On semi-hereditary rings

By Shizuo ENDO

(Received June 18, 1960) (Revised Nov. 14, 1960)

§ 1. Introduction.

A ring R with unit element is called "left (right) semi-hereditary" according to $\lceil 2 \rceil$ if any finitely generated left (right) ideal of R is projective.

The purpose of this paper is to determine completely the structure of commutative semi-hereditary rings. A. Hattori has recently given in [6] a homological characterization of Prüfer rings, i.e., semi-hereditary integral domains. This was generalized by M. Harada [5] to commutative rings whose total quotient rings are regular. The results of this paper will include those results of [5] and [6].

In § 3 we shall give a necessary and sufficient condition for a ring to be regular by using the quotient rings. Also we shall introduce a notion of quasi-regular rings and show some properties of them.

In § 4 we shall characterize semi-hereditary rings by using the quotient rings as follows: A ring R is semi-hereditary if and only if the total quotient ring K of R is regular and the quotient ring $R_{\mathfrak{m}}$ of R with respect to any maximal ideal \mathfrak{m} of R is a valuation ring. Furthermore we shall introduce a notion of algebraic extensions of regular rings and show that the integral closure R' of a semi-hereditary ring R in any algebraic extension K' of the total quotient ring K of R is also semi-hereditary.

In § 5, we shall first prove that a local ring R is a valuation ring if and only if w.gl.dim $R \le 1$. Secondly we shall show, as a generalization of [6], Theorem 2, that a ring R with the total quotient ring K is semi-hereditary if and only if w.gl.dim $R \le 1$ and w.gl.dim K = 0, or if and only if any torsion-free R-module is flat.

§ 2. Notations and terminologies.

Throughout this paper a ring will mean a commutative ring with unit element 1. Our notations and terminologies are, in general, the same as in [2] but we shall make the following modifications.

A local ring will mean a (not always Noetherian) ring with only one

maximal ideal and a regular ring R will mean a ring such that for any $a \in R$ there is an element b of R with aba = a (cf. von Neumann [10]).

Let R be a ring, M an R-module and S a multiplicatively closed subset of R. Then the quotient ring and module of R, M with respect to S are defined as in [2] and denoted by R_S , M_S respectively. If S is the complementary set of a prime ideal \mathfrak{p} in R, then we shall use $R_{\mathfrak{p}}$, $M_{\mathfrak{p}}$ instead of R_S , M_S .

Let R be a ring and T be the set of all non zero divisors in R. Then the quotient ring K of R with respect to T will be called the "total quotient ring" of R. An element u of an R-module M will be called a "torsion element" if tu=0 for some $t \in T$. If we denote by t(M) the set of all torsion elements in M, then t(M) becomes an R-module and will be called a "torsion submodule" of M. If t(M)=M, M will be called a "torsion module", and on the other hand, if t(M)=0, it will be called a "torsion-free" module. Furthermore an R-module M will be called a "torsion-free" module. Furthermore an R-module M will be called a "torsioh-free" module if for any $t \in T$, $u \in M$ there is an element v of M with u=tv.

§ 3. Regular rings and quasi-regular rings.

First we shall prove the following¹⁾

Theorem 1. A ring R is regular if and only if the quotient ring $R_{\mathfrak{m}}$ of R with respect to any maximal ideal \mathfrak{m} of R is a field.

PROOF. The only if part: If R is regular, then any R_m is obviously regular, hence we have only to show that if a local ring R is regular, it is a field. Let m be a maximal ideal of a local ring R. If there is a non-unit a in R, then a is contained in m. Since R is regular, we have $a^2b=a$ for a suitable element b of R, hence (1-ab)a=0. Since $ab \in m$, 1-ab is a unit of R. Therefore a=0. Thus R must be a field.

The if part: Let a be an element of R and set $b = \{b; ba = 0, b \in R\}$. Since any R_m is a field, b is not contained in any maximal ideal m containing a. Setting c = (a, b), c is not contained in any maximal ideal of R and so we have R = (a, b). Since (a)b = 0, (a) is a direct summand of R. Accordingly we have (a) = (e) for a suitable idempotent e of R and also have b = (1-e). Furthermore, if we set d = 1-e+a, then d is clearly a unit of R and we have de = ae = a. So we obtain $ad^{-1}a = a$. This proves that R is regular.

Corollary 1. A ring R is regular if and only if any element of R is expressible as a product of a unit and an idempotent in R.

Corollary 2. Let R be a regular ring and a be a finitely generated ideal of R. Then a is generated by a single idempotent.

¹⁾ The contents of Theorem 1 and its corollary 1 were published in author's paper [3].

