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\S 1. Introduction. We shall present a solution of the Schoenflies exten-
sion problem with the following properties:

(1) The dependence of the solution on the transformed initial mapping
$\omega$ will be explicit.

(2) If $\omega$ depends continuously (or differentiably) on a parametric point
$p$ on an arbitrary paracompact space $\Sigma$ (or differentiable manifold $\Sigma$) the
form of the solution will permit us in a later paper to show the continuous
(or differentiable) dependence of an extension on the pair $(p, x)$ , where $ p\in\Sigma$

and $(x)$ is in the euclidean domain of definition of the extension.
(3) The solution will be formally the same in the topological case, $m=0$ ,

as in the differentiable case, $m>0$ .
(4) For fixed $p$ the solution is equivalent to that given by (16.20) of

[2], but will be derived independently without reference to the abstract
manifolds which motivated the derivation of an extension both by Mazur in
[1] and Morse in [2]. See also [5].

According to an abstract presented in December of 1959 by Dr. Frank
Raymond at the Institute for Advanced Study, Morton Brown has prepared
a proof de novo of the Schoenflies extension theorem in the topological case,
based on the “ shell “ hypothesis of Mazur, omitting the hypothesis of Mazur
concerning the semi-linearity of the given mapping near some point of the
shell. The subsequent Note of Morse in [4], to appear in the Bulletin of
the American Mathematical Society, is an extension of a reduction employed
in the differentiable case in [2] in the Compositio Mathematica and con-
tains, we believe, the first proof that the second Mazur hypothesis can
always be satisfied on making a simple reduction of the problem. Thus
the prior announcement by Raymond for Brown and the Note by Morse
have entirely different ends and methods, and, it is believed, will affect the
development of the theory in very different manners.

The methods of the present paper are a refinement of those in [2].

\S 2. A transformation of the problem. A $C^{m}$-diffeomorphism of an open
subset of an euclidean n-space or a differentiable n-manifold will be under-
stood in the usual sense when $m>0$ .
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When $m=0,$ a $C^{m}$-diffeomorphism shall mean a homeomorphism.
Let $E$ be an euclidean n-space, $n>1$ , with rectangular coordinates

$(x_{1}, \cdots, x_{n})=(x)$ . We represent the point $(x)$ by a vector $x$ whose components
are the coordinates of $(x)$ and whose magnitude is denoted by $\Vert x\Vert$ . Let
$S_{n-1}$ be an $(n-1)$-sphere of unit radius in $E$, with center at a point $c$ . Let
$a$ be a constant such that $0<a<1$ . We introduce the n-shell
(2.1) $\delta_{a}=\{x|1-a<\Vert x-c\Vert<1+a\}$ .

Let $\varphi$ be a $C^{m}$-diffeomorphism, $m\geqq 0$ , of $\delta_{a}$ into $E$. We term $m$ the index of
$\varphi$ . If $m=0,$ $\varphi$ is a homeomorphism. Set $\varphi(S_{n-1})=\mathfrak{M}_{n-1}$ . We suppose that
$\varphi$ carries points of $\delta_{a}$ interior to $S_{n-1}$ into points of $E$ interior to $\mathfrak{M}_{n-1}$ .
These conditions on $\varphi$ are termed the shell hypotheses on $\varphi$ .

If $\Sigma$ is a topological $(n-1)$-sphere in $E,$ $j\Sigma$ shall denote the open interior
of $\Sigma$ and $J\Sigma$ its closure.

We state the principal theorem.
THEOREM 2.1. Let $\varphi$ be a $C^{m}$-diffeomorphism of the shell $\delta_{a}$ into $E$ satisfying

the above shell hypothesis.

If rc is a suitably chosen, compact subset of J $S_{n-1}$ , which, when $m>0$ , includes
a suitably chosen point $z$ , there exists a homeomorphism $\Lambda_{\varphi}$ of $\delta_{a}UjS_{n-1}$ into $E$,

which is an extension of $\varphi|(\delta_{a}-\kappa)$ , and, when $m>0$ , is, in addition, a $C^{m}- diffeo-$

morphism into $E$ of
$(\delta_{a}UJS_{n-1})-z$ .

As a consequence,
(2.2) $\Lambda_{\varphi}(JS_{n-1})=J\varphi(S_{n-1})$ .

When $m>0$ Theorem 2.1 has been established in [2], under the weaker
hypothesis (cf. [3]) that $\varphi$ is a $C^{m}$ -diffeomorphism of $S_{n-1}$ onto $9Jt_{n-1}$ . When
$m=0$ , the theorem has been reduced by Morse in [4] to the theorem of
Mazur by showing that no generality is lost if it is assumed that $\varphi$ reduces
to the identity in a neighborhood $N_{Q}$ of a point $Q$ of $S_{n-1}$ . The present
paper will give an independent proof of Theorem 2.1.

The theorem readily implies the following. If the index $m$ of $\varphi$ is
positive then corresponding to an arbitrary point $z\in JS_{n-1},$ $\Lambda_{\varphi}$ and $\kappa$ can be
chosen as affirmed. See Theorem 7.1.

As a consequence of the Lemmas of [4] we can assume without loss
of generality that $\varphi$ reduces to the identity $U$ on a neighborhood $N_{Q}$ of the
“ $x_{n^{-}}pole$ $Q$ of $S_{n-1}$ . The $X_{n}$-pole $Q$ of $S_{n-1}$ , by definition, is the point on
$S_{n-1}$ at which $x_{n}$ assumes its maximum. We shall further simplify the ex-
tension problem by subjecting the space $E-Q$ to a reflection $t$ in an $(n-1)-$

sphere $S_{Q}$ with a center at $Q$ and with diameter $\rho<1$ , so small that J $S_{Q}\subset N_{Q}$

Under $t$ the image of $S_{n-1}-Q$ is an $(n-1)$ -plane $\Pi$ , through $S_{Q}\cap S_{n-1}$ , on
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which $x_{n}$ is constant. This constant will be zero if the origin is chosen
properly on the $x_{n}$ -axis. We suppose the origin so chosen. Setting

(2.3) $\psi(t(x))=t(\varphi(x))$ $(x\in\delta_{a}-Q)$

we obtain a $C^{m}$-diffeomorphism $\psi$ of the subset $t(\delta_{a}-Q)$ of $E$ into $E$, such
that $\psi$ reduces to the identity $U$ on $E-JS_{Q}$ .

The rectangle $K$. Let $K$ be the open n-cube of points $x$ of $E$ such that

(2.4) $(-1<x_{i}<1)$ $(i=1, \cdots, n)$ .
In [2], $K$ was taken as closed. Since J $S_{Q}\subseteq K,$ $\psi$ reduces to $U$ not only on
the complement $CK$ of $K$, but also on a neighborhood of $\beta K$, the boundary
of $K$. The open set on which $\psi$ is defined includes the $(n-1)$-plane $\Pi$ . The
closed set $\zeta$ on which $\psi$ is undefined is included in $JS_{Q}\subset K$. Let $\zeta^{\prime}$ and $\zeta^{\prime\prime}$

be respectively the closed subsets of $\zeta$ on which $x_{n}<0$ and $x_{n}>0$ . The set
$\zeta^{\prime}$ is the image under $t$ of J $S_{n-1}-\delta_{a}$ and $\zeta^{\prime f}-Q$ the image under $t$ of CJ $S_{n-1}$

$-\delta_{a}$ .
The constant $d$ . Let $K_{cl},$ $\nu=1,2,3,4$ , be the open n-rectangles in $K$ on

which
(2.5) $(-1+\nu d<x_{\iota}<1-\nu d)$ $(i=1, \cdots, n)$ ,

choosing $d>0$ so small that $\psi=U$ on $K-K_{1d}$ . Let the open subrectangles
of $K_{\nu a}$ on which $x_{n}<-\nu d$ and $x_{n}>\nu d$, respectively, be denoted by $H^{f}$ and $H^{\gamma\gamma}$

for $\nu=1$ , and by $L^{\prime}$ and $L^{\prime\prime}$ for $\nu=2$ . Let the closures of the subrectangles
of $K_{d}$ on which $x_{n}\leqq-\nu d$ and $x_{n}\geqq\nu d$ , respectively, be denoted by $G^{\prime}$ and
$G^{\prime\prime}$ for $\nu=3$ , and by $\Theta^{\prime}$ and $\Theta^{f/}$ for $\nu=4$ . We suppose $d$ so small that

$\Theta^{\prime}\supset\zeta^{\prime}$ , $\Theta^{\prime\prime}\supset\zeta^{\prime 1}$ .
Note that
(2.6) $H^{\prime}\supset L^{\prime}\supset G^{\prime}\supset\Theta^{\prime}$ , $H^{\prime\prime}\supset L^{\prime\prime}\supset G^{\prime\prime}\supset\Theta^{\prime\prime}$ .

