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Some properties of the Stone-Cech compactification.

By Hisahiro TAMANO

(Received Jan. 17, 1959)

In this note, we shall investigate some topological and uniform pro-
perties of Tychonoff space X (completely regular 7T;-space) in connection
with the properties of the Stone-Cech compactification AX.

The existence of compactification, the complete regularity and the uni-
formizability are equivalent each other, so that the Stone-Cech compacti-
fication may reasonably be expected to play an important role in the theory
of uniform spaces. The consideration of uniformity U= {V,} in fXx X
leads us to consider the set R= Q V,, where V, denotes the interior of the

closure of V, taken in gXxpBX. The set R defined above will be called
throughout as the radical of uniform space (X, ¢/). We shall show that the
radical determines topologically the completion X of (X, w). In fact, X is
obtained as a quotient space X/® (with the quotient topology), where X=
{(peBX; (p,p)= R} and R is the relation on X defined by the radical R.
The completeness will be characterized in terms of the radical as follows:
(X, V) is complete if and only if R=4y. As a direct consequence of this,
we shall obtain a necessary and sufficient condition for an entirely normal
space to be topologically complete (Theorem 2.2). (We call the space X
entirely normal if the family of all neighborhoods of the diagonal of Xx X
forms a uniformity for X.) The condition is stated as a property of points
contained in AX—X (points at infinity). A slightly stronger condition will
be examined as well, and the relationship between entire normality and
paracompactness will be made clear in a simple form (Theorem 2.3).

The idea to treat the completion of uniform space in connection with
the compactification is due to H. Nakano [1I]. We shall be concerned with
the completion of uniform space in §3 and discuss some topological pro-
perties of the completion of uniform space in terms of the radical.

I wish to express my deep gratitude to Prof. A. Kobori and Prof. A.
Komatsu for their kind encouragements. Also, I express my hearty thanks
to Prof. M. Yamaguchi and Prof. T. Mori for their valuable remarks.
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§1. Preliminary.

In the first place, we shall state some lemmas concerning regularly open
sets, which will be used in the following arguments. For the sake of
convenience, we shall use the following notations. Let X be a subspace of
a topological space Y, and A a set in X, then the closure of A taken in X
(or in Y) will be denoted by Cly(A) (respectively, Cly(A4)). Similarly, the
interior of A will be denoted by Inty(A) or Inty(A) according as it is taken
in Xorin Y. A set F in a topological space X is said to be regularly open
if the interior of the closure of F'is identical with F, that is, F'= Int »(Cl x(F)).
Evidently, it is an open set.

Lemma 1.1. Let X be a topological space and A a regularly open set in X.
Let B be an open set which is not contained in A. Then there is an open set C
contained in B such that CNA = ¢.

Proor. If B Cly(A), then BCInty(Clgx(A))=A. Therefore we have
B a Clg(A), and C= BA[Clx(A)]¢ is obviously a desired one.

Lemma 1.2. Let X be a dense subspace of a topological space Y and A a
set in X. Then Intx(Clx(A)) = Inty(Cly(ANNX.

Proor. The inclusion Intx(Clg(A)) D Inty(Cly(A)NX is obvious. There-
fore we have only to prove the reversed inclusion. If p is any point of
Int4(Cl4(A)), then there is in Y an open set U(p) containing p such that
Up)n X Cix(A) = Cly(A)NX. It follows that U(p)Cly(A) and p is there-
fore contained in Inty(Cly(A)NX. For, if U(p) ¢ Cly(A), then U(p)\[Cl,(A)I°
is a non-void open set in Y and since X is dense in Y it must contain a
point of X, which contradicts the above fact that U(p)n X Clyz(A)nX.
Thus we have Intz(Clx(A)) C Inty(Cly(A)NX, and the proof is completed.

Lemma 1.3, Let X be a dense subspace of a topological space Y.

(@) If A is regularly open in Y, then ANX is also regularly open in X.

(b) B (C X) is regularly open in X if and only if B=Inty,(Cly(B)nX.

(¢) If A is vegularly open and B is open in Y and if ANXD BNX, then
ADB. Therefore two regularly open sets A, B in Y ave identical if and only if
ANnX=BnX.

Proor. In view of Lemma 1.2, statement (a) follows easily by a direct
computation: ANXC Intx(Clz(ANX)) =Int (Cly(ANX)DNXC Inty(Cly(ANNX
= AN X, hence Intx(Cly(ANX))=ANX. Statement (b) is also an immediate
consequence of Lemma 1.2. We now establish the statement (c). Suppose
that A » B, then there will be an open set CC B such that CnA=¢, by
Lemma 1.1. Since X is dense in Y, it follows that there is a point p= X
such that p& A and p € B, which contradicts the assumption that ANXD
B~ X. Thus we have ADB. Moreover, if both A and B are regularly open
and AnX=BnX, then we have ADB and BD A and hence A=B. On the
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other hand, it is evident that A= B implies AnX= B~X. The proof is
completed.

