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Introduction.

Let U and V be normal varieties defined over a finite field £ with g¢
elements, and assume that U is a Galois covering of V with the Galois group
®. Under these circumstances several authors defined the L-series associated
with the characters of & In [7], Lang introduced an L-series following the
original idea of Artin[2] and proved the density theorem. But in his defini-
tion the singular points and the branch points of ¥V are all neglected. For
his purposes it is sufficient, but for other purposes it may be inconvenient.
We shall give, borrowing the ideas in [3], [4] a new definition of L-series
without neglecting the singular and branch points, which is a natural generali-
zation of Lang’s one and Weil’s one given in the case of curves in[9]. Ishida
also treated L-series in a different way in [6] It will be seen that our defi-
nition and the one given in [6] are the same one.

On the other hand Sampson and Washnitzer obtained a functional
equation of the zeta-function of the non-singular variety U under some assump-
tion. Using the same assumption as that used in [8], we shall deduce a func-
tional equation of our L-series for the Galois covering V/U when U is a non-
singular variety. When U is a curve, it is obtained by Weil in [9] When
U is an abelian variety with the abelian Galois group &, the same result is
obtained by Ishida in [5]. Thus our L-series will seem to be a satisfactory
one.

Here the author wishes to express his hearty thanks to Prof. Y. Nakai for
his suggestions and his encouragement, and to Dr. M. Ishida for his valuable
advice.

§1. Galois coverings defined over a finite field k.

Let z: U— V be a Galois covering of degree », defined over a finite field
k with ¢ elements.” In the following we shall assume that U and V are
normal, projective varieties of dimension 7. Let «,o0,7,---, be the automor-

1) For the definition of a Galois covering of an algebraic variety, see Lang [8]
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phisms of the function field £ of U/k over the function field K of V/k T,
will denote the induced correspondence of U into itself by a, which is bi-
regular and birational. Then the Galois group & is identified with the trans-
formation group of U consisting of T,, T, T, -+

Let @ be a point of V algebraic over £ and let © be the quotient ring of
Q in V/k. We shall call such a local ring in K a “locality” of dimension
zero following Chevalley, and we shall say that @ belongs to the locality O or
that @ is a point of the locality . A point @’ of ¥V belongs to the locality
9 if and only if @’ is a conjugate point of @ with respect to k. In what
follows, we shall treat exclusively the localities of dimension zero. Therefore,
for simplicity, we shall always understand by a locality, a locatity of dimension
zero. Let p be the maximal ideal of the locality ©. Then we shall denote
by degp the number of the points which belong to . Then degp is equal
to the degree [O/p: E].

Let 9% be the integral closure of © in £ and let P, -, B, the maximal
ideals of ©0*. Then each local ring %y (i=1, -, g) is a locality in £ and at
least a point of z7/(Q)® belongs to %y, Conversely each point of z7'(Q)
belongs to one of the localities O%q,, - UL

Let 3y, be the splitting group of P,/p and let Ty, be the inertia group
of RB,;/p.» Then it can be seen easily that Smi consists of the elements T« of
® such that T, transforms each point of %y, into a point of %y, and that
Ty, consists of the elements T, of ¢ such that T, fixed each point of 0%y,

Since the order of Ty, and the index [3y,:Tp,] are independent of i and
depend only on p, we shall denote these values by e, and f, respectively. The
number e, will be called the ramification index of B;/p and the number f, will
be called the relative degree of P;/p. Then we have the equality »n = e, f,8.
Since the residue group B3g,/Tsy, is isomorphic to the Galois group of O%/P;
over /b, there exists an element 7, of 3y, such that T (P)=P@END for
any point P of ©%y,. Therefore we shall understand by a Frobenius corre-
spondence for P;/p such an element that has the property as above. If T,
transforms a point of ©¥y, to a point of ©%y, and if 7, is a Frobenius corre-
spondence for %, /b, then the Frobenius correspondences for P,/p are the ele-
ments of the set Tg, 7% 7o, T'=TcTs, 10,17,

Let  be a subgroup of & and let I’ be the fixed subfield of £ for $.