Set $H=H^{\prime}UH^{\prime\prime},$ $G=G^{\prime}UG^{\prime\prime},$ $\Theta=\Theta^{\prime}U\Theta^{ff}$ .
The mapping $\omega$ of $ K-\Theta$ . Let $\omega$ be the $rest_{l^{\prime}}iction$ of $\psi$ to $ K-\Theta$ . Note

that $\omega(K-\Theta)\subset K$.
THEOREM 2.2. If $\Omega$ is a suitably chosen compact subset of $H^{\prime}$ which includes

$G^{\prime}$ , and, when $m>0$ , includes a suitably chosen point $w$ , there exists a homeo-
morphism $\lambda_{\omega}$ of $H^{\prime}$ into $E$ which is an extension of $\omega|(H^{\prime}-\Omega)$ and, when $m>0$ ,
is in addition a $C^{m}$-diffeomorphism of $H^{\prime}-w$ into E. Moreover

(2.7) $\lambda_{\omega}(H^{\prime})=j_{\omega}(\beta H^{\prime})$ .
In \S 7 we shall show that Theorem 2.2 implies Theorem 2.1. The problem

of finding $(\text{{\it \‘{A}}}_{\omega}, w, \Omega)$ so as to satisfy Theorem 2.2 will be termed the problem
$(\omega, H^{\prime}, G^{\prime})$ . We shall represent $\lambda_{\omega}$ explicitly.

Theorem 2.2 will be established in \S 7.
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\S 3. The form of $\lambda_{\omega}$ . Let $D$ be an open n-rectangle which is the union
of points $x\in E$ such that

(3.1) $(-1<x_{i}<9)$ $(i=1, \cdots, n)$ .
Note that $D$ contains the special point $P$ with coordinates $(x)=(8,0. \cdots , 0)$ .

The contraction $a$ . Let $a$ be a $C^{\infty}$-diffeomorphism of $D$ onto $H^{\prime}$ which
leaves $L^{\prime}$ pointwise invariant. Such a contraction may be shown to exist.

The mapping $\sigma$ . In \S 7 we shall establish the existence of a homeomorphism
$\sigma$ of the open set $CG^{\prime}$ into $E$ which extends $\omega|(H^{\prime}-G^{\prime})$ . The mapping $\sigma$ shall
be such that $\sigma(P)=P$ and $\sigma=U$ on some neighborhood of $CD$ . In the differ-
entiable case, $m>0,$ $\sigma$ shall be in addition a $C^{m}$-diffeomorphism of $CG^{\prime}-P$ into $E$.

In this section we shall show how to define the mapping $\lambda_{\omega}$ of Theorem
2.2 in terms of $\sigma$ and $a$ .

The sets $\mathscr{X}^{\prime}\supset X^{\prime}\supset \mathcal{G}^{f}$ . These subsets of $K$ are needed throughout the
paper and are defined by setting

(3.2) $\ovalbox{\tt\small REJECT}^{\prime}=J^{o}\omega(\beta H^{\prime}),$ $\rightarrow C^{\prime}=j_{\omega(\beta L^{\prime})},$
$\mathcal{G}^{\prime}=J\omega(\beta G^{\prime})$ .

The following partitions will be shown to be a consequence of Lemma 4.1,
granting the existence of $\sigma$ in (3.3) and (3.3) :

(3.3) $D=\mathcal{G}^{f}U\sigma(D-G^{\prime})$ ,

$\langle 3.3)^{\prime}$ $D=\ovalbox{\tt\small REJECT}^{\prime}U\sigma(D-H^{\gamma})$ ,

(3.4) $\ovalbox{\tt\small REJECT}^{\prime}=\mathcal{G}^{\prime}\cup\omega(H^{\prime}-G^{\prime})$ ,

$t3.5)$ $J^{\prime}=\mathcal{G}^{\prime}\cup\omega(L^{\prime}-G^{\prime})$ .

As a matter of notation we shall write $f_{1}\cdot f_{2}(A)$ in place of $f_{1}(f_{2}(A))$ .
Since $a$ is a $C^{r}$ -diffeomorphism of $D$ onto $H^{\prime}$ , a mapping $\lambda_{\omega}$ of $H^{\prime}$ into

$E$ can be defined by giving an appropriate definition of $\lambda_{\omega}\cdot a(z)$ for $z\in D$ .
This is what Theorem 3.1 does.

THEOREM 3.1. (i) There exists a solution of problem $(\omega, H^{\prime}, G^{\prime})$ in which

(3.6) $\lambda_{\omega}\cdot a(z)=\omega\cdot a\cdot\sigma^{-1}(z)$ $(z\in\sigma(D-G^{\prime}))$ ,

$(\langle 3.7)$ $\lambda_{\omega}\cdot a(z)=z$ $(z\in \mathcal{G}^{\prime})$ .
(ii) The mapping $\lambda_{\omega}a$ is equivalently overdefined by (3.6) and the condition

(3.8) $\lambda_{\omega}\cdot a(z)=z$ $(z\in X^{\prime})$ .
That (3.6) and (3.7) define a single-valued $\lambda_{\omega}a$ over $D$ follows from the

fact that $D$ admits the partition (3.3). We prove $(\alpha),$ $(\beta)$ and $(\gamma)$ .
$(\alpha)$ The mapping $\lambda_{\omega}a$ is a homeomorphism of $D$ onto $\ovalbox{\tt\small REJECT}^{\prime}$ .
We see that $\lambda_{\omega}a$ maps $\sigma(D-G^{\prime})$ homeomorphically onto

$\omega\cdot a(D-G^{\prime})=\omega(H^{f}-G^{\prime})$
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and $\mathcal{G}^{\prime}$ hcmeomorphically onto $g$ . It accordingly maps $D$ biuniquely onto
$\omega(H^{\prime}-G^{\prime})\cup g=\ovalbox{\tt\small REJECT}^{\prime}$ [by (3.4)].

We now show that the mapping (3.8), restricted to $x^{\prime}-g$ , agrees with
(3.6). By (3.5) and the definition of $\sigma$

(3.9) $1j^{\prime}-\mathcal{G}^{\prime}=\omega(L^{\prime}-G^{\prime})=\sigma(L^{\prime}-G^{\prime})$ .
Hence $z\in t^{\prime}-\mathcal{G}^{\prime}$ has the form $z=\omega(y)=\sigma(y)$ with $y\in L^{\prime}-G^{\prime}$ . Under (3.6),

since $a(y)=y$ on $L^{\prime}$ ,

$\lambda_{\omega}\cdot a(z)=\omega\cdot a(y)=\omega(y)=z$

so that (3.6) and (3.8) agree for $z\in\rightarrow C^{\prime}-\mathcal{G}^{\prime}$ . Since $\sigma(D-G^{\prime})$ and $1j^{\prime}$ are open
subsets of $D$ with $D$ as their union, statement $(\alpha)$ follows.

$(\beta)$ A compact subset $D_{0}$ of $D$ exists such that $D_{0}\supset G^{\prime}UP$ and

(3.10) $\lambda_{\omega}\cdot a(z)=\omega\cdot a(z)$ $(z\in D-D_{0})$ .
Let $D_{0}$ be a closed n-rectangle such that $D\supset D_{0}\supset G^{\prime}$ UP, approximating

$D$ so closely that $\sigma(z)=z$ for $z\in D-D_{0}$ . Statement $(\beta)$ is then true by virtue
of (3.6).

$(\gamma)$ The mapping $\lambda_{\omega}a$ is a $C^{m}$-diffeomorphism of $D-P$ into $\ovalbox{\tt\small REJECT}^{\prime}$ .
Recall that $\sigma(P)=P\in D-G^{\prime}$ . We see from (3.6) that $\lambda_{\omega}a$ defines a $C^{m_{-}}$

diffeomorphism of the open set $\sigma(D-G^{\prime})-P$ into $\ovalbox{\tt\small REJECT}^{\prime}$ . Since $\lambda_{\omega}a$ defines a
$C^{m}$-diffeomorphism of the open set $x^{f}$ onto $1i^{f}$ we conclude that $\lambda_{\omega}a$ defines
a $C^{m}$-diffeomorphism of

$<\mathcal{L}^{\prime\prime\cup}\sigma(D-G^{f})-P=D-P$ (cf. (3.3))

into $\ovalbox{\tt\small REJECT}^{\prime}$ . This establishes $(\gamma)$ .
It follows from (ct), $(\beta)$ and $(\gamma)$ that $\lambda_{\omega}$ , with $\Omega=\alpha(D_{0})$ , and with $w=a(P)$

when $m>0$ , affords a solution of the problem $(\omega, H^{\prime}, G^{\prime})$ . Under $\lambda_{\omega},$ $H^{\prime}$ is
mapped onto $\ovalbox{\tt\small REJECT}^{\prime}$ in accord with $(\alpha)$ .