PROOF. By Corollary 1 we may assume that \mathfrak{a} is generated by a finite number of idempotents of R. It suffices to show this in case $\mathfrak{a}=(e_1,e_2)$, where e_1,e_2 are idempotents of R. Setting $e=e_1+e_2-e_1e_2$, we obtain easily $e^2=e$ and $ee_i=e_i$ for i=1,2. Therefore $\mathfrak{a}=(e)$. Thus our proof is completed.

Corollary 3. Any regular ring is semi-hereditary.

A ring R is called a "quasi-regular" ring if the total quotient ring K of R is regular.

PROPOSITION 1. Let R be a quasi-regular ring and K be the total quotient ring of R. Let \mathfrak{a} be an ideal of R such that $\mathfrak{a}K \cap R = \mathfrak{a}$. Then R/\mathfrak{a} is also a quasi-regular ring and $K/\mathfrak{a}K$ can be regarded as the total quotient ring of R/\mathfrak{a} .

PROOF. R/\mathfrak{a} can be regarded as the subring of $K/\mathfrak{a}K$ by identifying $R+\mathfrak{a}K/\mathfrak{a}K$ to R/\mathfrak{a} . Then $K/\mathfrak{a}K$ is obviously contained in the total quotient ring of R/\mathfrak{a} . Since the homomorphic image of a regular ring is also regular, $K/\mathfrak{a}K$ is regular. Then the total quotient ring of R/\mathfrak{a} must coincide with $K/\mathfrak{a}K$, for the total quotient ring of a regular ring is itself.

PROPOSITION 2. Let R be a quasi-regular ring with the total quotient ring K and S be a multiplicatively closed subset of R. Then the quotient ring R_S of R with respect to S is also a quasi-regular ring and the quotient ring K_S of K with respect to S is the total quotient ring of R_S .

PROOF. Set $\mathfrak{a}_S = \{a \; ; \; as = 0 \; \text{ for some } s \in S, \; a \in R\}$. Let a be an element of $\mathfrak{a}_S K \cap R$. Then we have $a = a_1 \alpha_1 + a_2 \alpha_2 + \cdots + a_t \alpha_t$, $a_i \in \mathfrak{a}_S$, $\alpha_i \in K$. Let s_i be an element of S for each i such that $s_i a_i = 0$, and set $s = \prod_{i=1}^t s_i$. Then we obtain sa = 0, hence $a \in \mathfrak{a}_S$. This shows $\mathfrak{a}_S = \mathfrak{a}_S K \cap R$. So, by Proposition 1, R/\mathfrak{a}_S is a quasi-regular ring with the total quotient ring $K/\mathfrak{a}_S K$. Since $K_S = K/\mathfrak{a}_S K$ and $K_S \supset R_S \supset R/\mathfrak{a}_S$, R_S is a quasi-regular ring with the total quotient ring K_S .

Proposition 3. Let R be a quasi regular ring and $\mathfrak a$ be a finitely generated ideal of R. Then the following statements are equivalent:

- 1) a is projective.
- 2) For any maximal ideal \mathfrak{m} $\mathfrak{a}R_{\mathfrak{m}}$ is zero or generated by a single non zero divisor of $R_{\mathfrak{m}}$.
 - 3) $a^{-1}a$ is a direct summand of R.
 - 4) a is a direct summand of an invertible ideal of R.

PROOF. The implications $1) \rightarrow 2$ and $4) \rightarrow 1$ are obvious.

The implication $2)\rightarrow 3$: If we set $\mathfrak{b}=\{b\,;\,b\mathfrak{a}=0,\,b\in R\}$, then we have $\mathfrak{b}\subset\mathfrak{m}$ for any maximal ideal \mathfrak{m} of R such that $\mathfrak{a}R_{\mathfrak{m}}=0$. On the other hand, in case $\mathfrak{a}R_{\mathfrak{m}}\neq 0$, $\mathfrak{a}R_{\mathfrak{m}}$ is invertible in $R_{\mathfrak{m}}$ by our assumption. Setting $\mathfrak{a}=(a_1,\ldots,a_n)$ and $\overline{\mathfrak{a}}=\mathfrak{a}R_{\mathfrak{m}}$, we have $\sum_{i=1}^n \overline{\alpha}_i \overline{\alpha}_i = \overline{1},\ \overline{\alpha}_i \in \overline{\mathfrak{a}}^{-1}$, where $\overline{1},\ \overline{\alpha}_i$ are the residues of 1, a_i in $R_{\mathfrak{m}}$ respectively. Set $\mathfrak{a}_{\mathfrak{m}}=\{a\,;\,as=0\ \text{for some }s\in R-\mathfrak{m},\ a\in R\}$.

