tensors in a Kihlerian space!®.
Since T'{: 72 is a pure tensor, if p, ¢=1, then and are equivalent
to each other.

§ 2. Identities in a K-space.

Let X, be an almost-Hermitian space, and let Ry;;" be the curvature tensor
formed by the Riemannian connection. We put

1 . r
(2.1 R;;=R,;, Rijin = Riji" Srn R¥;= 79’ bRabrngk ’
R*kj — R*”-gm , R*kj — R*krgrj A
The identity of Ricci'® is expressed in the following form for any tensor

jl"‘jq .
t1ip *

2.2) ViV, T da—p, F, T da

i]"‘ip Tuip
a gy O —
= ZLRICILS]T TJ:S;Z_" Zlehirs Tivda,
r= r=

13 21§ty

Transvecting with ¢**, we have

QT T30 = % gZDIRmf’rT ottt — —é— 2 Ruwi, Th i
or denoting 7, for some / (1=/=<p) by ¢
(2.3) B OV Favel
— ]“ < R erjr"s"'jq kh 1 2 R szj.........j kh
= —2—~?§1 khs Taeteip | TEI khi, “5313?7

where ¢t =gk,
If Tf;;;',{g is a pure tensor, transvecting with ¢, we have

10) S. Tachibana [11], S. Kotd and S. Sawaki [8]
11) K. Yano and S. Bochner [127.
12) J. A. Schouten [9].
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@4 goi;gokmmw

utzp

E gDKth ]rg) ST];..-L..v]q E gothka gDSLTJ‘ ______ i

...... T1 oLos zp
q

=D RITL 5 R T

r= =

For the tensor ¢;/ we have

(2.5) eV Vot =— —;— @V VP =V Vspi")

1
= _TZ_ @Sh(Rshatgoka— shkagoal)

= —R*kt+R*tk
where J*=g""f,, and by we have easily
(26) ¢j77h¢ri: ~—~g0,,th§0jT .

In the rest of the paper, unless otherwise stated, we shall only consider
a K-space. Taking account of [0.3), we get

*ORV aPon =V iPin+ @ja%bVa%n

=V it 0% ViPas
= %03V Pas
and hence by virtue of we find
2.7) *OWV 0P =0.
Moreover from we have the following
(2.8) Papi=0.

Since by 2.7) and [Proposition 5 we have ¢/ F¢,,=@,;V:@,;, the Nijenhuis
tensor defined by

Nji* = @ @~V — @i V9"~V 9.)
can be easily written as

(2.9) N =20} —V:p.") .
By using the equation turns to

(2.10) N;* =49V, 0"
from which we find

(2.11) Nj(ih‘) = 0 .

The following properties which are also valid in an almost-complex space
can be easily verified.
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(2.12) *O%W Ny =0, O%N;>=0.%
Furthermore the following relations can be proved:
(2.13) R*,,=R*;, (Vi§0kj)7r§0kj = R;,—R*; ¥

Indeed, since ¢*/ is hybrid in %,j and F,p;; is pure in k&,; because of [2.7), we
have by
(2.14) Fep 9™ =0.
If we operate F, to then by making use of the Ricci’s identity and anti-
symmetry of ¢*/, we have
Vipi)Vrp" = — V.V ;)"
=R*.,—2R*,+R,;.
As the left hand side is symmetric with respect to ; and », we have
R*,=R*,

and therefore

(Vz'@kj)Vr?ij = R;,—R*, .
Thus by virtue of [2.10), and [2.13), we have

(2.15) NrjiNkji = NjirNﬁzc = 16(R,x—R*s)
where N/'= N,,‘'g™ etc. and from we have
(2.16) gDSth Vn?’/ct =0.

§3. Lemmas.

In this section we shall give some lemmas which will be used to prove
the main theorem of this paper in §4. Let T;ﬁ;j;{; be a pure tensor in a K-space
and we consider the following two cases.

1) The case p=0, g#1 or p=2, g=1.