2) We shall understand always =(P), 7~ !(Q), etc., in the set theoretic sense.

3) For these definitions, see Chap. I, 7 in Abhyankar [T].

4) If Pis a point of a wvariety U, then P@» denotes the point which is the
transform of P by w#, where w is the automorphism of the universal domain  such
that qv =q1 for any ¢ in Q.
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Let W be the normalization of V in F and z” be the natural rational mapping
W— V, which is everywhere regular on W. We have also a rational mapping
7’ U— W such that z=nr"z’. U is a Galois covering of W with $ as the
Galois group.

Let O be the integral closure of O in ¥, and qy,-- ,0g be the maximal
ideals in ©. Renumbering the $P; in ©O% we denote by Pjs, -+, Byg; the
‘maximal ideals in ©O% which lie over q;. Let »’ be the order of 9, let e’y be
the ramification index of %;/q; and let f7y, be the relative degree of P,,/q;.
Then we have the equalities n’ =¢’q,f"q,8; (7 =1, -+, 8. If we put [é/qj 1 0/P]
=f"q;, then we have f,=j"y,f"q;.

Let égnﬁ be the splitting group of PB;,/q; and let imﬁ the inertia group
of P;/a;. Then we have 3y, =3u;;ND and is,y;ﬁ:“lmﬁm@. In particular,
if we put e”y;=es/e’s;, then we have the equalities

O = [Ta Tl St e e =/ =[F:K].

§2. A fundamental lemma.

The notations being as above, let us divide the group & into the sum of
-the left cosets of a subgroup $ as follows:

S =97, + - +9T¢ .
Let ¢ be a character of . We shall understand that the value V(Tw)

is zero, when T, does not belong to ©. Then it is well known that the
function

@ Lu(T) = P (T, TaT3) for Twe ®
p2

is a character of &, and is called the induced character by ¥ of @.

Let y;,i=1,2,---, k) be the simple characters of the group &, where y, is
the principal character of &. Let $9(j=1,---,s) be all the cyclic subgroups
of the group & and let Viu@=1,-,hy) be the simple characters of £,
where +;; is the principal character of 9%,

Then, by Artin [2],” we have the following

Lemma 1. Each non-principal charvacter x; is expressed as a linear combina-
tion of Xpu(7=1,-,s;1=2,--, k) with coefficients consisting of rational
numbers, where Xy, are the induced characters by ¥ of .

The next lemma is analogous to the result® obtained by Artin in [3], in
the case of algebraic number fields, and the proof will be given in the same

5) See pp. 102-103 in Artin [2].
6) See pp. 4-5 in Artin [3].
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line as that of Artin’s. But the lemma is fundamental in the following
discussions, hence we shall write down the complete proof.

LemMma 2. Retaining the notations as in §1, let Ts be a Frobenius corve-
spondence for Pi1/p, and let Tp, be a Frobenius corvespondence for P /q,”°GC =1,
-, 8. Then we have

3 2 X(TiTy) = E el fl, X Y (TonTy)

Ta=%gp,, Ta=%p;y

for any positive integer p, wheve  is a character of the subgroup O and X¢ is
the induced character by  of @.

Proor. For simplicity, in the proof we put ey, =¢”; and f”,,=f";. Let
T,, be a Frobenius corre spondence for ,,/p, and let P be a point of O¥g,,.
‘Then we have Tyt (P)=P@’ 8» = padezin apd T,/(Pe®E) =P and we
have Ty;!TZi(P)=P. Hence T;}T/i is in %y, and we have T/i%y,;=
T,,¥y,. Since Ty, is a normal subgroup of 3g, which contains T,, and Ty,
we have T,7 %y, =T%%s,. From this fact we can see that the coset
Ty/i%y,, contains an element T, of 9.