Since $\bar{\alpha}_i \in \mathfrak{a}^{-1}$, we have $\bar{\alpha}_i \bar{a}_j = \bar{t}_{ij}/\bar{s}_{ij}$, $\bar{s}_{ij} \in R/\mathfrak{a}_{\mathfrak{m}} - \mathfrak{m}/\mathfrak{a}_{\mathfrak{m}}$, $\bar{t}_{ij} \in R/\mathfrak{a}_{\mathfrak{m}}$ for any i and j. If we set $\bar{s} = \prod_{i,j} \bar{s}_{ij}$, we have $\bar{s}\bar{\alpha}_i \bar{a}_j \in R/\mathfrak{a}_{\mathfrak{m}}$. By Proposition 2 we can now choose a representative α_i of $\bar{\alpha}_i$ in K for any i. Furthermore, by choosing suitably an element s' of $R-\mathfrak{m}$, we obtain $s's\alpha_i a_j \in R$ for any i and j, where s is a representative of \bar{s} in R. So $s's\alpha_i \in \mathfrak{a}^{-1}$ for any i. Now we have $ss's'' = \sum (ss's'''\alpha_i)a_i$ for $s'' \in R-\mathfrak{m}$. The left hand side of this formula is not contained in \mathfrak{m} but the right hand side is contained in $\mathfrak{a}^{-1}\mathfrak{a}$. This shows that if $\mathfrak{a}R_{\mathfrak{m}} \neq 0$, then $\mathfrak{a}^{-1}\mathfrak{a} \notin \mathfrak{m}$. Hence, if we set $\mathfrak{c} = (\mathfrak{b}, \mathfrak{a}^{-1}\mathfrak{a})$, \mathfrak{c} is not contained in any maximal ideal of R, and so we have $R = (\mathfrak{b}, \mathfrak{a}^{-1}\mathfrak{a})$. Since $\mathfrak{b}\mathfrak{a}^{-1}\mathfrak{a} = 0$, $\mathfrak{a}^{-1}\mathfrak{a}$ must be a direct summand of R.

The implication $3) \rightarrow 4$). Suppose that $\mathfrak{a}^{-1}\mathfrak{a}$ is a direct summand of R. Then there is an idempotent e of R such that $\mathfrak{a}^{-1}\mathfrak{a} = (e)$. If we set $\mathfrak{b} = (1-e,\mathfrak{a})$, then \mathfrak{b} is invertible as $\mathfrak{b}^{-1} = (1-e,\mathfrak{a}^{-1}e)$. Since \mathfrak{a} is a direct summand of \mathfrak{b} , this proves our assertion.

Proposition 4. Let R be an integrally closed quasi-regular ring with the total quotient ring K and α be an ideal of R such that $\alpha = \alpha K \cap R$. Then R/α is also integrally closed.

PROOF. By Proposition 1 $K/\mathfrak{a}K$ is the total quotient ring of R. Now let $\bar{\alpha}$ be an element of $K/\mathfrak{a}K$ integral over R/\mathfrak{a} . Then we have $\bar{\alpha}^n + \bar{a}_1\bar{\alpha}^{n-1} + \cdots + \bar{a}_n = 0$, $\bar{a}_i \in R/\mathfrak{a}$. Denote by α , a_i representatives of $\bar{\alpha}$, \bar{a}_i in K, R, respectively. Then $\alpha^n + a_1\alpha^{n-1} + \cdots + a_n = \beta \in \mathfrak{a}K$. Since K is regular, we have $\beta = re$ for a unit γ and an idempotent e of K, by Corollary 1 to Theorem 1. Then we have $e \in R$, for R is integrally closed. So $e \in \mathfrak{a} = \mathfrak{a}K \cap R$. From $(1-e)\beta = 0$ we obtain $((1-e)\alpha)^n + a_1((1-e)\alpha)^{n-1} + \cdots + a_n(1-e) = 0$. Since R is integrally closed, we have $(1-e)\alpha \in R$. As $\overline{(1-e)\alpha} = \bar{\alpha}$, $\bar{\alpha}$ must be in R/\mathfrak{a} .

Proposition 5. Let R be a quasi-regular ring. Then R is integrally closed if and only if the quotient ring R_m of R with respect to any maximal ideal m of R is integrally closed. In general, if R is integrally closed, the quotient ring R_8 of R with respect to any multiplicatively closed subset S of R is integrally closed.

PROOF. The only if part is contained in the second part and also the second part is easily obtained from Propositions 2 and 4. Hence we have only to show the if part. Let K be the total quotient ring of R and α be an element of K integral over R. If we set $S = R - \mathfrak{m}$ for any maximal ideal \mathfrak{m} of R, then K_S can be regarded as the total quotient ring of $R_{\mathfrak{m}}$ according to Proposition 2. The residue $\bar{\alpha}$ of α in K_S is, then, integral over $R_{\mathfrak{m}}$, so, by our assumption, we have $\bar{\alpha} \in R_{\mathfrak{m}}$. Hence we have $s\alpha \in R$ for some $s \in S$. If we set $c = \{c : c\alpha \in R, c \in R\}$, then we must have c = R, i.e., $\alpha \in R$.