If sz.;;;g; is almost-analytic, then from and we have respectively

3.1 V,TIia 4@, 3 02F Tt dat-g 57 @) Tt Ja

i1ip tip ivip
p 7 ] ry .
— 29 Vo H T T+ i PP —Fop 7 Titda =0
and
(3.2) Vh T, W Th 9

’Lx“'ip s tii"'ip

. p . ]
+¢hs(Vs¢“t_Vh¢sﬂ)T€a]tr;)__ %¢ns(7ir§0st) Tdvdq

tretip

13) K. Yano [137.
14) S. Tachibana [10].
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In this place, by Propositions 2,3 and (2.7) gohs(Vzgosf')Tg{f.;gq is hybrid in
%, 7, and hence by Proposition 1 it can be written as

Pups T30 = %058 o) T2 70

1

Similarly we have
B e Tl =08 BTN T,
and
BT T Tyt == 5O BN Tt

because of (2.9).
Thus the equation (3.1) can be written in the following

3.3) *ORL2T i Jat @ Wop ) T o i

e titp ireip
Y4 a b tia g 1 Oij a N. Jr Pjaebefg] — 0
__7;'{03 (Vir¢a )Til...b...flp:l'— 5 Unt [Ez R B ]=0.

ip

If we operate *Op:. and O, to (3.3), then we have by Proposition 1 respectively

G4 PaT 3 di@p'p VTt
+en T T~ i P, ps) Thi i =0
r=
and
(3.5) 3 NI Tgtn =0,
r=2

Consequently by (3.5), the equation (3.2) turns to

P T390+ 0,50, W, T30 — 330,50, o ) T da

zl"'lp tiﬂ"'ip
+0u' V@i Vo) TE 38 +01° Tips? —=Vop )Tl 7a = 0
and then by (2.9) we have

36) PaTiis+ @0 T T — 300 W, 9O Tyt
T=2

tisip ip

+ %lez Tirvdq — JANMﬁ Téf..’.:;zq =0.

tisip 2
By the same way as in the preceding arguments we can express (3.6) in
the following
4
3.7 *O3 27 Tl — 2o Wi, 0a") T 5% ]

tisoip )

+- %‘ Ot LN Ty da— Noh Tifrfa] = 0.

hiy 2 tp
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Operating *O! and O}, we have respectively

kl
. . p .
3.8) Pa Tt en' e Vs Th 0 — D0’ Wo @) Tl =0,
and
(39 Nu Tiie = Ny T 90,

Next, from (3.5), we have
(3.10) Ny Ty 3a = — (N Th38 ot - ANy /e T ezt

Since N,J7 is pure in 4, ¢ because of and Tg;ff,;;{';;gg is pure in j, ¥, by
virtue of the right hand side of [3.10) is pure in %, j,. On the
other hand by the left hand side of is hybrid in 4,7,. Accordingly,
by [Proposition 4, we find

thfs sz_:lxtja Jg — 0 , NhthT';:]ﬂJ‘m‘lg'_%_ . _I—Nhtqug:qu_lz — 0

...... ip R

and similarly from the last equation, we have

(3.11) NMJ'TT{;“"'"{g =0 for every »=2,3,--+,¢.

When p=1, ¢g=2, the left hand side of (3.9) is pure in j;,j, but the right
hand side is hydrid in j;,j,. Hence by we have
(3.12) No ! T = Ny Tdin = 0.

tisip
Also for the case p=2, g=1, (3.12) holds good. In fact, in this case, from
(3.9) we have
3.13) N T

tiaip
Here the left hand side of is hybrid in i, i, but the right hand side is
pure in i;,i,. Therefore both members vanish.
Moreover, if we notice that the first definition of the almost-analytic tensor
{1.2) or is equivalent to respectively
P T da+ @@ dmT it 4)

o

= Nht‘i‘ Tt

lx“'ip *

-3 1’ Wi )T+ > 0 Vps’ =V /)Tt da =0
re=1 £ r=1| z

canren i‘,)
or
PaT3 it 0uVu(Pan T4

fibelp
p . a . . . "
-2 01 Vi) TP 0+ 2o’ Wips Vs THI =0,

g

then by the same way as in the preceding paragrph we shall have also the
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following relations:
(3.14) Nyip'Tinda =0, for every m=2,3,---,p.

fetoip

Now, since our space is a K-space, for p=1 (3.8) turns to

VT3t 0n°0i VT 7 + —llf Zﬂ Nyt Tivda=0

f1ip tiz-ip iretip

because of and moreover using (3.14) it becomes

(3.15) VT s+ ol VT =0 or *OfPT{ J1=0.
For g=1 we get from (3.4

(3.16) *ONVsT =0,

(3.11) and we have

3.17) (RJr— R*J7) T{;;’,;”jjj{; =0 for every r=1,2,---,¢q.
Similarly from and (3.14), we have
(3.18) (R’ —R*,) T da=0 for every r=1,2,---,p.