Conversely, if the coset T, Ty, contains an element 77 = T,,,LT(;,V of 9,
then we have Ty(P)= P@*%E"»  Sipnce Ty is in $, it follows that =/T+(P)=
#/(P). Therefore we have r/(P)=nr/(P)@%E»  As z/(P) belongs to £, it
can be seen easily that Adegp is a multiple of degg; and that 1 is a multiple
of f7;. Then T4, Ty, =T¥" Iy
tion :

(%) The intersection of T, Ty, with § is empty if 2 is not a multiple

Therefore we have the following asser-

i1°

of f”;, and it consists of the elements of T2/ Ty, if 2 is a mul-
tiple of 77,
Let Tk;; be an element of @ such that it transforms a point of Oy, to a
point of Og,, .
Now we consider two cosets of the forms $7T¢; 7%, and $T; Tk, , Where
Te, is in 3g,, and Ty ; is in 3w,,. If they are same, Tr = Tcl Tx Tm T; must
be in . Then it can be seen that i=j and Ty =Ty T¢, . Hence Ty must be
in 3g,. Since the index [3g,, 1831;“] is equal to ¢;'fi’, 3s,;, is divided into the

r

sum of ¢;'f; cosets of 3g,, as follows;

8513“ = g-‘Bn TCﬂ + ?—)%Tcm S R .

Then the cosets T, ;Tx,,Gi=1,2,,8";i=1,2,,e/f{) are different each
J %1

—

7) For convenience we shall understand that a Frobenius correspondence for

B;1/0; and deg q; mean a Frobenius correspondence for %;/q; 5%. and deg qi5qi.
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g/
other by the above observation. The number of those cosets is X e;f; and
i=1

hence by (1) those cosets are all the cosets of § in ®. Therefore we have
from (3)

s
e 475

@ Zw(Tm)—Z Z V(Te,;Tey TuT x, % )
On the other hand, we can easily see that

®) > Tey;Te,TET.T

Tdexmn

TC@j

L33}

"‘2 TCUTUlT ]1Cz 2 Téll Tao-

Ty EEEQBI T CI%

By (4), (5) and (%), it follows that
g e// fN

2 FTiTo=2% ST S y(TET

Ty ETp,, il j=1 TgeTg,,

e
=2 X dfiy(TiTy = T elfi 5 Y(THAT,

i=1 th“—i%“ 7l T (153 i

This completes the proof.

§ 3. Definition of L-series.

The notations being as above, let Ta”. be a Freobenius correspondence for
Bii/vi=1,2,---,8";7=12,---,2,) and let y be a (nct necessary simple) charac-
ter of . Then it is easily seen that for any positive integer x, the values
1 s xTE Ty  (=12-,¢;i=12",8)
ép
are same, depend on p only and will be denoted by x(p™).

Then L-series L(u, x, U/V) for the Galois covering = :U—V, associated
with a character y is defined as follows;

6) log L, 7, U/V) =3 2 28D yuees
a=1p
where the sum X are taken over the maximal ideals of all the localities in
»
K.
From this definition, we have immediately
Prorosition 1. For any two characters x, x' of &, we have

L, x+2', U/V)=Lu, x, U/V) L(u, ¢’, U/ V) .

Now we consider the special case when & is an abelian group and when
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x is a simple character of ®&. Then since the inertia group %y, and a
Frobenius correspondence 7T, for PB,;/p depend only on p, we put %m“:ip
and T,=T,, Moreover we put & =1 if x induces the principal character on

¥y, and ¢ =0 otherwise. Then we have

1t 1 9! 7]
20 =—— X TG Ty =¢e x(Ts,)",

€p Ty ETp

and therefore
& ){( T"b )
—_—U
u
=—2 g log 1—x(T,) )ute?).
p

Mdegyp

log L(u, x, U/V)= 2]
b1

Therefore we have the following
Prorosition 2. If & is an abelian group and if x is a simple character of
S, then we have

L(u, x, U/V) = {I(l—)((Tap Jules )7,

where T,fp and & arve as above. In particular, each coefficient of u in the ex-

pression of L(u,y, U/V) as a power series of u is an integer in an algebraic
number field of finite degree.