Method of defining $\sigma$ . The mapping $\sigma$ of $CG^{\prime}$ into $E$ is to extend to $|(H^{\prime}-G^{\prime})$

with $\sigma(x)=x$ on some neighborhood of $CD$ . It remains to complete the
definition of $\sigma$ over $D-G^{\prime}$ .

To that end use will be made of a radial mapping $R$ of $E$ onto $E$ with
fixed point $P$. Under $R$ the point $(x)$ goes into the point $(x^{\prime})$ such that

$x_{1^{\prime}}-8=\frac{x_{1}-8}{2}$ , $x_{J^{\prime}}=\frac{x_{j}}{2}$ $(j=2, \cdots, n)$ .

Let $R^{\gamma}$ be the r-fold iterate of $R$ with $R$ “ the identitv.
The mapping $\omega$ is defined on $ K-\Theta$ . We regard $E$ as the union of the

disjoint sets
(3.11) $R^{r}(\Theta^{f}),$ $R^{r}(\Theta^{\prime\prime})$ $(r=0,1, \cdots)$
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and of a complementary set of the form $MUP$ where $ M_{\cap}P=\phi$ . In \S 5 we $\cdot$

shall give a preliminary extension $\omega_{e}$ of $\omega$ over $MUP$, leaving $\omega_{e}$ undefined
over the sets (3.11), setting $\omega_{e}(x)=x$ on a neighborhood of $CD$ .

The union of the sets (3.11), omitting $\Theta^{\prime}$ , will be written in the form

(3.12) $[\Theta^{\prime\prime}UR^{\rceil}(\Theta^{\prime})]U[R^{1}(\Theta^{\prime\prime})UR^{2}(\Theta^{f})]U\ldots$

where the general term in (3.12) is the union of the pair of sets

(3.13) $R^{r-1}(\Theta^{\prime\gamma}),$ $R^{r}(\Theta^{\prime})$ $(r=1,2, \cdots)$ .
To define $\sigma$ we shall include the r-th pair of closed sets (3.13) in an open$

subset $T_{\gamma}(K)$ of $D$ so chosen that the sets

(3.14) $P,$ $G^{\prime},$ $T_{1}(K),$ $T_{4}(K),$ $T_{3}(K),$ $\cdots$

are disjoint. We first set $\sigma(x)=\omega_{e}(x)$ when $x$ is not in the union of the
sets (3.14). We then set $\sigma(P)=P$ and in \S 7 face the relatively simple task
of defining $\sigma$ over each set $T_{r}(K)$ consistently with the definition of $\omega_{e}$ near
the boundary of $T_{r}(K)$ .

We shall refer to the sets (3.11) as lacunary relative to $\omega_{e}$ and to $T_{r}(K)$

as the container of the lacunary sets (3.13). $T_{r}$ will be defined in \S 6 as a
$C^{\infty}$-diffeomorphism of $E$ onto $E$. Its definition will not depend on $\omega$ .

\S 4. A partition lemma. In this section we shall establish a lemma which
is useful throughout this paper.

Let $\Sigma$ be a topological $(n-1)$-sphere in $E$. Recall that $E$ admits a parti-
tion $E=G_{1}U\Sigma UG_{2}$ , where $G_{1}$ and $G_{2}$ are open connected sets, [6, p. 450].

Moreover $\beta G_{1}=\beta G_{9}=\Sigma,$ [ $6$ , p. 456]. One of the sets $G_{1}$ and $G_{2}$ , say $G_{\rfloor}$ ,

is bounded. Then $J^{o}\Sigma=G_{1}$ by definition of $\mathring{J}\Sigma$ . The set $G_{1}$ can be charac-
terized in two ways:

(a) $G_{1}$ is the maximal bounded connected set of points which does not
meet $\Sigma$ .

(b) If $L$ is a bounded open subset of $E$ such that $\beta L=\Sigma$ then $L=G_{1}$ .
Characterization (b) follows from the preceding laws. For $L\cap G_{1}$ is closed
and open, relative to $G_{1}$ . It is accordingly $G_{1}$ or $\phi$ . Similarly $L\cap G_{2}$ is $G_{2}$

or $\phi$ . Since $L\cap G_{2}\neq G_{2}$ it follows that $L=G_{1}$ .
We shall also make use of the easily proved fact that whenever $\Sigma^{f}$ is a

topological $(n-1)$-sphere included in $\mathring{J}\Sigma$ then $J\Sigma^{\prime}\subset J\Sigma\circ$ .
We term $\mathring{J}\Sigma$ a Jordan region.
Let $S$ be an $(n-1)$-sphere of unit radius. A topological $(n-1)$ -sphere $\Sigma$

will be termed elementary if it can be defined by a homeomorphism $F$ of $S$

onto $\Sigma$ , where $F$ is extensible as a homeomorphism over an open neighborhood
$N$ of S. We suppose that $F$ carries interior points of $S$ in $N$ into interior
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points of $\Sigma$ . Not every topological $(n-1)$-sphere is elementary.
A border $B$ of $J\Sigma$ . Suppose $\Sigma$ elementary. Let $\theta$ be an open spherical

shell in $N$, bounded by $(n-1)$-spheres $S^{\prime}$ and $S^{\prime\prime}$ concentric with $S$, in $N$, and
with radii $\gamma^{\prime}<1$ and $r^{\prime\prime}>1$ respectively. We term $F(\theta)$ a border $B$ of $J\Sigma$ .
Such a border exists in an arbitrarily small neighborhood of $\Sigma$ . It is clear
that $ BUJ\Sigma$ is a neighborhood of $J\Sigma$ which can be taken within an $\epsilon$-distance
of $J\Sigma$ . We note also that

(4.0) $BUJ\Sigma=\mathring{J}F(S^{\prime\prime})$

since the left member of (4.0) is open, bounded and has $F(S^{\gamma f})$ as boundary.
Topological invariance of elementary character of $\Sigma$ . If an elementary

$(n-1)$ -sphere $\Sigma$ is subjected to a homeomorphism $f$ defined over an open
neighborhood $N_{1}$ of $\Sigma$ , then $ f\Sigma$ , as we shall see, is again elementary. In
fact, if the above neighborhood $N$ of $S$ is sufficiently small, then $F(N)\subset N_{1}$ ,
so that $fF$ is a homeomorphic mapping of $N$ into $E$ by virtue of which the
topological $(n-1)$ -sphere $fF(S)$ is elementary.

In proving Lemma 4.1 we shall use the following principle.
(i) If $U$ and $V$ are non-empty, open subsets of $E$ such that $V$ is connected,

$U\subset V$ and $\beta U=\beta V$, then $U=V$.
Since $U$ is open it is sufficient to show that $U$ is closed relative to $V$.

For a relatively closed-open non-empty subset $U$ of $V$ must equal $V$. The
,closure of $U$ relative to $V$ is $\overline{U}\cap V=(\beta UUU)\cap V=(\beta V\cap V)U(U_{\cap}V)=$

$U_{\cap}V=U$ so that $U=V$.
Lemma 4.1 presupposes Hypotheses $(\alpha),$ $(\beta)$ and $(\gamma)$ .
Hypothesis $(\alpha)$ . Let $r$ be an integer on a finite range $(r)=(O, 1, \cdots, p)$ or on

the infinite range $(r)=(O, 1,2, \cdots)$ . Let $Y$ be a Jordan region in E. For each
$\gamma\in(r)$ let $X_{\gamma}$ be the closure of a Jordan region with $X_{\gamma}\subset Y.$ We suppose $\beta X_{r}$

elementary. Set $X=\bigcup_{r}X_{r}$ . If the range $(\gamma)$ is infinite the sets X. shall converge

to a point $P\in Y-X$.
As a matter of notational convenience let $P$ be an arbitrary point in $CY$

when $(r)$ is finite. Then $ Y_{\cap}P=\phi$ when $(r)$ is finite, while $Y_{\cap}P=P$ when
$(r)$ is infinite.