Thus we have [3.1I5), [3.16), (3.17) and (3.18) as a necessary condition for a
pure tensor in a K-space to be almost-analytic and it is evident that conversely
this is also a sufficient condition. Hence we have the following

Lemma 3.1, In a K-space, a pure tensor T9 32 (p=0, q+1 or p=2, g=1)
is almost-analytic if and only if

ey OV T =0 (p=1) or *ORFTiit=0 (g=1),
@) (RIT—R*T]te=0  for every r=1,2,-,q,
) (Ri,/ —R*NTyde=0  for every r=1,2,-,p.

Remark 1. In a K-space, if the rank of the matrix || R;;—R*;;| is =, then
there exists no almost-analytic tensor T{I:;j]{g (p=0, g#1 or p=2, g=1) other
than the zero tensor.

As we remarked in (3.14), the former of the condition (1), for example, can
be replaced by

*Ost

hir

P T i da = () for every r=1,2,---,p

it ip

which means that VhTﬁjjj{g is pure in 4,i, (r=1,2,-,p). By the same method
as in we have for any m (1 =m =g
V’Lle...jq_]l_gohsgotijsTg:...;...] ijvmjm T'Z:t]q _I_ ‘Z]i* E Nh,i'rtT'-il ..... o — 0
r=1

g — j
Gaetp | TR TS gy ip 4 T T e iy trteip

from which we get
*O;J;mVSTZj:...t.-;;g =0 for every m=1,2,--,q.

...... i
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Thus on taking accont of we have the following lemma
which corresponds to the definition of analytic tensor in a Kahlerian space.

Lemma 3.2, In a K-space, a pure tensor T1:72 (p=0, g1 or p=2, ¢=1) is
almost-analytic if and only if

1) VhT{f;jj;g"gl is a pure tensor,
) (R"—R*/NTi =0  for every r=12,,q,
(3) (R;)!—R*,HTIJa =) for every r=1,2,--,p.

Tyeebed

Remark 2. By an *O—s;ace”’ we mean an x-dimensional almost-Hermitian
space satisfying *O%V,9,,=0. An *O-space is a more general space than a
K-space, because by a K-space is an *O-space. As we can see the preceding
paragraph, in an *QO-space a pure tensor T{;jﬁj{g (p=0, g#1or p=2, q=1) is
almost-analytic if and only if

() *ORFTY s~ R Foed Tl =0 (321 or [34) (@=1),

2) Nu"Titie=0 for every r=1,2,--,¢q,
(3) Nhi,tTg"‘jjtjjj{g =0 for every r=1,2,---,p.

If the rank of the matrix || N*;N,;| is #, then there exists no almost-analytic
tensor T{.’;;_‘jgfg (p=0, g+1 or p=2, g=1) other than the zero tensor.

2) The case p=g=1.

Let T be an almost-analytic tensor. In this case we can not make use of
the relations (3.17) and (3.18). But since (3.8) and (3.9) hold good, we have

3.19) ViTi +oipVT7 =0,
(3.20) N T =N, 'T7=0.
On the other hand, we have from
VhTd 40’0 VT +0° Vi) T — 0,1 Vi H T = 0
or using
P+ oT T~ Nud Té g Nod TE =0,

from which we have by
(3.21) I+ 000 VT =0.

Consequently we see that [3.19) and [3.20) are equivalent to [3.21) and [3.20).
Thus we have the following

Lemma 3.3. In a K-space, a pure tensor T is almost-analytic if and only if
@ *OEp T =0,
(2) thj Tit*‘Nhitth =0
where (1) may be replaced by *O$V, T = 0.

15) S. Koto [5].
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Lemma 34. In a K-space, a pure tensor T is almost-analytic if and only if
Q) V.Ts is pure temsor,
(2) thj Tit—Nhitth =0.

Remark 3. In an *O-space, a pure tensor is almost-analytic if and only if
¢y *Oup, T =0,
) Nht]Ti Nm' ch=0-

§4. Main theorem.

First by using Lemma 3.J and [Lemma 3.3 we shall prove the following
two theorems.

Tueorem 4.1. In a compact K-space, a mecessary and sufficient condition
that a puve temsor T{;jjj{g (p=0, q#=1 or p=2, q=1) be almost-analytic is that
it satisfies

@ PR TSt X RITS = SR T2 =0,
@) (RJ*—R* ’r)TJ‘_“‘mM =0 for every r=1,2,---,¢q,
3 (R;,! R*zr‘)T“,’_'_'ljjjq =0  for every r=1,2,-,p.