Proposition 6. Let R be a local quasi-regular ring. If R is integrally closed, then it is an integral domain.

PROOF. Let K be the total quotient ring of R. If K is not a field, then

there exists an idempotent e of K which is not a unit element by Corollary 1 to Theorem 1. Since R is integrally closed, e is contained in R. Then R is expressible as a direct sum of Re and R(1-e). Since R is local, this is obviously a contradiction. Consequently K is a field. Thus R is an integral domain.

Proposition 7. Let R be a quasi-regular ring. Then an R-module M is a torsion-free module if and only if the quotient module $M_{\mathfrak{m}}$ with respect to any maximal ideal \mathfrak{m} of R is a torsion-free $R_{\mathfrak{m}}$ -module.

PROOF. The if part is evident, hence we have only to show the only if part. Suppose that M is a torsion-free R-module and that $\bar{\alpha}\bar{u}=0$ for a non zero divisor $\bar{\alpha}$ of $R_{\mathfrak{m}}$ and an element \bar{u} of $M_{\mathfrak{m}}$. Set $\mathfrak{a}_{\mathfrak{m}}=\{a\,;\,as=0$ for some $s\in R-\mathfrak{m},\,a\in R\}$ and $M'=\{u\,;\,su=0$ for some $s\in R-\mathfrak{m},\,u\in M\}$. Then we may assume $\bar{\alpha}\in R/\mathfrak{a}_{\mathfrak{m}}$ and $\bar{u}\in M/M'$ by multiplying suitably elements of $R/\mathfrak{a}_{\mathfrak{m}}-\mathfrak{m}/\mathfrak{a}_{\mathfrak{m}}$ to $\bar{\alpha}$, \bar{u} . Denote by a a representative of $\bar{\alpha}$ in R and by u a representative of \bar{u} in M. Since $\bar{\alpha}$ is a non zero divisor of $R/\mathfrak{a}_{\mathfrak{m}}$, an ideal $\mathfrak{c}=(a,\mathfrak{a}_{\mathfrak{m}})$ of R contains a non zero divisor b of R for R is quasi-regular. Setting $b=ra+a',\,r\in R,\,a'\in\mathfrak{a}_{\mathfrak{m}}$, we have $b\bar{u}=\bar{r}a\bar{u}=0$. Hence, for a suitable element s of $R-\mathfrak{m}$, we have sbu=0. As b is a non zero divisor, we obtain su=0. This shows $\bar{u}=0$. Thus $M_{\mathfrak{m}}$ is a torsion-free $R_{\mathfrak{m}}$ -module.

§ 4. Characterization by quotient rings and algebraic extension.

Here we shall prove our main theorem.²⁾

Theorem 2. A ring R is semi-hereditary if and only if the total quotient ring K of R is regular and the quotient ring $R_{\mathfrak{m}}$ of R with respect to any maximal ideal \mathfrak{m} of R is a valuation ring.

PROOF. The only if part: Assume that R is semi-hereditary. Then any $R_{\mathfrak{m}}$ is obviously semi-hereditary, hence it is a valuation ring as any finitely generated projective ideal of a local ring is a principal ideal generated by a single non zero divisor. Similarly K is also semi-hereditary. Now suppose that K is not regular. Then, by Theorem 1, there exists a maximal ideal \mathfrak{m}' of K such that $K_{\mathfrak{m}'}$ is not a field but a valuation ring. If we set $\mathfrak{p}' = \{a'; a's' = 0 \text{ for some } s' \in K - \mathfrak{m}', a' \in K\}$, \mathfrak{p}' is a prime ideal of K strictly contained in \mathfrak{m}' . Let a' be an element of \mathfrak{m}' not contained in \mathfrak{p}' . Since K is semi-hereditary, a principal ideal (a') is projective over K. If we set $\mathfrak{b} = \{b'; b'a' = 0, b' \in K\}$, then b' is a direct summand of K and therefore we have $\mathfrak{b}' = (e')$ for a suitable idempotent e' of K. Further set c' = e' + a'. Then c' is contained in \mathfrak{m}' since $a' \notin \mathfrak{p}'$, hence c' is a non unit. On the other hand, if c'd' = 0,

²⁾ Mr. M. Nagata reported to the author that there exists a ring R such that K is not regular but any $R_{\rm m}$ is a valuation ring. So we can not omit the condition that K is regular from the condition in our theorem.

 $d' \in K$, then d'e' = d'a' = 0. Since $d' \in (e') \cap (1-e')$, we obtain d' = 0. Thus c'' is a non zero divisor. Consequently c' is a non unit and a non zero divisor of K. This contradicts the fact that K is the total quotient ring of K.