Returning to general cases, we shall obtain some results which are also
analogous to the results® of algebraic number fields.

Prorosition 3. If W is a character of © and if x4 is the induced charvacter
by V of ®, then we have

L, 2y, U/V) = L(u, ¥, U/W)

where W is the normalization of V in the fixed subfield of E for .

Proor. The same convention as in the proof of Lemma 2 will be retained
for ¢”q, and f7,,.

Dividing the both sides of (3) by e,, we have

20 = 3 @)
J il

and hence

1 ulr’
log L, 7, U/ V)= 5 3 LVOET 1) juaces
bu f”il,u ﬂ

5 5 VO adege; _ 53 V) ades
Tage A oA

=log L(u,r, U/W).

8) See the formula (9) in Artin [4]
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This completes the proof.

TueoreMm 1. Let §P(@=1,2,---,5) be all the cyclic subgroups of &, and let
Vii(§=2,3,, h) be dll the non-principal simple characters of . Moreover
let W; be the normalization of V in the fixed subfield of E for 9. Then we
have, for each non-principal simple character x, of &,

s R

LG, x, U/ V) =TT TI L, i, U/WiY'5,

i=1j=2

where v,;(t) ave rational numbers depending on x,.
Proor. This is a direct consequence of [Lemma 1l and [Proposition 3.
ProrosiTion 4. Let  be a normal subgroup of & and let W be the nov-
malization of V in the field F corrvesponding to ©. Then the natural mapping
n” : WV is considerved as a Galois covering with &/ as its Galois group, and
a character y of &/ is also considered as a character of &. In this situation
we have

Lu, , U/ V) = L, x, W/V).

Proor. The notation being same as in §1, we can easily see that the
inertia group ¥ ;* of q,/p is the group Ty, H/H and that if T, is a Frobenius
correspondence for %P,;/p, then the class 7, *=17T,9 is a Frobenius corre-
spondence for q;/p. Let ¢* be the order of Ty, H/H and let g* be the order
of Ty, 9. Then we have

1 1
T%, Ty = P T

o Twe}"g%x( T = TGEZZI%QX(T T
=L s a1

& pp it ate):

This relation shows that our assertion is true.

§4. Expression of L-series as the logarithmic derivative.

Let k&, be, as usual, the unique extension of % of degree u. Let p be the
maximal ideal of a locality © in K such that degp is a divisor of x. If a
point @ belongs to ©. then @ is a rational point with respect to k,. Now let
us denote by p,(Q) the maximal ideal of the locality ©, in V/k, with the
unique point @. Let P be a point of z71(Q) and let P be the maximal ideal
of the locality O* in £ to which P belongs. The geometric interpretation of
the inertia group Ty and a Frobenius correspondence Z,, for P/p yields the
following

) a@eiesy = L5 paresiy o0 @),

€y T EE;B
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where in the right hand side the field of definition is considered to be £,.
Let us denote by V), the set of the rational points on V over k,. From
(6), it follows that

4 tog Liw, 7, U/ V)= 55 0 deg put >~
“ u=1p

=3 3 20 deg plu.

A=1 degyp

Therefore we have from (7)
® 7%7 log L(w, 2, U/ V) = i{ > x(p @)}
u=1 QGV#

Now we shall express L-series by the geometric languages. Let us denote
by UJT,) the set of the points P on U such that T,(P)=P<", and let N,
(T,) be the number of the points which belong to U/T,). Then we put, for
any character y of @,

© D)= B HTINATD (=12,

Let P be a point of U,T,), then if we put @ =z(P), we have =(P¥")=
W(Ty(P)=n(P)=Q and hence Q¥>=Q, since = is defined over %k This
means that @ is a rational point on V over k,. If P belongs to % whose
maximal ideal is B, then we have, for any T of g, T,T(P)= T (P)= P>
and hence P belongs also to U(T,T-) for any 7. of %y. Conversely if P
belongs to U(Tw), then we have T, (P)=T,(P)= P9 and therefore T:1T..(P)
= P. This means that T;'7T, belongs to Ty. Thus, 7. is an element of
T.Zq.