Proor. If TJvJ¢ is almost-analytic, then from we have (2),
(3) and

“.1) — Pl fga = V T;; Ja4-9,°00 Vs T 9a =0 for p=1.
Operating 7, to (4.1) and using [2.8) we have

“.2) VLT3 +0n' (P W T fida + @i’ 0u VT % = 0.

By virtue of [2.4) and [2.13), [4.2] can be written as

4.3) 7T 0, 7 WL T e

@1t +ip

+ 3 RASIT gt A1 E R¥,! T 4a=0.
r=1

On the other hand, operating F, to
(thoha)TJ‘ jq = 0

tisip
which is equivalent to

Ry —R* T3 =0

tia-ip
and transvecting with ¢,%, we have

4.4 PP o Tl +0u* e W T ida = 0.
On account of [2.16), from [4.4) it follows that
(4.5) " (P WsT % =0.

tis-ip
Consequently, (4.3) becomes
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cesen qresdees

PP Tddib 3 R I Tt S R, T 91 = 0
1% — N o = ir Z 2 ’
©or using (2) and (3)

4.6) PPtk 3 RITTftdi— SR T ginin = 0.
r=1 r=1 b E
In order to prove the converse, we consider a pure tensor T{;:;j{g satisfying
1), (2) and (3), and writing out the square of P;;;.';j{gp we have

_l_Pj,...jI Pm,zp — (VhTq',..,jq)VhTzi.....‘?;_l_gohsgphz(VsTj,...jq )VILT?;.,@D

2 hinip® gy iip Yisip wjg

where P;Li{:'];gp = pPbrby gshgali; ..,ga,pipgbljl e @iy etc..

saiap

Thus we have

@ - Py Prisin  pr(Ttetn Plde )

hiy-ip™ Jid ~jg" hir-ip

= % Pirvdg Phil":ip+(VhT§'§'-'.'.§2) Pivdg | T‘ii;-'-.z}gyh Pivig

Riv-ip™ Jiejq hivip hiyv-ip
— Tiip P Pjrdg
le...qu Phix"'ip .
By Green’s theorem, from [4.7), we have
teeip Ph Piiedq — . Pirejq Phis
“48) S [rizme o Piiis P!

~ip
hiveip hiv-ipt jiejg

Jae=0

where do means the volume element of the K-space X,.
shows that if P*Pf;¥ =0 i.e. if holds good, then we have

Pivds =0,

Rivotp
But from (1), (2) and (3), we have [4.2). Thus from it follows that
Tide is almost-analytic. Also for g=1 exactly the same method can be
applied. q.e.d.

Tueorem 4.2. In a compact K-space, a necessary and sufficient condition
that a pure tensor T be almost-analytic is that it satisfies

(1) VthTij_{—Rthit——Ritth =3 O ,
(2) MthsTit = 0 )
(3) Nhthit—NhitTtlj = 0

where the condition (2) may be replaced by N5W T/ =0.
Proor. Let T, be an almost-analytic tensor. From Lemma 3.3, we have

def

4.9 — P =V T+ @i VT =0
and (3).
Operating P* to (4.9) and making use of (2.4) and (2.8), we have
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(4.10) VP =V, T +0,° VoW +9,°0 V7 T

=P T~y N T+ RS T —R*T7 = 0.

V,T! is pure in s, ¢ because of P,/ =0 but N¢/ is hybrid}in s, ¢ because of

and therefore by we have N%F,T/=0.
Consequently, from we have

4.11) Vv, T/ +R* T —R*'T/ =0
and
(4.12) NPT =0.

Moreover, on multiplying (3) by N*, and using we get
16(Rkt—R*kt> th—_NhilcthjTit =0

or

(4.13) 16(R/—R*HT/—N"",N,,/T,)=0.
Similarly multiplying (3) by N"; we get

(4.14) N, NM T —16(R/—R*)T}=0.
From [4.13) and [4.14), we have

(4.15) R¥T}—R*'T/ =R/T/!—R!T/
and therefore turns to

(4.16) 7, Td+RIT —R!TI =0.

To prove the converse, let T/ be a pure tensor and suppose that it satisfies
(1), (2) and (3). Calculating the square of P, , we have easily the following

1

4.17) — P PY 7 (T i Poi?) = THP P

Hence by virtue of Green’s theorem, we have
i ] 1 i DR
(4.18) LW[T P Pri— 5 Py Py |do =0

which shows that in a compact K-space F"P,;/ =0 is equivalent to P,;/ =0.