The if part: Let \mathfrak{a} be a finitely generated ideal of R. Since R is quasi-regular and any $R_{\mathfrak{m}}$ is a valuation ring, \mathfrak{a} satisfies the condition 2) in Proposition 3. Hence \mathfrak{a} is projective. This shows that R is semi-hereditary.

Corollary 1. A ring R is semi-hereditary if and only if any finitely generated ideal of R is a direct summand of an invertible ideal of R.

PROOF. It is obvious by Proposition 3 and Theorem 2.

Corollary 2. A semi-hereditary ring is integrally closed.

PROOF. This follows from Proposition 5 immediately.

Let R be a valuation ring and K be the quotient field of R. Let K' be an algebraic extension of K and R' be the integral closure of R in K'. It is well known that the quotient ring $R'_{\mathfrak{m}'}$ of R' with respect to any maximal ideal \mathfrak{m}' of R' is a valuation ring (cf. [9]). This fact shows, according to Theorem 2, that R' is a Prüfer ring. We shall give a generalization of this to general semi-hereditary rings.

PROPOSITION 8. Let R be a regular ring and R' be a subring of R such that R is integral over R'. Then R' is also a regular ring.

PROOF. By Theorem 1 it suffices to prove that for any maximal ideal \mathfrak{m}' of R' $R'_{\mathfrak{m}'}$ is a field. Now put $S' = R - \mathfrak{m}'$. Then $R_{S'}$ is integral over $R'_{\mathfrak{m}'}$. Therefore any maximal ideal \mathfrak{m} of $R_{S'}$ contains $\mathfrak{m}'R_{S'}$. If we set $\mathfrak{n} = \bigcap \mathfrak{m}$ where \mathfrak{m} runs over all maximal ideals of $R_{S'}$, \mathfrak{n} contains $\mathfrak{m}'R_{S'}$. Since $R_{S'}$ is regular, we have $\mathfrak{n} = 0$, so $\mathfrak{m}'R_{S'} = 0$. Consequently $\mathfrak{m}'R'_{\mathfrak{m}'} = 0$. This shows that $R'_{\mathfrak{m}'}$ is a field.

Let R, R' be regular rings with the common unit element such that $R \subset R'$. Then R' is called an "algebraic extension" of R if R' is integral over R.

Theorem 3. Let R be a semi-hereditary ring and K be the total quotient ring of R. Let K' be an algebraic extension of K and R'' be any intermediate ring between R and K'. Then the integral closure \overline{R}'' of R'' in its total quotient ring is also a semi-hereditary ring.

PROOF. Let K'' be the total quotient ring of R''. Then, by Proposition 8, K'' is regular. Hence we may assume K' = K''. Now let R' be the integral closure of R in K'. Then we have obviously $R' \subset \overline{R}''$. First we shall prove that R' is semi-hereditary. By the definition of algebraic extension K' is the total quotient ring of R'. Then, by Theorem 2, it suffices to show that the quotient ring $R'_{\mathfrak{m}'}$ of R' with respect to any maximal ideal \mathfrak{m}' of R' is a valuation ring. Set $\mathfrak{m} = \mathfrak{m}' \cap R$ and $S = R - \mathfrak{m}$. Then R'_S is a quasi-regular ring with the total quotient ring K'_S by Proposition 2. Since R' is integrally

closed in K', R'_s is integrally closed in K'_s by Proposition 5. Also it is obvious that R'_s is integral over R_m . Hence R'_s is the integral closure of R_m in K'_s . Since we have $R'_{m'} = (R'_s)_{m'R'_s}$, we can suppose that R is a valuation ring. If we set $\mathfrak{p}' = \{a' \; ; \; a's' = 0$, for some $s' \in R' - \mathfrak{m}', \; a' \in R'\}$, then \mathfrak{p}' is a prime ideal of R' by Proposition 6. As is easily seen we can regard $K'/\mathfrak{p}'K' \supset R'/\mathfrak{p}' \supset R$. Since R' is integrally closed, R'/\mathfrak{p}' is also integrally closed in $K'/\mathfrak{p}'K'$ by Proposition 4. Since $K'/\mathfrak{p}'K'$ is an algebraic extension (in the ordinary sense) of the quotient field K of R, R'/\mathfrak{p}' is a Prüfer ring, as is well-known. Now we have $R'_{\mathfrak{m}'} = (R'/\mathfrak{p}')_{\mathfrak{m}'/\mathfrak{p}'}$. Hence $R'_{\mathfrak{m}'}$ must be a valuation ring. Thus R' is semi-hereditary. From this we may assume R = R', K = K' and $R \subset \overline{R}'' \subset K$. Let $\overline{\mathfrak{m}}''$ be a maximal ideal of \overline{R}'' and set $\mathfrak{m} = \overline{\mathfrak{m}}'' \cap R$. Then \mathfrak{m} is a prime ideal of R. If we set $S = R - \mathfrak{m}$, we have $K_S \supset \overline{R}''_S \supset R_{\mathfrak{m}}$. Since $R_{\mathfrak{m}}$ is a valuation ring, \overline{R}''_s is also a valuation ring. Accordingly $\overline{R}''_{\overline{\mathfrak{m}}''} = \overline{R}_s$. Again, by Theorem 2, \overline{R}'' must be semi-hereditary.