Before making further hypotheses we shall prove (ii).

(ii) The sets $Y-X-(P_{\cap}Y)$ and $Y-X$ are connected. Set $Y-X-(P_{\cap}Y)$

$=A$ . If $A$ is not connected it admits a partition into two non-empty sets $U$

and $V$, open relative to $A$ . We shall then show that $Y-P$ is not connected,
contrary to fact.

Let $B_{r}$ be a border of $X_{r}$ so near to $\beta X_{r}$ that the sets $Z_{r}=\overline{B}_{r}\cup X_{r}$ are
disjoint and do not meet $P$ or $\beta Y$. Let $U^{*}$ be the union of $U$ and the sets
$Z_{r}$ such that $\beta Z_{r}$ meets $U$, and $V^{*}$ the union of $V$ and the sets Z. such that
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$\beta Z_{r}$ meets $V$. Since $\beta Z_{r}$ is connected and included in $A$ , it meets just $one\rightarrow$

of the sets $U$ and $V$, so that $Z_{r}$ is added to just one of the sets $U$ and $V$.
We see then that $U^{*}$ and $V^{*}$ are disjoint. One sees readily that the sets
$U^{*}$ and $V^{*}$ are open. They partition $Y-P$ contrary to the connectedness
of $Y-P$. Hence $A$ is connected.

The closure of $A$ is given by the formula

(4.1) $C1(Y-X-(P_{\cap}Y))=\bigcup_{r}\beta X_{r}U\beta YU(Y-X)$

Thus $A\subset Y-X\subset\overline{A}$ so that $Y-X$ is connected.
Hypothesis $(\beta)$ . Let $f$ be a homeomorphism into $E$ of a subset $\Delta$ of E. $We$

require that
(4.2) $C1(Y-X)\subset\Delta$

and that $\Delta=M^{*}U(P_{\cap}l^{-})$ where $M^{*}$ is an open subset of E. Thus $u’ hen(r)$ is

finite $\Delta$ is open.
As a consequence of Hypothesis $(\beta)$ each boundary $\beta X_{r}$ is in the open

set $M^{*}$ . Observe further that

(4.3) $\beta(Y-X-(P_{\cap}Y))=\bigcup_{r}\beta X_{r}U\beta YU(Y_{\cap}P)$ .

The set $Y_{\cap}P$ is included in $Y-X$. Set

(4.4) $oi=j_{f(\beta Y)}$ $X_{\gamma}=Jf(\beta X_{r})$ $(r\in(r))$ .

Hypothesis $(\gamma)$ . We require that the image $f(y)$ of some point $y\in Y-X$ be
in $\wp$.

LEMMA 4.1. If Hypotheses $(\alpha),$ $(\beta)$ and $(\gamma)$ are satisfied then $\wp$ admits the
partition

(4.5) $c/j=\bigcup_{r}x_{r}u_{f(Y-X)}$

into disjoint sets $f(l^{\gamma}-X)$ and $X_{\gamma},$ $r\in(r)$ .
Note that $f(Y-X)$ is connected since $Y-X$ is connected and $f$ is con-

tinuous. We continue by proving I to VII.
I. $\beta f(Y-X-(P_{\cap}l^{-}))=\bigcup_{\gamma}f(\beta X_{\gamma})Uf(\beta Y)Uf(P\cap Y)$ . Set $Y-X-(P\cap Y)$

$=A$ . Then $A$ and hence $f(A)$ is open. Since Cl $A$ is a compact subset of
$E$ on which the hcmeomorphism $f$ is defined $f(C1A)=C1f(A)$ . Now $\beta f(A)=$

Cl$f(A)-f(A)=f(C1A)-f(A)=f(C1A-A)=f\beta A$ . Relation I now follows from
(4.3).

II. $ f(Y-X)\subset\wp$. At least one point $y\in Y-X$ has an image $f(y)\in qf$

by hypothesis. Moreover $f(Y-X)$ is connected and does not meet $\beta^{q}j$. Hence
II holds.

III. $X_{r}\subset^{Ct}f,$ $r\in(r)$ . It follows from II that

$ f(C1(Y-X))\subset C1\wp$ .
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Hence in particular $f(\beta X_{r})\subset C1^{q_{j}}$. But $\beta X_{r}$ does not meet $\beta Y$ since $X.\subset Y$

by hypothesis. Thus $ f(\beta X_{r})\subset\wp$. It follows that $ x_{r}\subset\wp$.
IV. $X_{\gamma}\subset CEit_{s}\gamma\neq s$ . If this inclusion is false then either $x_{r}\subset x_{s}$ or

$x_{s}\subset x_{r}$ since these sets and their complements are connected and have
disjoint boundaries. If $X_{r}\subset X_{s},$ $\beta X_{r}\subset x_{s}$ . It would follow that a neighbor-
hood of $\beta\ovalbox{\tt\small REJECT}_{r}$ would be included in $X_{s}$ . Thus some points, and hence all’
points of $f(Y-X)$ would be in $x_{s}$ . For $f(Y-X)$ is connected and does not
meet $\beta\ovalbox{\tt\small REJECT}_{s}$ . If $f(Y-X)$ were included in $X_{s}$ , then $f(\beta Y)$ would also be included
in $X_{s}$ contrary to III. We infer the truth of IV.

V. $f(Y-X)cCx_{r}$ . If this inclusion were false then some points and
hence all points of $f(Y-X)$ would be in $X_{r}$ , implying that $f(\beta Y)\subset X_{\gamma}$ con-
trary to III.

We have thus shown that the sets on the right of (4.5) are disjoint and-
that
(4.6) $U\mathscr{L}j_{r}Uf(Y-X)\subset\wp$ .
Setting $d\mathscr{Z}_{7}=X$ we write (4.6) in the form

(4.7) $f(Y-X)\subset c\nu-x$ .

VI. The set $V=c\nu-x-f(P_{\cap}Y)$ is connected. We shall apply (ii) to
establish VI, with $Y$ replaced by $C{}^{t}J,$ $X_{r}$ by $X_{\gamma}$ and $P$ by $f(P)$ .

Note that each $\beta\ovalbox{\tt\small REJECT}_{r}$ is an elementary topological $(n-1)$-sphere. For
$\beta X_{r}=f(\beta X,)$ by definition, $\beta X_{r}$ is elementary by hypothesis, $f$ is a homeo-
morphism defined over a neighborhood of $\beta X_{r}$ , and finally the elementary

character of $\beta X_{r}$ is preserved under $f$. Moreover $ X_{r}\subset\wp$ by III, the $X_{r}$ are
disjoint by IV, and when $(r)$ is infinite the sets $\mathscr{Z}_{\gamma}$ converge to $f(P)$ . Thus.
(ii) applies and shows that $V$ is connected.

VII. The inclusion (4.7) is an equality. To prove that (4.7) is an equality
is equivalent to proving that the inclusion

(4.8) $f(Y-X-(Y_{\cap}P))\subset v-\ovalbox{\tt\small REJECT}-f(Y_{\cap}P)$

is an equality.
Let the left and right members of (4.8) be denoted by $U$ and $V$ respec-

tively. $U$ is open since $Y-X-(Y\cap P)$ is open and $f$ a homeomorphism,
while $V$ is open by strict analogy with $Y-X-(Y\cap P)$ . According to VI, $V$

is connected. Moreover $\beta U=\beta V$, as one sees from I and a formula for $\beta V$

analogous to (4.3). Thus VII follows from (i).

This establishes the lemma.
COROLLARY 4.1. Under the conditions of Lemma 4.1 $c_{tJ}$ admits the partition

$c_{\ell j=}\bigcup_{r}\mathring{X}_{r}Uf(Y-\mathring{X})$

Note. $Ve’,\prime ification$ of hypotheses of Lemma 4.1.
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In each application of Lemma 4.1 the sets $\beta X_{r}$ will be boundaries $W_{r}$ of
n-rectangles or images $ 0\xi$ such boundaries $W_{\gamma}$ under homeomorphisms $\tau_{r}$

into $E$ of an open subset of $E$ which includes $W_{r}$ . Each $W_{r}$ is obviously
elementary, and a homeomorphism $\tau_{r}$ defined over a neighborhood of an
elementary topological $(n-1)$-sphere yields an elementary image $\tau_{r}(W_{r})$ .

The condition $(\gamma)$ of Lemma 4.1 is the only hypothesis likely to cause
difficulty. However each application of Lemma 4.1 will come under one of
two cases.