On the other hand, from (1), (2) and (3), we have [4.10). Thus by virtue
of T, becomes almost-analytic.

Finally we must show that (2) may be replaced by N/, T/ =0. In fact,
if T/ is almost-analytic, from we have also

(4.19) V.Ti/+o, VTS =0.
Operating P" to and using and [2.8), we have

v T+, e T/ + R¥ /T — R¥!T/ =0
or by [2.10) and [4.15)
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4.20) PUATS - NI+ RITi— RET = 0.
Hence by [(4.16), we find
@21 NI/ =0.

For the converse, the same method as that used in the preceding paragraph
can be applied.

Summarising these results and the result obtained by S. Tachibana for a
contravariant vector, we have the following main theorem of this paper.

Turorem 4.3. In a compact K-space, a necessary and sufficient condition that
a pure tensor T332 (p,q=0) be almost-analytic is that it satisfies

21**tp

I In case p=0, g=1

® P +Rjv' =0,

@ (RI—R* i+ -5 NafP"0? =0.
II. In case p=¢q=1

1 Ty +R/T —R/T =0,

@) NGVT=0,

(3) Nhthit_Nhit sz =0 ’

where (2) may be replaced by NV, T/ =0.
1. In other cases

1) PP Tk SRS Titdi— SR, THyds =0,

212 =1 (23 tp =1 1 4
) (R/7—R*/NTitije=0  for every r=1,2,-+,q,
3) (i, —R*)HTL:g=0  for every 7=1,2-,p.

As a corollary to this theorem, we have
Tueorem 4.5.1® In a compact K-space, a necessary and sufficient condition
that a contravariant purve tensor T3¢ (g=2) be almost-analytic is that it satisfies

@ PAp, Tiwdat 3 RJrTwti1 =0,
r=1
2) (RJ7— R* /) T34+g = () for every r=1,2,--,q.

Tueorem 4.6.17 In a compact K-space, a necessary and sufficient condition
that a covariant pure tensor T;..;, (p=1) be almost-analytic is that it satisfies

M P Toty— 2 Re Tty =0,
) (R, —R*)T}.s.ip=0  for every 7»=1,2,-,p.

Since in a Kéhlerian space R; = K*; and N, =0'®, we have
Tueorem 4.7.'” In a compact Kdahlerian space, a necessary and sufficient

16), 17) S. Sawaki [8]
18) K. Yano [13].

19) K. Yano [13], S. Tachibana [11] and S. Sawaki and S. Kotd [6].
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condition that a pure tensor T{fijﬁj{g (p, q=0) be almosit-analytic is that it satisfics

4 P
R Freeg JrP fatedg s a¥ RN jg —
P Tt SRS T = S R T =0.

...... ; Tutip

§ 5. Applications.

Some applications of in which tensors are covariant or contra-
variant have been given in a previous paper [8] Especially, we have given
applications to a harmonic tensor and a Killing tensor. In this place, we
shall state a generalization of Bochner’s theorem as another application of

Let T{;ZII{IZ be an almost-analytic tensor in a K-space. If we put 0=
TifaT %, then the Laplacian of @ can be written as

Zietp

AD = 2L, Ty oV T 2+ W' T iy

T1tp 21 2P

and substituting

PR, Tt = 30 R, T4y di— 3 R T v-dn
into (5.1), we have

(5.2) AD = 2L, Ty or T3 +G{T}]
where

Thus, by Bochner’s lemma2®, we have the following

Tueorem 5120 In a compact K-space, if an almost-analytic tensor T{::j'_{g
(p,q=0) satisfies the inequality :

. G{T} =0,
then we must have G{T} =0 and V"T{;‘j_i{; =0.

Furthermore, if, at every point of the space, we denote by M and m the
algebraically largest and the smallest eigenvalues of the matrix || R;;| respec-
tively, then we have

G{T} = (pm—gM) T3 0T 507
and hence we have

Tueorem 5.2.22 In a compact K-space, if M and m have the meaning just
stated and if

pm—gM =0,

then every almost-analytic temnsor T@;‘,‘,‘,{g (5, q=0) must satisfy V, T3 =0.

20) S. Bochner [1] or K. Yano and S. Bochner [12, p. 30].
21), 22), For Kihlerian case, see S. Bochner [2]
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If pm—agM =0 everywhere and pm—qlM >0 somewhere, then there exists no almost-
analytic tensor other than the zero tensor.