§ 5. Homological characterization.

Now we refer to some well-known facts (cf. [2]).

- (I) Let R be a ring and M be an R-module. Then M is R-flat, i.e., w. $\dim_R M = 0$ if and only if for each relation $\sum_i a_i u_i = 0$, $a_i \in R$, $u_i \in M$, there exist elements $r_{ij} \in R$, $v_j \in M$, finite in number, such that $u_i = \sum_j r_{ij} v_j$, $\sum_i r_{ij} a_i = 0$ (cf. [2, VI, Ex. 6]).
- (II) Let R be a ring, M be an R-module and S be a multiplicatively closed subset of R. Then from (I) it follows immediately that R_S is R-flat as an R-module and we have $M_S \cong R_S \otimes M$ as R_S -modules. For any R-modules M, N and any integer $n \geq 0$ we have $(\operatorname{Tor} _n^R(M,N))_S \cong \operatorname{Tor} _n^{R_S}(M_S,N_S)$. If M is an R_S -module, then if we regard M as an R-module, we have $M_S = M$, w. $\dim_R M = \operatorname{w. dim}_{R_S} M$. From these we obtain easily that for any R-module M we have w. $\dim_R M = \sup_m \operatorname{w. dim}_{R_m} M$ and w. gl. $\dim_R M = \sup_m \operatorname{w. gl. dim}_R M$, where m runs over all maximal ideals of R (cf. $\lceil 2 \rceil$, VII, Ex. 9, 10, 11 \rceil).
- (III) Let R be a ring with the total quotient ring K and M be an R-module. Then, by (II) we have w. $\dim_R K = 0$. If we set $\overline{K} = K/R$, then we have an exact sequence

$$0 \to \operatorname{Tor}^{R}_{\mathbf{1}}(M, \, \bar{K}) \to M \to M \underset{R}{\bigotimes} K \to$$

and $t(M) \cong \operatorname{Tor}_{\mathbf{I}}^{R}(M, \overline{K})$. Therefore M is torsion-free if and only if $\operatorname{Tor}_{\mathbf{I}}^{R}(M, \overline{K}) = 0$ and is a torsion module if and only if $M \underset{R}{\otimes} K = 0$. Again, by (II), for any torsion-free divisible R-module M, we have w. $\dim_{R} M = \operatorname{w.dim}_{K} M$ since M can be regarded as a K-module. Conversely any K-module can be regarded as a torsion-free divisible R-module (cf. [2, VII]).

We shall begin with the following

Proposition 9. If a ring R is local, then any finite flat R-module M is always free.

PROOF. Suppose that M is not free but flat. Denote by n the minimum number of elements generating M and by s the minimum number of non zero elements a_i of R such that $\sum_{i=1}^n a_i u_i = 0$ for not all $a_i = 0$ and a minimal base (u_1, u_2, \cdots, u_n) of M. By our assumption there exists such a positive integer s. Now we may assume $\sum_{i=1}^s a_i u_i = 0$ for all $a_i \neq 0$ and $M = (u_1, \cdots, u_s, u_{s+1}, \cdots, u_n)$. Again, by applying (I), we obtain $u_i = \sum_{j=1}^t r_{ij} u_{j}$, $\sum_{i=1}^s r_{ij} a_i = 0$, for $r_{ij} \in R$, $u_j \in M$. If we set $u_j' = \sum_{k=1}^n r_{jk}' u_k$, $r_{jk}' \in R$, then we have $u_i = \sum_{j=1}^t \sum_{k=1}^n r_{ij} r_{jk}' u_k$. Since (u_1, \cdots, u_n) is minimal, $\sum_{j=1}^t r_{sj} r_{js}'$ is a unit of R, and so at least one r_{sj} , of r_{sj} 's is a unit of R. If s = 1, then $a_1 = 0$. This is a contradiction. If s > 1, then we have $a_s = \sum_{i=1}^{s-1} b_i a_i$, $b_i \in R$, as $\sum_{i=1}^s r_{ij} a_i = 0$. If we set $u_i' = u_i + b_i u_s$, for $1 \le i \le s - 1$, then we have $\sum_{i=1}^{s-1} a_i u_i' = 0$ and $M = (u_1', \cdots, u_{s-1}', u_s, \cdots, u_n)$. This is also a contradiction. Thus M must be free.

Theorem 4.30 A local ring R is a valuation ring if and only if w. gl. dim $R \le 1$. Especially it is a field if and only if w. gl. dim R = 0.