Case I. In this case the maximum value of the coordinate $x_{n}$ on $\overline{Y}$ is
assumed exclusively on an $(n-1)$-rectangle $k$ , while the maximum value of
$x_{n}$ on $-Qf$ is assumed exclusively on $f(k)$ , and $f(k)$ is an (n-l)-rectangle.

Moreover, as the reader will verify, the mapping $f$ is linear on a neighbor-
hood of $k$ relative to $\overline{\chi}$ and maps this neighborhood onto a neighborhood of
$f(k)$ relative to $-f$.

Case II. This case is like Case I, with minimum replacing maximum.
The partitions (3.4) and (3.5) follow from Lemma 4.1 on setting $ f=\omega$ ,

$\Delta=K-\Theta,$ $X_{0}=G^{f}$ , and $Y=H^{\prime}$ and $L^{\prime}$ respectively. The partition (3.3) fol-
lows from Corollary 4.1 on setting $f=\sigma,$ $\Delta=CG^{\prime},$ $X_{0}=\overline{H^{\prime}}$ and $Y=D$ . The
boundaries of the rectangles involved are obviously elementary topological
($n-$ l)-spheres. Hypothesis $(\gamma)$ is verified as indicated in the Note. The
partition (3.3) follows from (3.3) and (3.4).

\S 5. A preliminary extension $\omega_{e}$ of $\omega$ . To follow the program outlined
at the end of \S 3 we shall first make an easy extension of $\omega$ over a subset
$M$ of $E$ now to be defined.

$T/\iota e$ set $\wedge^{\prime tI}$ The space $E$ admits a trivial partition,

(5.1) $E=\bigcup_{r- 0}^{\infty}R^{r}(K)U$ A $UP$, $[P=(8,0, \cdots, 0)]$

provided $A$ is suitably chosen. The mapping $\omega$ is defined on $ K-\Theta$ . An
open subset $\angle t/I$ of $E$ is now defined by the disjoint union,

(5.2) $M=\bigcup_{r=0}^{\infty}R^{?}(K-\Theta)UA$ .

Definition of $\omega_{e}$
$on\perp\rceil_{j}I$. Let $\omega_{e}$ be defined on $R^{\gamma}(K-\Theta),$ $r=0,1,$ $\cdots$ , as the

” transform “ of $\omega|(K-\Theta)$ under $R_{\gamma}$ . That is, set

(5.3) $\omega_{e}(x)=R^{r}\cdot\omega\cdot R^{-r}(x)$ $[x\in R^{7}(K-\Theta)]$ .
The definition of $\omega_{e}$ over $M$ is completed by setting $\omega_{e}(x)=x$ for $x\in A$ .

To describe $\omega_{e}$ we refer to the subrectangle $K_{a}$ of $K$ defined in \S 2.
LEMMA 5.1. The mapping $\omega_{e}$ of $M$ is a $C^{\prime\prime\iota}$ -diffeomorphism of $M$ into $E$

which reduces to the identity on $A$ and on the “ border” $R^{r}(K-K_{(}I)$ of $R^{r}(K)$
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and maps $R^{r}(K-\Theta)$ into $R^{r}(K)$ .
Since $\omega$ reduces to the identity over $K-K_{d},$ $\omega_{e}$ reduces to the identity

over $R^{r}(K-K_{d})$ . The image of $R^{r}(K-\Theta)$ under $\omega_{e}$ is

$\omega_{e}\cdot R^{r}(K-\Theta)=R^{r}\cdot\omega(K-\Theta)\subset R^{r}(K)$ .
Since $\omega_{e}$ reduces to the identity on $A$ and on the border $R^{r}(K-K_{(l})$ of $R^{r}(K-\Theta)$

we infer that $\omega_{e}$ is locally a $C^{m}$ -diffeomorphism on $M$. It is biunique. For
the image of $A$ is $A$ under the identity. Moreover $R^{r}(K-\Theta)$ is mapped
homeomorphically into $R^{\gamma}(K)$ , while the $s\circ.tsR^{r}(K)$ and $A$ are disjoint in
accord with (5.1).

The extension of $\omega_{e}$ over $MUP$. The mapping $\omega_{e}$ of $M$ into $E$ can be
extended as a homeomorphism over $MUP$ by setting $\omega_{e}(P)=P$.

To verify this, note that this extension is biunique since $\omega_{e}(M)$ does
not meet $P$ in accord with Lemma 5.1. We now show that $\omega_{e}$ is continuous
on $MUP$ at $P$.

Let $\rho_{r}$ be the maximum distance of a point of $R’(\overline{K})$ from $P$. Then
$\rho_{r}\rightarrow 0$ as $ r\uparrow\infty$ . Let $c$ be the vector representing $P$. If $x$ is in $M\cup P$ but
not in one of the sets $R^{\gamma}(K)$ let $\mu(x)=\Vert x-c\Vert$ . If $x$ is in $R^{\gamma}(K-\Theta)$ then
$\omega_{e}(x)$ is in $R^{r}(K)$ in accord with Lemma 5.1, and we set $\chi x(x)=\rho_{r}$ . In any case

$\Vert\omega_{e}(x)-\omega_{e}(c)\Vert\leqq\mu(x)$ .
As $x$ tends to $c,$ $\mu(x)$ tends to zero so that $\omega_{e}$ is continuous on $MUP$ at $P$.

The proof that $\omega_{e}^{-1}$ is continuous at $P$ is similar.
Program for defining $0|T_{\gamma}(K)$ . In \S 6 we shall define a $C^{\infty}$-diffeomorphism

T. of $E$ onto $E$ such that $T_{r}(K)$ is a container of the lacunary sets (3.13).

We shall start with the restriction of $\omega_{e}$ to a border $T_{r}(K-K_{d})$ of $T_{\gamma}(K)$ and
extend this restriction of $\omega_{e}$ over all of $T_{r}(K)$ as our definition of $\sigma$ over
$T_{r}(K)$ .

Partitions of $K$ Sets $\mathscr{X}^{\prime\prime}$ and $\mathcal{G}^{\prime\prime}$ analogous to the sets $\ovalbox{\tt\small REJECT}^{\prime}$ and $\mathcal{G}^{\prime}$ already
defined are introduced by setting

(5.4) $\ovalbox{\tt\small REJECT}^{\prime f}=\mathring{J}\omega(\beta H^{\prime\prime})$
$\mathcal{G}^{\prime\prime}=J\omega(\beta G^{\prime f})$ .

Set
(5.5) $\ovalbox{\tt\small REJECT}=\ovalbox{\tt\small REJECT}^{\prime}U\ovalbox{\tt\small REJECT}^{\prime\prime}$ $4=\mathcal{G}^{\prime\cup g/}$ .
Our partitions of $K$ are
(5.6) $K=\ovalbox{\tt\small REJECT}^{\prime}U\ovalbox{\tt\small REJECT}^{\prime\prime}U\omega(K-H)$ ,

(5.7) $K=\mathcal{G}^{\prime\cup}\mathcal{G}^{\prime\prime}U\omega(K-G)$ ,

consequences of Corollary 4.1 and Lemma 4.1, respectively, setting $f=\omega_{e}$ and
$\Delta=M$. (Cf. 5.2.) Relation (3.4) is analogous to a similar relation in which
$H^{\prime}$ is replaced by $H^{\prime\prime}$ . This new relation and (3.4) give the equality
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(5.8) $\ovalbox{\tt\small REJECT}=gU_{\mathcal{G}^{\prime\prime}}U\omega(H-G)$ .
This is a partition of $\ovalbox{\tt\small REJECT}$. For the sets on the right of (5.7) are disjoint and
hence those on the right of (5.8) are disjoint.

\S 6. The mapping $T$. In \S 3 we have referred to a set $T_{r}(K)$ as the
container of the pair of lacunary sets in (3.13). In this section we shall
define $T_{\gamma}$ and certain associated sets and mappings, starting with a definition
of $T=T_{1}$ .