Now P’ be a point of z7'(Q). If Ty is an element such that T3(P)= P/,
we have, for any T.€Zy, T3T,T-T;Y(P’)= P’ and hence P’ belongs to
U(GyT,T-T;7") for any 7Twe¥y. It can be also seen that P’ belongs to these
U T, T:T7Y) only.

On the other hand, by the definition of y(,(Q)), we have

ex1,@Q)= 2 wT,T)= > x(GT.7:T7Y.
T,r Eig} T't E‘lg}

Since the number of the points of z7'(Q) is n/e», it can be seen easily
that the effect of the points of z7YQ) in nc,(x) is exactly equal to nx(hb.(Q)).
Therefore we have

(10) )= 2 x(0,Q)) .
Qev,

Thus, by (8) aad we have the following
Turozem 2. For any charvacter x of &, we have
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oo

an L og L, 2, U/ V) = T c,u™,
u pn=1

where c,(x) are constants determined by (9).

Remark. This theorem shows that our L-series is nothing else than
Ishida’s one defined in [6].

Next we shall consider the case when the covering variety U is non-
singular. In this case, the number N,(7,) is given by the intersection num-
bers of U X U-cycles as follows :

Let us denote by I, the graph of the rational mapping which maps a
point P on U to the point P> on U. Moreover we shall denote by I', the
graph of the correspondence 7,. Then we have the following

Lemmva 3. If U is non-singular, then the number N, (T,) is equal to the
degree of the cycle 1,-T, of dimension zevo on UXU for each T,< .

Proor. It is enough to show, by the criterion of multiplicity 1, that I,
is transversal to I, at each component of I,-I",. Let PxP@ be a component
of I,-T',. Then it is evident that (UxP9").I',=Px P9 and therefore I',
is transversal to UxP<" at Px P>, On the other hand it can be seen
easily that Ux P and I . have the same tangent linear variety to them at
Px P9, This fact means the lemma.

Now let M(UxU) denote the group of numerical equivalence classes of
cycles on Ux U, W(Ux U) will stand for the subgroup consisting of classes of
dimension 7. Let b, denote the numerical equivalence class of the cycle I,
for every positive integer u, and let ¢, denote the numerical equivalence
class of the cycle I', for every T, @®. Indicating the canonical scalar product
in (U X U) by symbol <{z, 9>, we have from Lemma 3

12) Ny(Ta)z <byycw>:
and hence
(13 ) = 2 T (0.

Thus, from Theorem 2, we have the following
Corovrrary. If U is non-singular, we have

(14 i 0B L 1 UV = S 3 AT (b o) fu

9) If Dy, D, belong to g, n, respectively, and if D,+D, is defined, then {g,4) is
nothing other than deg (D;-D,).
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§ 5. The functional equation of L-series.!”

In [8], Sampson and Washnitzer gave the functional equation of the zeta-
function of a non-singular variety under a certain assumption which will be
defined and be denoted by the hypothesis (FC) later on. In this paragraph,
we shall show that their methods are also applicable to give the functional
equation of L-series when the covering variety U is non-singular.

First we shall give a lemma which is a generalization of theorem 1 in

LevmMma 4. Let L be an algebraic number field of finite degree. Let R(x) =
,,ild"xﬂ_l be a power sevies satisfying the following conditions :

(1) R(x) is a rational function of x and each of its poles is the inverse of
an algebraic integer.

(ii) Each a, is an integer in L.

Qi) If we put Ru®)=Samx"' for h=1,2-, then the function
u=1

r
exp {jORn(x)dx} has a vepresentation as a power series in x with coefficient con-

sisting of integers in L.
Then R(x) has a partial fraction decomposition of the form

R(x)=r,/l—ax)+ - +7r/1—a,x) .