PROOF. The only if part is well known (cf. [2, VI, 2.9]). Hence we have only to show the if part. If w. gl. dim $R \le 1$, then any ideal of R is R-flat. By Proposition 9 any finitely generated ideal of R is free, hence it is generated by a single non zero divisor. Thus R is a valuation ring. Suppose that w. gl. dim R = 0. If R is not a field, there exists a non unit $a \ne 0$ of R. Then we have w. dim $_R R/(a) = 0$. Again, by Proposition 9, R/(a) is free. This is obviously a contradiction. Consequently R must be a field.

The following proposition is a special case of [4, Theorem 5].

Proposition 10. A ring R is regular if and only if w.gl. dim R=0.

Proof. Obvious by Theorem 1, 4 and (II).

Proposition 11. For any ring R we have w. gl. dim $R \leq 1$ if and only if the quotient ring R_m of R with respect to any maximal ideal m of R is a valuation ring.

Proof. This follows from Theorem 4 and (II).

We shall now give a characterization of semi-hereditary rings, which is a generalization of Hattori's result (cf. $\lceil 5 \rceil$ and $\lceil 6 \rceil$).

THEOREM 5. For any ring R with the total quotient ring K, the following

³⁾ This theorem and Proposition 9 may be known. However, as these could not be found in any papers, the proofs of these are given here.

conditions are equivalent:

- 1) R is a semi-hereditary ring.
- 2) w. gl. dim $R \leq 1$ and w. gl. dim K = 0.
- 3) For any torsion-free R-module M, we have $w. \dim_R M = 0$.

PROOF.⁴⁾ The equivalence of 1) and 2) follows from Theorem 2 and Propositions 11 and 12. Also the implication $3) \rightarrow 2$) is obvious by (III). Hence it suffices to prove the implication $2) \rightarrow 3$). If M is a torsion-free R-module, then for any maximal ideal \mathfrak{m} of R $M_{\mathfrak{m}}$ is a torsion free $R_{\mathfrak{m}}$ -module by Proposition 7. Since $R_{\mathfrak{m}}$ is a valuation ring, any finite torsion-free $R_{\mathfrak{m}}$ -module is projective (cf. [2, VII, 4.1]). Since Tor_n^R commutes with direct limites, we obtain \mathfrak{w} . dim $_{R_{\mathfrak{m}}}M_{\mathfrak{m}}=0$. Then by applying (II) to M we obtain \mathfrak{w} . dim $_{R}M=0$.

It is shown in [2, VII, 4.1] that an integral domain R is a Prüfer ring if and only if any finite torsion-free R-module is projective. However a finite torsion-free module over a semi-hereditary ring which is not an integral domain is not always projective.

Corollary. For any ring R with the total quatient ring K, the following statements are equivalent:

- 1) R is a direct sum of a finite number of Prüfer rings.
- 2) w. gl. dim $R \le 1$ and gl. dim K = 0.
- 3) Any finite torsion-free R-module is projective.

Proof. The implications $1) \leftrightarrow 2) \to 3)$ are obvious by Theorem 4. Hence we have only to prove the implication $3) \to 2)$. Assume that R satisfies the condition 3). Then, by Theorem 5, we have w. gl. dim $R \le 1$ and w. gl. dim K = 0. Hence it suffices to show gl. dim K = 0, that is, that K is semi-simple. If we set $\mathfrak{p}_{\mathfrak{m}} = \{a \; ; \; as = 0 \; \text{ for some } s \in R - \mathfrak{m}, \; a \in R\}$ for any maximal ideal \mathfrak{m} of R, then $\mathfrak{p}_{\mathfrak{m}}$ is a prime ideal of R. Since any $R/\mathfrak{p}_{\mathfrak{m}}$ is a torsion-free R-module generated by a single element, it is projective by our assumption, and so $\mathfrak{p}_{\mathfrak{m}}$ is a direct summand of R. Accordingly we have $\mathfrak{p}_{\mathfrak{m}} = (e_{\mathfrak{m}})$ for a suitable idempotent $e_{\mathfrak{m}}$ of R. If we set $\bar{e}_{\mathfrak{m}} = 1 - e_{\mathfrak{m}}$ for any \mathfrak{m} and denote by \mathfrak{m} the ideal generated by all $\bar{e}_{\mathfrak{m}}$'s, then \mathfrak{m} is not contained in any maximal ideal \mathfrak{m} of R, hence we have $\mathfrak{m} = R$. Then we have $1 = a_1 \bar{e}_{\mathfrak{m}_1} + a_2 \bar{e}_{\mathfrak{m}_2} + \cdots + a_n \bar{e}_{\mathfrak{m}_n}$, $a_i \in R$, by choosing suitably a finite number of $\bar{e}_{\mathfrak{m}}$'s. Since $\bar{e}_{\mathfrak{m}}$ is contained in $\mathfrak{p}_{\mathfrak{m}}$ ' such that $\mathfrak{p}_{\mathfrak{m}'} \neq \mathfrak{p}_{\mathfrak{m}}$, this shows that there is only a finite number of $\mathfrak{p}_{\mathfrak{m}}$ in R. Consequently K must be semi-simple, as any $\mathfrak{p}_{\mathfrak{m}} K$ is a maximal ideal of K.