The mapping $T=T_{1}$ . If $B$ is a bounded subset of $E$ let Int $B$ denote the
smallest n-rectangle $\Pi$ with faces parallel to the coordinate $(n-1)$-planes
and such that $\Pi\supset B$. Referring to the constant $d$ introduced in \S 2, let $Z^{\prime}$

and $z/$’ be respectively the open subsets of $K$ on which $x_{n}<-d$ and $x_{n}>d$.
In \S 9 of [2] we have denoted the sets $Z^{\prime}$ and $Z^{\prime\prime}$ by $H^{\prime}$ and $H^{\prime\prime}$ respec-
tively. In the notation of the present paper the results of [2, \S 9], imply
the existence of a $C^{\infty}$-diffeomorphism $T$ of $E$ onto $E$ such that

(6.1) $T(x)=x$ $(x\in Z^{\prime\prime})$ ,

(6.2) $T(x)=R(x)$ $(x\in Z^{\prime})$ ,

(6.3) $ RT(\overline{K})_{\cap}T(\overline{K})=\phi$ ,

(6.4) $T(\overline{K})\subset Int[\overline{K}UR\overline{K}]$ ,

while the sign of the $x_{n}$-coordinate of $T(x)$ is that of the $x_{n}$-coordinate of $x$ .
The mapping $T_{r+1}$ . We define a $C^{\infty}$-diffeomorphism $T_{r}$ of $E$ onto $E$ by

setting
(6.5) $T_{r+1}=R^{r}T$ $(r=0,1, \cdots)$

and note the basic relations,

(6.6) $ T_{r}(\overline{K})\cap T_{p}(\overline{K})=\phi$ , $ Z^{f}\cap T_{p}(K)=\phi$ $(r>p>0)$

of which the first relations follow from (6.3) and (6.4). The relation in (6.6)

involving $Z^{\prime}$ is the relation $(9.25)^{\prime f}$ of [2]. It follows from (6.4) that $T(K)$

does not meet $P$. Hence $T_{\gamma}(K)$ does not meet $P$.
Partitions used in defining $\sigma$ . Recalling that $Z^{\prime}$ is open, $G^{\prime}$ closed, and

$Z^{\prime}\supset G^{\prime}$ , the relations (6.6) and the above remarks concerning $P$ impiy a
partition,

(6.7) $E=\bigcup_{r=1}^{\infty}T_{r}(K)UG^{f}$ UPUL,

for suitable choice of $L$ . It is by virtue of (6.7) that our definition of $\sigma$

over $CG^{\prime}$ in \S 7 is single-valued. Cf. (3.14). In defining $\sigma$ over $T_{r}(K)$ we
shall make use of the partition, cf. (5.7),

(6.8) $T_{r}(K)=T_{r}(K-\mathcal{G})UT_{\gamma}(\mathcal{G}^{\prime})UT_{\gamma}(\mathcal{G}^{f\prime})$ .
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We note the trivial partition,

(6.9) $T_{r}(K)=T_{r}(K-\Theta)UT_{\gamma}(\Theta^{\prime})UT_{r}(\Theta^{\prime\prime})$

(6.10) $=T_{r}(K-\Theta)UR^{\gamma}(\Theta^{f})UR^{r-1}(\Theta^{\prime\prime})$ .

According to (6.10), $T_{r}(K)$ is a container of the lacunary sets (3.13).

The partition (6.8) of $T_{r}(K)$ leads naturally to a covering of $T_{r}(K)$ by
open sets,
(6.11) $T_{r}(K)=T_{r}(K-\mathcal{G})UT_{r}(\ovalbox{\tt\small REJECT}^{\prime})UT_{\gamma}(\ovalbox{\tt\small REJECT}^{\prime\prime})$ ,

noting that $\ovalbox{\tt\small REJECT}^{\prime}U\ovalbox{\tt\small REJECT}^{\prime\prime}\supset \mathcal{G}^{\prime\cup g\prime}$ in accord with (5.8). It is on the basis of the
covering (6.11) that we shall define $\sigma$ on $T.(K)$ .

The mapping $\alpha_{r}$ . We set

(6.12) $\alpha_{r}(x)=T_{r}\cdot\omega^{-1}\cdot T_{r^{-1}}(x)$ $[x\in T_{r}(K-\mathcal{G})]$ .
Under $\alpha_{\gamma},$ $T_{r}(K-\mathcal{G})$ is mapped onto $T_{r}(K-G)$ as follows from the relation

(6.13) $K-G=\omega^{-1}(K-\mathcal{G})$ (cf. (5.7)).

To further orient our procedures it will be useful to term the subsets of
$T,(K-\mathcal{G})$ ,

$T_{r}(\ovalbox{\tt\small REJECT}-\mathcal{G})$ , $T_{r}(K-K_{a})$ ,

the inner and outer borders of $T_{r}(K-\mathcal{G})$ , noting that

$K-K_{a}\subset\omega(K-G)=K-\mathcal{G}$

by virtue of (5.7). We prove the following lemma.
LEMMA 6.1. The mapping $\alpha_{r}$ reduces to the identity on the outer border $Oj$

$T_{r}(K-\mathcal{G})$ .
This is an immediate consequence of the fact that $\omega(x)=x$ for $x\in K-K_{d}$ ,

and the definition of $\alpha_{r}$ in (6.12).

The inner border of $T_{r}(K-\mathcal{G})$ is the union of two disjoint sets (cf. (5.6)),

(6.14) $T_{r}(\ovalbox{\tt\small REJECT}^{\prime}-\mathcal{G}^{\prime})$ , $T_{r}(\ovalbox{\tt\small REJECT}^{\prime\prime}-g’)$ ,

in terms of which we state the following lemma.
LEMMA 6.2. On the inner border of $T_{r}(K-\mathcal{G})$ the mapping $\omega_{e}\alpha_{\gamma}$ is independent

of $\omega$ , reducing to the mappings,

(6.15) $R^{\gamma}T_{r^{-1}}$ , $R^{r-1}T_{r^{-1}}$

on the respective sets (6.14).

By definition of $\alpha_{r}$

(6.16) $\omega_{e}\cdot\alpha_{\gamma}(x)=\omega_{e}\cdot T_{r}\cdot\omega^{-1}\cdot T_{r^{-1}}(x)$ $[x\in T_{\gamma}(K-\mathcal{G})]$ .
In evaluating this mapping on the first set in (6.14) one is led to evaluate
$\omega_{e}\cdot T_{\gamma}\omega^{-1}$ on $\ovalbox{\tt\small REJECT}^{\prime}-\mathcal{G}^{\prime}$ . The definition of $\omega_{e}$ on $R^{r}(K-\Theta)$ , namely $\omega_{e}=R^{r}\omega R_{-}^{-r}$ ,
and relations,
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$T_{r}=R^{r-1}T$, $T|H^{\prime}=R|H^{\prime}$ ,

imply that on $\mathscr{X}^{f}-\mathcal{G}^{\prime}=\omega(H^{\prime}-G^{\prime})$ ,

(6.17) $\omega_{e}T_{r}\omega^{-1}=\omega_{e}R^{r-1}T\omega^{-1}=\omega_{e}R^{r}\omega^{-1}=R^{\gamma}$ .
Thus

$\omega_{e}\cdot\alpha_{r}(x)=R^{r}T_{r^{-1}}(x)$ $[x\in T_{r}(\ovalbox{\tt\small REJECT}^{\gamma}-\mathcal{G}^{f})]$

as stated in the Lemma. The evaluation of $\omega_{e}\alpha_{r}$ on the second set in (6.14)

is similar, using the definition $T|H^{\prime\prime}=U|H^{\prime\prime}$ .

\S 7. The definition of $\sigma$ . Lemmas 6.1 and 6.2 suggest the following.
LEMMA 7.1. Consistent with the definition of $\omega_{e}$ on the outer border of

$T_{r}(K-4)$ we can define $\sigma$ on $T_{r}(K)$ as a mapping of $T_{r}(K)$ into $E$ such that

(7.0) $\sigma(x)=\omega_{e}\cdot\alpha_{r}(x)$ $[x\in T_{r}(K-\mathcal{G})]$ ,

(7.1) $\sigma(x)=R^{r}\cdot T_{\gamma}^{-1}(x)$ $[x\in T_{\gamma}(\ovalbox{\tt\small REJECT}^{\prime})]$ ,

(7.2) $\sigma(x)=R^{r-1}T_{r^{-1}}(x)$ $[x\in T_{r}(\ovalbox{\tt\small REJECT}^{\prime\prime})]$ .
Then $\sigma$ defines a $C^{m}$-diffeomorphism of $T_{r}(K)$ into $E$ such that

(7.3) $\sigma T_{r}(K)=J^{o}\omega_{e}(\beta T_{\gamma}(K))$ .
To show that a mapping of an open subset of $E$ into $E$ is a $C^{m}- diffeo-$

morphism it is sufficient to show that it is locally a $C^{m}$-diffeomorphism and
is biunique. It follows from Lemmas 6.1 and 6.2 that $\sigma$ is single-valued on
$T_{r}(K)$ , agrees with $\omega_{e}$ on the outer border of $T_{\gamma}(K-\mathcal{G})$ , and is locally a $C^{m_{-}}$

diffeomorphism. Applying $\sigma$ to the sets in the partition (6.8) of $T_{r}(K)$ one
sees that
(7.4) $\sigma\cdot T_{r}(K)=\omega_{e}\cdot T_{\gamma}(K-G)UR^{r}(\mathcal{G}^{\prime})UR^{r-1}(\mathcal{G}^{\prime f})$

where the sets on the right of (7.4) are the (l-l)-images under $\sigma$ of the
respective sets on the right of (6.8). Hence the mapping a of $T_{r}(K)$ is a
$C^{m}$-diffeomorphism if (7.4) is a partition.