Proof is similar to that of in [8] Therefore we shall give
brief suggestions. By the condition (i), we have
(15) R(x) = 27;/0—a;x)™ +Px)

where the «; are algebraic integers and where P(x) is a polynomial with
coefficients in L’ = L(«,, -+, «,). Let & be the ring of the integers in L’. By
conditions (ii) and (iii), we have

(16) Al = any (mod p)

for all rational primes p and all rational integers 4. From [(I5), the coefficients
of x* ' and x™! in R(x) are, respectively,

a7 Tja?_lmj(mj‘l‘l) (mj+h—2)/(h_1) '4buy,
and
(18) 7 1) - my+hp—2)/(hp—1)! for large p,

where b,_, is the coefficient of x*! in P(x).
Now the relation

(19) mim;+1) - (m+hp—2)/(hp—1)! =0 (mod p) for large p, m; +1

10) The author was communicated, after he had completed the work, that M.
Ishida had also obtained the similar results in this section.
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is shown in the proof of theorem 1 in [8] Let p be a prime ideal in & of
degree 1 such that the norm Ng=p is sufficiently large and such that p does
not appear in divisors of the r; and the »;. Then we can easily seen, from
16y, A7), (18), (19) and Fermat’s theorem, that

(20) ( Z>)1)rja?“mj(mj+l) o mith—2)/(h—1)! +by_y €Sy
™y

Since this relation holds for infinitely many prime ideals in &, we can
conclude that

> ri/d—ax)m™i +Px)=0.

This means

Let the notations be same as those in §4, and assume that U is non-
singular. Let P be a generic point of U over .. Then we shall denote by
I, the locus of (P9, P) over k and denote by R(d) the subgroup of N'(U X
U) generated by the classes b, and »,(#=0,1,2, ), where b’, are the classes
of the divisors I’,.

Then, the following hypothesis plays an essential réle to give the func-
tional equations of L-series.

Hypotuesis (FC). The group R(D) is finitely generated.'V’

In what follows, we shall assume always the hypothesis (FC). Now we
define three regular mapping ¢, ¢ and = of U X U onto itself as follows :

¢(P,Q)=(P?Q), oplQ=@P), (PQ=(FPPQ?,
where P and @ are points of UU. These mapping are defined over £ and are
related by the identities
1) co=1, opop =,
and more generally
21') 0p’op” =1’
where 1 is the identity mapping of UX U and ¢*, r* are the v-fold iterations
of ¢, .

It is known that each of the mappings ¢”, 0, r° induces an endomorphism
of W(U X U). These endomorphisms will be denoted by ¢"*, a*, t¥, respectively.
Then we can see that ¢"*, ¢* and ** map N(d) into itself and that the follow-
ing equality holds

22) % = (¢¥%)” = ¢ X identity in (1) .1»

14

11) As to the curves, this hypothesis is true by the theorem of Néron-Severi,
which shows that the group of algebraic equivalence classes of divisors on a variety
has a finite base.

12) For this equality, see No. 5 in [8]
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The group N (U x U) is free from torsion. Therefore, because of (FC),
R(d) must be a free group of finite rank p. Since ¢* must satisfy consequent-
ly its characteristic equation, there exist rational integers ey, -:-, ¢, such that

(23) (%) e (¢*) 14 - +ep(p*) " =0 in N(d)
for every v =p.
On the other hand, we can see that ¢"*(b,) =b,,, where d; is the class of

I; as defined in §4.
Therefore, from and [23), it follows that

@29 NAT)+eiN,s(T)+ - +epNu-p(To) =0,

for #=p and for every T, of & Therefore, from (9) we have
(25) cu(0)+eicu QO+ - tepcu-o(x) =0,
for 4= p and for any character y of @.