The following proposition is a slight generalization of [8, Theorem 1]. Proposition 12. Let R be a semi-hereditary ring whose total quotient ring

⁴⁾ This theorem can be proved by using the similar method as in [6]. However, in this case, we need to use the proof of the only if part of Theorem 2 to show the implication $1) \rightarrow 2$). The condition d) in [6], Theorem 2 can not be generalized without assuming any condition for a ring.

K is semi-simple. Then any finite R-module M is expressible as a direct sum of a torsion-free module and a torsion module.

Proof. By (III) we have an exact sequence

$$0 \to \operatorname{Tor}\nolimits^R_1(M,\,K/R) \to M \to M \underset{R}{\bigotimes} \, K \to \cdots$$

If we set M' = Image M in $M \otimes_{\mathbb{R}} K$, then we have also an exact sequence:

$$0 \to \operatorname{Tor}_{1}^{R}(M, K/R) \to M \to M' \to 0$$
.

Since M' is a finite torsion-free R-module, it is projective by Corollary to Theorem 5. Then the above exact sequence splits and we have $M \cong \operatorname{Tor}^R(M, K/R) \oplus M'$. This proves our assertion.

Finally we shall give a characterization of quasi-regular rings.⁵⁾

Proposition 13. For any ring R the following conditions are equivalent:

- 1) R is a quasi-regular ring.
- 2) Any torsion-free divisible R-module M is R-flat.
- 3) For any R-modules M, N and any $n \ge 1$ $\operatorname{Tor}_n^R(M,N)$ is a torsion R-module. $\operatorname{Proof.}$ Let K be the total quotient ring of R. By (III) we have $\operatorname{w.dim}_R M = \operatorname{w.dim}_K M$ for any torsion-free divisible R-module M. If R is quasiregular, then we have $\operatorname{w.gl.dim} K = 0$ by Proposition 10. Hence $\operatorname{w.dim}_R M = \operatorname{w.dim}_K M = 0$. This shows $1) \to 2$). Let M, N be any R-modules. Applying (II), we have $(\operatorname{Tor}_n^R(M,N))_T \cong \operatorname{Tor}_n^K(M_T,N_T) \cong (\operatorname{Tor}_n^R(M_T,N_T))_T$. If R satisfies the condition 2), then $\operatorname{Tor}_n^R(M_T,N_T) = 0$ for $n \ge 1$ since M_T , N_T are regarded as torsion-free divisible R-modules. Therefore we have also $(\operatorname{Tor}_n^R(M,N))_T = 0$. Since $(\operatorname{Tor}_n^R(M,N))_T \cong K \otimes \operatorname{Tor}_n^R(M,N)$ by (II), $\operatorname{Tor}_n^R(M,N)$ is a torsion R-module by (III). Thus $2) \to 3$) is shown. Let M_K , N_K be any K-module. If we regard M_K , N_K as R-modules and $\operatorname{Tor}_n^R(M_K,N_K)$ is a torsion R-module, we obtain $\operatorname{Tor}_n^R(M_K,N_K) \cong K \otimes \operatorname{Tor}_n^R(M_K,N_K) = 0$ by (II), (III). This proves $3) \to 1$).

Kanto Gakuin University

References

- [1] Y. Akizuki, The theory of local rings, Lecture notes at Univ. of Chicago, 1958.
- [2] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, 1956.
- [3] S. Endo, Note on P. P. rings, Nagoya Math. J., 17 (1960), 167-170.
- [4] M. Harada, Note on the dimension of modules and algebras, J. Inst. Poly. Osaka City Univ., 7 (1956), 17-27.
- [5] M. Harada, A note on Hattori's theorems, J. Inst. Poly. Osaka City Univ., 9 (1958), 43-45.
- [6] A. Hattori, On Prüfer rings, J. Math. Soc. Japan, 9 (1957), 381-385.

⁵⁾ The implications $1) \rightarrow 2)$ and $1) \rightarrow 3)$ in this proposition were first proved by M. Harada [5].

- [7] A. Hattori, A foundation of the torsion theory over general rings, Nagoya Math. J., 17 (1960), 147-158.
- [8] I. Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc., 72 (1952), 327-340.
- [9] W. Krull, Idealtheorie, Berlin, 1935.
- [10] J. v. Neumann, On regular rings, Proc. Nat. Acad. Sci. U. S. A., 22 (1936), 707-713.