Proof that (7.4) is a partition. We shall apply Lemma 4.1 setting $(r)=$

$(0,1)$ and
(7.5) $Y=K$, $X_{0}=G^{\prime}$ , $X_{1}=G^{\prime\prime}$ , $f=\omega_{e}T_{r}$ , $\Delta=T_{r^{-J}}(M)$ .
The condition (4.2) on $\Delta$ takes the form

(7.6) Cl $T_{r}(K-G)\subset M$ .
To verify (7.6) recall that CM, as defined in (5.2), is the union of $P,$ $\Theta^{\prime}$ and
the lacunary sets (3.13). The set Cl $T_{r}(K-G)$ does not meet $P$, nor $\Theta^{\prime}$ in
accord with (6.6), nor the lacunary sets $R^{r}(\Theta^{\prime}),$ $R^{r-1}(\Theta^{f\prime})$ by virtue of (6.10),

nor the remaining lacunary sets by (6.6). Thus (7.6) holds. The condition
$(\gamma)$ for the applicability of Lemma 4.1 is verified as in the Note at the end
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of \S 4.
In accord with the definitions of $X_{0},$ $X_{1}$ , ec and $QJ$ in \S 4 and of $T_{\gamma},$

$\sigma_{r}$

and $f$,
(7.7) $x_{0}=Jf(\beta X_{0})=J\omega_{e}\cdot R^{\gamma}(\beta G^{\prime})=JR^{\gamma}\cdot\omega(\beta G^{\prime})=R^{r}(\mathcal{G}^{\prime})$ ,

(7.8) $X_{1}=Jf(\beta X_{1})=J\omega_{e}\cdot R^{r-1}(\beta G^{\gamma/})=JR^{r-1}\cdot\omega(\beta G^{\prime\prime})=R^{7-1}(\mathcal{G}^{f\prime})$ ,

(7.9) $Qj=Jf(\beta Y)=J^{\neg}\omega_{e}T_{r}(\beta K)=0j\omega_{e}(\beta T_{r}(K))$ ,

(7.10) $f(Y-X)=f(K-G)=\omega_{e}T_{r}(K-G)$ .
Lemma 4.1 gives the partition
(7.11) $\wp=f(Y-X)Ux_{0}ux_{1}$ .
The sets on the right of (7.11) are the respective sets on the right of (7.4).

Hence (7.4) is a partition.
By virtue of (7.9) and the equality of the right members of (7.4) and

(7.11), (7.3) holds.
Completion of definition of $\sigma$ . The mapping $\sigma$ is to be defined over $CG^{\prime}$ .

It has been defined on the disjoint sets $T_{r}(K),$ $\gamma=1,2,$ $\cdots$ . The mapping $\omega_{e}$

is defined over $E$ except on the sets
(7.12) $R^{r}(\Theta^{\prime})$ , $R^{\gamma}(\Theta^{\prime\prime})$ $(r=0,1,2, \cdots)$

each of which, except for $\Theta^{\prime}$ , is included in the domain on which $\sigma$ has
been defined. Since $G^{\prime}\supset\Theta^{\prime}$ one can accordingly complete the definition of
$\sigma$ over $CG^{\prime}$ by setting $\sigma(x)=\omega_{e}(x)$ at all points of $CG^{\prime}$ where $\sigma$ is not yet
defined. This leads to Lemma 7.2.

LEMMA 7.2. If one defines $\sigma$ on the sets $T_{\gamma}(K)$ as in Lemma 7.1 and at
each other point $x$ of $CG^{\prime}$ sets $\sigma(x)=\omega_{e}(x)$ , then $0$ is a homeomorphism of $CG^{\prime}$

into $E$ and defines a $C^{m}$-diffeomorphism of $CG^{\prime}-P$ into $E$ .
We commence with a proof of I.
I. The mapping $\sigma$ is continuous at $P$.
We have already seen in \S 5 that $\omega_{e}$ is continuous on $MUP$ at $P$. It is

accordingly sufficient to prove that the restriction of $\sigma$ to the union of $P$

and the sets $T_{r}(K)$ is continuous at $P$. But this follows at once from the
fact that the sets $T_{\gamma}(K)$ converge to $P$ as $ r\uparrow\infty$ , and hence the sets $\sigma\cdot T_{r}(K)$ ,
as can be seen from (7.3), recalling the continuity of $\omega_{e}$ . Thus the sets
$\sigma\cdot T_{r}(K)$ converge to $P$ with $T_{7}(K)$ as $\gamma\uparrow\infty$ .

Since the definition of $\sigma$ on the outer border of $T_{r}(K-\mathcal{G})$ is consistent
with the definition of $\omega_{e}$ on this border it follows that $\sigma$ defines a $C^{m_{-}}$

diffeomorphism into $E$ of some neighborhood of each.point of $CG^{\prime}$ , excepting
at most $P$. It remains to prove that $\sigma$ is a homeomorphism. Since $\sigma(x)=x$.

for $x$ in a neighborhood of $CD$ it is sufficient to prove II.
II. The mapping $\sigma$ defines a homeomorphism of $D-G^{\prime}$ into $D$ .
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We shall apply Lemma 4.1 with $Y=D,$ $f=\omega_{e},$ $\Delta=MUP$ and $(r)$ infinite.
Set
(7.13) $X_{0}=G$ ‘, $X_{r}=T_{r}(\overline{K})$ , $\mathfrak{B}_{r}=J\omega_{e}(\beta T_{\gamma}(K))$ $(r>0)$ .
In accord with the definition of $\sigma$

$\sigma(D-G^{\prime})=\bigcup_{r=1}^{\infty}\sigma\cdot T_{7}(\overline{K})U\omega_{e}[D-G^{\prime}-\bigcup_{r=1}^{\infty}T_{\gamma}(\overline{K})]$

(7.14)

$=\bigcup_{r=1}^{\infty}\mathscr{L}j_{r}U\omega_{e}[D-\bigcup_{\gamma=0}^{\infty}X_{r}]$ ,

making use of (7.3). To show that $\sigma|(D-G^{\prime})$ is biunique it is sufficient to
show that (7.14) is a partition of $\sigma(D-G^{\prime})$ .

Proof that (7.14) is a partition. Consistent with the notation of \S 4 set

(7.15) $X_{0}=\mathcal{G}^{\prime}$ , $X=\bigcup_{\gamma=0}^{\infty}X_{\gamma}$ .

We shall use Lemma 4.1 to show that $D$ admits the partition

(7.16) $D=\bigcup_{r=0}^{\infty}\ovalbox{\tt\small REJECT}_{r}U\omega_{e}(D-X)$ .
The right member of (7.16) is identical with the right member of (7.14)

except for the addition of the set $x_{0}$ . If (7.16) is a partition, (7.14) is then
necessarily a partition.

In the application of Lemma 4.1 one verifies (4.2) in the form $C1(Y-X)$

$\subset MUP$. This follows at once from the relation $\mathring{X}=\bigcup_{r=0}^{\infty}\overline{X}_{r}\supset C(MUP)$ . Cf.

proof of (7.6). The condition $(\gamma)$ for the applicability of Lemma 4.1 is
satisfied since $P$ is in $Y-X$ and $\omega_{e}(P)=P\in D=Y=c_{l\vee}J$. We infer that (7.16),

and hence (7.14), is a partition.
The continuity of the inverse of $\sigma$ at $P$ is readily established taking

account of the fact that $\omega_{e}$ is a homeomorphism, mapping $P$ into $P$, that
each set $\sigma\cdot T_{\gamma}(\overline{K})$ is bounded from $P$ and the sets $T_{\gamma}(\overline{K})$ converge to $P$ as
$ r\uparrow\infty$ . We conclude that $\sigma$ is bicontinuous and biunique and hence a homeo-
morphism.