From [25), we can conclude that the function Wb%; ~log L(u, x, U/V) is a

rational function of # satisfying the condition (i) of the whenever the
hypothesis (FC) is true. From this fact we have the following

TueoreEM 3. Suppose that U is non-singular and that the hypothesis (FC)
on U is true.

Then the function
of the form
(26) 71,7/ A—aw)+ - rp, o/ l—am),

where the r;,y depend on yx, and where the «; depend on the covering variety U
only.

Proor. We consider first the case when the Galois group & is an abelian
group and the character y is a simple character of ¢. Then the theorem is
a direct consequence of (8), Proposition 2 and Lemma 4, since the rationality
of the function has been showed already. In the case when & is any group
and y is a non principal simple character, we can reduce to the above case
by Theorem 1. If y is the principal character of G, then L(x, y, U/V) is the
zeta-function of the variety V. Therefore the condition (iii) of Lemma 4 is

ju log L{u, x, U/ V) has a partial fraction decomposition

satisfied for —;u— log L(u, y, U/ V) and other conditions are evidently satisfied.

Thus, we have also the theorem in this case. In general case, y is a linear
combination of simple characters of & with integral coefficients. Therefore
this case is a consequence of above cases. It is evident that «,,--,«, are
the distinct roots of the equation x°+ex’ '+ ---+e,=0. Hence the «; are
depend only on U.
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Thus the proof is completed.
Now let n,, -, 1, be a base of N(®d) and we put

¢*(ny) = %dwni
(27) ! (i=1,2,0)),

]
o*(ny) =j§$ij'nj

the a;; and the s;; being rational integers. Write A = (a;)), S= (s;)).

If f(x) is the characteristic equation of A, then we have f(x)= x,+ex,”!
~+ -+ +ep, where the e; are same as in [23). Then we can easily see, from
and [(22), that

f @) =e;'x°f(q"/x) .

Therefore if a; is a root of f(x), then ¢"/a; is also a root of f(x) and will
be denoted by «,;. It is evident that j—sj designates a permutation of 1,2,
---,m of the period 2 if a,, -, a, are the distinct roots of f(x).

Since it can be seen easily that ¢*(d,) =b, and o*(c,) = ¢, (notice T;!=
T.- 1), we have

0
{(28) acisij =Cj,

putting b, =+ o+ +-coltp.
Let the coefficients of A” be denoted by «f). Then we have from

’(29) Nu( Tw) = 7,21 Cza£:?7< n;, Cm>

because of b, = ¢"*(d,). Since ¢ is a biregular mapping, we have <{(b,,¢,>=
{o*(®,), 0%(¢,) >. Therefore we have, using the relation A’S=¢"”SA™ which
is a direct consequence of (21’) and 22},

(30) Nv(Tw) = <0*(hv>’ U*(cw)>

= 2:; Cis7 S5, Mgy Coms )
1,7,

= q”‘chisija;;” Mgy Cam
Ry

= q'rV Z}CCjCZ;-;u) <nk, Corr > .
1

Let us now define N,(T,) and ¢,(x) for v <0 by means of the difference equa-
tions and respectively. It is clear that the values so obtained for
N_(T,), N_,(T,), etc. are same as the values calculated from by putting

y=—1, —2, etc. and that the relation (9) is also satisfied for vy <0. Then we
have from
(31) Nv(Ta) - qw —V(T;l) fOK‘ VY= 0, ]_, 2, etC.,

and hence from (9)
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(32) () =q"c-.(%),

where 7 is the conjugate character of y as usual.
Now we put #;,=r;,/a;, where the r;, are the constants determined in
26). Then it follows that

(33) o =3 B for v=0, =1, £2, etc.
Jj=1

This relation is trivial for y =0 and as to the case for v <0, it is enough
to consider the fact that for each j, the «”; satisfy the difference equation
with same coefficients as [25). Then we can see, since the «; are distinct,
that 8;, = Bz