As a corollary to this theorem, we can state

Tueorem 5.3.22  In a compact Einstein K-space, there exists no almost-analytic
tensor T f;"_‘,'_{g other than the zero temsor, if either R is positive and p > q or R is
negative and p < g, where R=g"'Ry,.

Also, for R=0 or p=gq, every almost-analytic tensor must have vanishing

covariant dervivative.
Moreover, if a K-space (n > 4) is conformally flat, then the curvature tensor

has the following form?*
Rijin, = —ni—z (genRji— &R+ Rin &ji— Rin&xo)

R
T =Dn—2) (81 &ji—&in&wo) -

Hence we have

1 R
L K
R0 n—2 (ZR” n—1 g“> ’
from which it follows that
R 26)
T
Consequently, if Tfi;jij{;l, (p=0, g=1or p=2, g=1) is an almost-analytic tensor,

then by III of we find

(5.3) Ry—R¥y= L5 {(1— DR,k

5.4 (n— )R Tt —E Py =0,
R (4R, Thli 2 Tte =0

and therefore we have

G{T}:(élR tT],-..t...Zq__ER]rT]x £ ]q)Th i)

Tyeelodyg L ML S g

— qa—p Byl
= G D=y RTERT

On the other hand it is known that in a conformally flat K-space the scalar
curvature R is non-negative.?® Accordingly, if ¢=p=0 and ¢=2, then we
have G{T} =0.

Thus, from [Theorem 5.1, we have

23) For Kihlerian case, see S. Bochner [2]
24) K. Yano and S. Bochner [12, p. 78].
25), 26) S. Tachibana [10].
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Tueorem 542 When a compact K-space (n>4) is conformally flat, then
Jor an almost-analytic tensor Tg;jjij (gzp=0, ¢=2) we have

7o Td91 =0,

tip
Next we shall consider the case where the space in consideration is not
necessarily compact.
If Tide (p20, g#1 or p=2, g=1) is an almost-analytic tensor, then by
and hold good. Multiplying and by T4 we

have respectively

5.6) (R T 4Tt — 2 TieiaThrtn = 0
and
6.7 =R, T T+ = Tije T =0.

Thus we have the following

TueoreMm 5.5.2° Let @ K-space (n=4) is conformally flat. If the Ricci’s
form is positive definite, then therve exists no almost-analytic tensor T{;jjj{g (p=0,
q+#1 or p=2 p=1) other than the zero tensor.

We remark here that in a conformally flat K-space (»=4) the Ricci’s form
can not be negative definite.?®

Moreover, from III of [Theorem 4.3 and [Theorem 5.4, we have

TuroreM 5.6. When a compact K-space (n > 4) is conformally flat, a necessary
and sufficient condition that a puve tensor T{;jjj{g (p=0, g1 or p=2, g=1) be
almost-analytic is that it satisfies

wodg a—p wedg
ey P T —Dn—0 RT¥:72=0,
R ;
rdvt f vefg — =
) RITT bt —— D= 4) mde=0  for every r=1,2,-,q,
...... R T _
3) Ry T e+ =1 (n—4) Thie=0  for every r=1,2,--,p.

If p=q=2, then the condition (1) can be replaced by
VpTiide=0.
Finally we shall consider a K-space of constant curvature. Then the

curvature has the following form
Ry Jih =

R
m(gjigkh_gjhgki)

from which we have

27), 28) For thecase ¢ =2, p =0, these two theorems hold good in an *O-space
which is conformally flat because of Theorem 5.4 in [8]
29) S. Tachibana [10].
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R
(5.8 Ry = —n-gkﬁ"’ and R¥*,;= WnR;T)g’“'

where R is an absolute constant. Hence if T2 (p=0, g#1 or p=2, g=1)
is an almost-analytic tensor, then we have from

n—2)R oo
=1y Loty =0

(5.9)

Thus we have the following

Tueorem 5.730 Let a K-space (n=4) is of constant curvature. If R=+0
then theve exists no almost-analytic tensor T{;_’jj{g =0, g1 or p=2, q=1)
other than the zero tensor.

In this place we shall remark the following fact. If R=0, then from [5.8)
we have R,;= R*,;=0, so our K-space becomes a Kihlerian space.’® On the
other hand it is known that there does not exist a K-space (#=4) of constant
curvature with R < 0.5® Hence when a K-space (# =4) of constant curvature
has non-vanishing scalar curvature, it is non-Kdhlerian and has a positive
curvature.

Niigata University
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