This completes the proof of Lemma 7.2.
Now that the existence of $\sigma$ is established, Theorem 3.1 implies the

existence of a solution $(\lambda_{\omega}, w, \Omega)$ of problem $(\omega, H^{\prime}, G^{\prime})$ in Theorem 2.2. The
domain of definition of $\lambda_{\omega}$ is $H^{\prime}$ . The image of $H^{\prime}$ under $\lambda_{\omega}$ is $\ovalbox{\tt\small REJECT}^{\prime}$ . The
mapping $\lambda_{\omega}$ is a homeomorphism into $E$. It is a $C^{m}$-diffeomorphism on $H^{\prime}-w$

and is an extension of $\omega|(H^{\prime}-\Omega)$ . We complete the necessary information
concerning $\lambda_{\omega}$ by proving the following.

$(\pi)$ The set $\mathscr{X}^{\prime}$ does not meet the point $Q\in S_{n-1}$ .
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Under the reflection $t$ in \S 2 the subspace of $E$ on which $x_{n}<0$ , is mapped

onto J $S_{n-1}$ . Since $x_{n}<0$ on the closure of $H^{\prime}$ , the set $t(H^{\prime})$ and its boundary
(which we denote by $\Sigma$) are included in $js_{n-1}$ . Moreover $\Sigma,$ $S_{n-1}$ and the
set $\mathring{J}(S_{n-1})-J(\Sigma)$ are included in the shell $\delta_{a}$ . Recall that

(7.17) $\varphi(\Sigma)\subset J^{o}\varphi(S_{n- 1})$

since $\varphi$ carries points of $\delta_{a}$ interior to $S_{n-i}$ into points interior to $j\varphi(S_{n-1})$ .
Since $\varphi(Q)=Q\in S_{n-1},$ $Q$ is in $\varphi(S_{n-1})$ . Hence $J^{o}\varphi(\Sigma)$ does not meet $Q$ . It
follows that $jt\cdot\varphi(\Sigma)$ does not meet $Q$ . But

(7.18) $t\varphi(\Sigma)=t\cdot\varphi\cdot t(\beta H^{\prime})=\omega(\beta H^{\prime})=\beta\ovalbox{\tt\small REJECT}^{\prime}$

in accord with the definition of $\omega$ and the definition of $\mathscr{X}^{\prime}$ in (3.2). Since
$\mathring{J}\beta\ovalbox{\tt\small REJECT}^{\prime}=\ovalbox{\tt\small REJECT}^{\prime}$ we conclude that $\mathscr{X}^{\prime}$ does not meet $Q$ .

Proof of Theorem 2.1. To satisfy Theorem 2.1 it is necessary to define
the elements $(\Lambda_{\varphi}, z, \kappa)$ appearing in Theorem 2.1.

Since $I2\subset H^{\prime}$

(7.19) $t(\Omega)\subset j\Sigma\subset JS_{n-1}o$

Set $ t(\Omega)=\kappa$ and $t(w)=z$ . Since $ w\in\Omega$ we have $ z\in\kappa$ .
According to the definition of $\omega$ and $\lambda_{\omega}$ , for $ y\in t(H^{\prime}-\Omega)=J^{o}\Sigma-\kappa$ ,

\langle 7.20) $\varphi(y)=t\cdot\omega\cdot t(y)=t\cdot\lambda_{\omega}\cdot t(y)$ .
One can define $\Lambda_{\varphi}$ over the set,

(7.21) $J^{o}S_{n-1}U\delta_{a}=\mathring{J}\Sigma U\delta_{a}=\kappa U\delta_{a}$ ,
by setting
(7.22) $\Lambda_{\varphi}(y)=\varphi(y)$ $(y\in\delta_{a}-j\Sigma)$ .
(7.22) $\Lambda_{\varphi}(y)=t\cdot\lambda_{\omega}\cdot t(y)$ $(y\in j\Sigma)$ .

We must verify that $\Lambda_{\varphi}(y)$ is well defined in (7.22), taking account of the
domains of definition of $t$ and $\lambda_{\omega}$ . Now $tj(\Sigma)=H^{\prime}$ . By virtue of (2.7) and
the above statement $(\pi)$ ,

\langle 7.23) $\lambda_{\omega}(H^{\prime})=\ovalbox{\tt\small REJECT}^{\prime}$ , $\lambda_{\omega}(H^{\prime})_{\cap}Q=\phi$ .
By virtue of (7.21) and (7.20) $\Lambda_{\varphi}$ is equivalently defined by setting

(7.24)i $\Lambda_{\varphi}(y)=\varphi(y)$ $(y\in\delta_{a}-\kappa)$ ,

(7.24) $\Lambda_{\varphi}(y)=t\cdot\lambda_{\omega}\cdot t(y)$ $(y\in\kappa)$ .
The definitions of $\Lambda_{\varphi}(y)$ in (7.22) and in (7.24) are obviously the same, except
at most when $ y\in\mathring{J}\Sigma-\kappa$ . For such points $(y),$ $\Lambda_{\varphi}(y)$ is defined both in (7.22)

and in (7.24), and these definitions are the same by virtue of (7.20).
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Each point $(y)$ at which $\Lambda_{\varphi}$ is defined is in $\mathring{J}\Sigma$, or in the interior of
$\delta_{a}-\mathring{J}\Sigma$ in (7.22), except points $(y)\in$ X. The latter points are interior to
$\delta_{a}-\kappa$ in (7.24). Hence $\Lambda_{\varphi}$ is locally a homeomorphism. It is locally a $C^{m_{-}}$

diffeomorphism except at most at $z$ .
The mapping $\Lambda_{\varphi}$ is an extension of $\varphi|(\delta_{a}-\kappa)$ by virtue of (7.24). That

$\Lambda_{\varphi}$ is biunique may be seen as follows. The restricted mappings defined by
(7.22) and (7.22) are separately biunique. One verifies readily that the sets

$\Lambda_{\varphi}(\mathring{J}\Sigma)$ , $\Lambda_{\varphi}(\delta_{a}-\mathring{J}\Sigma)$

are included in the interior of $\varphi(\Sigma)$ and its complement respectively, and
are accordingly disjoint. The biuniqueness of $\Lambda_{\varphi}$ follows. The relation (2.2)

is a consequence of the fact that $\Lambda_{\varphi}(js_{n-1})$ is a maximal connected bounded
subset of $E$ which does not meet $\varphi(S_{n-1})$ . Cf. proof of (4) in [4].

This establishes Theorem 2.1.
The case $m>0$ . It follows from the results of [3] and [2, \S 5], that

when $m>0$ the existence of a $C^{m}$-diffeomorphism $\Phi$ of an $(n-1)$-sphere $S_{n-1}$

onto an $(n-1)$-manifold $\ovalbox{\tt\small REJECT} t_{n-1}$ in $E$ implies the existence of a $C^{m}- diffeomor-$

phism $\varphi$ of a suitably chosen shell $\delta_{a}$ into $E$, where $S_{n-1}$ is included in $\delta_{a}$

and $\varphi$ extends $\Phi$ over $\delta_{a}$ . Hence one obtains Theorem 0.1 of [2] as a
corollary of Theorem 2.1 of this paper.

We here state another and equivalent formulation of Theorem 2.1. This
new formulation meets the needs of our forthcoming paper on “ The depend-
ence of the Schoenflies extension on an accessory parameter,” Journal d’
Analyse Math\’ematique.

We suppose here that $W$ is an open neighborhood of an $(n-1)$ -sphere $S$

in $E$, and let $\varphi$ be a $C^{m}$-diffeomorphism, $m\geqq 0$ , of $W$ into $E$ which maps
points of $W$ exterior to $S$ (interior to S) into points exterior to $\varphi(S)$ (interior

to $\varphi(S))$ . Let $Z$ denote the center of S.
THEOREM 7.1. If $N$ is a $ suJ\pi$ciently small open neighborhood of $S$ there

exists an extension $\Lambda_{\varphi}$ of the restriction
$\varphi|(N\cup(W-JS))$

of $\varphi$ which is a homeomorphism of $W^{\cup}IS$ into $E$ and which, $u\cdot henm>0$ , is,
in addition, a $C^{m}$-diffeomorphism into $E$ of

$(WUJS)-Z$ .
If the theorem is satisfied by $N$ and $\Lambda_{\varphi}$ it is also satisfied by $N_{1}$ and $\Lambda_{\varphi}$ ,

where $N_{1}$ is any open neighborhood of $S$ such that $N_{1}\subset N$. For a proof of
Theorem 7.1 see a forthcoming Note: Proc. Nat. Acad. Sci. U. S. A.

Institute for Advanced Study.
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