Now we have by the

d m
108 LA/q"u, x, U/V) =]§ﬂj,xa i/A—a;/q )
:]_42: ﬁj;zaj/(l—l/asju) = _ﬂil ﬂj,zajasju/(l_asju)
< =
=—q"u ,‘2;,6’31',;/ (I—agu) = —q’uzj_Elﬂ j,;aj/(l—aju)—qrujzlﬂj,z
o - -

=g log Liu, 7, U/ V)—q'ues(3)

From this we have

34) L

d .
7w du log L(/q"u, x, U/ V)}

__d : 1,0
——”717 lOgL(%, X U/V)+ ” CO(I)’

On the other hand, by the result!® of Ishida [6], we can easily see that
L, x, U/V) is a power series with a positive convergent radius. Now we
shall consider a domain D in the complex #-plane D, with the property as
follows: Let J be a Jordan arc whose end points are 1/«; and the point at
infinity. Moreover 1/«,, -+ ,1/a,, are on J and the origin is not on /. Then
D consists of the points which do not belong to /. Then, by the theorem 3,
L(u, x, U/ V) defines a univalent regular function on D. This function will be
also denoted by L(xu, x, U/V). Now we shall determine the functional equation
of this function.

From we have
(35) L/q"u, x, U/ V)= Cau>®L(u, %, U/ V),
where C, is a constant depending on y, and where a suitable branch is chosen
in u®®@,

13) See the corollary of the in [6]
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Since B;,,= Bs;; for j=1,---,m, we have ci(x) =co(2). If a« is a root of
f(x), then the complex conjugate @ of « is also a root of f(x). If we put
a;=a,;, then j—¢ designates a permutation of 1,:--,m of the period 2.

Since we have ¢, (y)=c,(x) for each x>0, it can be seen, from [33), that

B;7=Bis,, for each j. Therefore we can conclude that ¢,(x) is a real number
for any y.

If we replace # by 1/¢"« in [35), we have
Lu, x, U/ V)= C:(1/q"u)*PLA/q.u, %, U/ V) .

Therefore we can see that |C,C;| =[¢™®|, since ¢,(y) is real.

Now we assume that the g, , are all real numbers. From [Theorem 3, we
have

L, 1, U/ V) = 3 (1 —atu) i

Jj=1

if suitable branches are chosen. From this relation and [35), we have, putting
u=1,

m B \ m B
I;Il(l—aj/qf)“ | = |cngr[1(1—aj)— i .
J= Jj=
Hence we have, using 4;,, = B,z and a;a,;=¢’,
m
| CX i :_71;_[1 Ia]ﬂm ’ .
Moreover we have, using £;,, = f,;,; («;,, is realll)

|Cel =T it = 1| et 5| = TT| &, foin|
i=1 j=1 j=1

m m
= HJ“;’B""‘I =11 lajﬁf”‘l =|Cyl.
i= i=1

Thus we have shown that [Cy|=|C,|=[¢g"*®”?|, if the §,, are all real num-
bers. In conclusion we have

Tueorem 4. Suppose that the covering variety U is non-singular, and that
the hypothesis (FC) on U is true, then L(u, y, U/V), considered as a function in the
domain D, satisfies the following functional equation

LA/q"u, x, U/ V)= Cyu*PL(u, x, U/V),
where Cy is a constant such that |CyC;| = |q"®| and where c,(x)= %L—TZ} x(Ty
w6

<b0’ ca> zglﬂj,z-

Moreover, if the B,y are all rveal numbers, we have
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|Cyl= H\a]ﬁj,x] = |qm<x)/21 .
j=1

Remark. 1f U is a curve and if y is a non-principal simple character of

@, the value ¢y(y) is calculated as follows: Using notations in Weil [9], the
trace o(T,) of the correspondence T is equal to 2— (b, ¢,> by the definition.
Therefore from the orthogonality of characters we have

e = S ATy ead == - S ATIo(T).

This means that our functional equation and Weil’s one in are same, if
we do not refer to the constant Cy.
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