Throughout the sequel, we shall limit ourselves to consider the Tychonoff
spaces (completely regular T,-spaces). Let X be a Tychonoff space. A com-
pactification BX of X is a compact Hausdorff space containing a dense
subspace homeomorphic with X. The Stone-Cech compactification AX is
the space of all maximal ideals in the ring C(X) of all real-valued continuous
functions on X, whose topology base is given by the family of open sets
V= {V,; feCX)}, where <V, denotes the set of all maximal ideals which
do not contain £.» It is characterized among the compactifications of X by
the fact that every bounded continuous function fe C¥(X) has a unique
continuous extension over fX,» where C*(X) denotes the ring of bounded
real-valued continuous functions on X. The clucial properties of the Stone-
Cech compactification are provided by the following theorems.

Tueorem 1.1 (éech). Any compactification BX of X is the image of fX
under a (unique) continuous map ¢ such that X' = @(X) is homeomorphic to X
and ¢(fX—X)=BX—X".

For the proof, see [2, p. 831].

Tueorem 1.2 (Stone). If f is any continuous map of a Tychonoff space X
into a compact Hausdorff space Y, then | has a (unique) continuous extension f*
which carries fX into Y.

For the proof, see [9, p. 153]. (cf. [16, Theorem 88.])

There exists an important subspace vX of X, which is called sometimes
real compactification of X. It is a subspace of pX consisting of all real
ideals in C(X), which is defined to be a maximal ideal I such that the
quotient field C(X)/M is isomorphic to the real number field. vX is charac-
terized by the following properties”: (1) XCvXC fX; (2) every continuous
function on X has a continuous extension over vX; (3) for each point
pe fX—vX there is a continuous function fe C(X) such that f can not be
continuously extended over the point p (cf. [8, p. 90]).

Upon applying the above theorem (Theorem 1.2) to fe(C(X) and any
compactification BR of real number space R, we have a continuous exten-
sion® f* of f over X. Let X, be the set of points p & X such that f*(p)
€ R, then X, is the maximal subspace of AX over which f can be continu-
ously extended. It is easy to see that X, is open (dense) in X and that
vX= (N X;. A space such that vX=X is called a Q-space?. As is well

fecx)

1) Cf. [8]
2) Ci. [Z]
3) BR-valued extension (f* is a function on 58X to BR).

4) Cf. [8] [1]
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known, there is another definition of @Q-space due to L. Nachbin, which may
be stated as follows: X is a Q-space if and only if it is complete relative
to the weakest uniformity for X with respect to which every continuous
function is uniformly continuous. The equivalence of these two definitions
will be established in the next section. At this moment, we prove the
following

Prorosition L1. Let Vy={(p,q) € Xx X; |f(p)—fl@)| <1} and let V, be
the interior of the closuve of Vy taken in BXxBX. Then X;={p<c X; (DD
e Vf}. Therefore we have 4d,x =fEQX) I7f, where 4,z ={(p,p) € FXxBX; psvX}.

Proor. Let f° be the extension of f over X, and let V"= {(p,¢) € X}
x X5 1FUAP)—Sg)| < 1}. Since 17} is regularly open in A X x 8X, IN/fm(Xfx X5
is also regularly open in X,x X, by Lemma 1.3, (a). It is evident that
[V, A x X)INnXxX) = V,A(Xx X)D V=V, °~(Xx X), and therefore we
have V,~\(X;x X;) D V,* by Lemma 1.3, (c). Put dx = {($, p) € BXx pX; p € X;},
then clearly dx, C V5 and~ we have AXfC Vs. On the other hand, if (p,¢) =
BXx pX is contained in V;, then there is in fXx BX an open neighborhood
of (p,q) of the form U(p) x W(g) such that U(p)x W(g)C 17}. Let x be a point
of Up)nX and put f(x)=ga, then |[f(y)—ae|=1 for each ye= U(p)nX and
therefore f must be bounded on U(p)nX. It follows that pe X}, for if
p<« X;, then for each U(p)nX and for each positive integer = there is
ze U(p)nX such that f(z) >#n. Similarly, we have ¢ X,, and therefore
(9,9 € X;x X; for each (p, @) € 17}. Thus, we have VfCX,fo and hence
medﬁxc(Xfof)f\Al;X:A{f. Consequently Asz fo\ABX, and it ~follows
that X;={pe pX; (p,p) € V;}. Finally, it is easy to see that N\ V,=dgy,

JECHX)

and the last statement follows immediately from the fact that vX= N X,
Feo(Xx)

§ 2. Characterization of complete uniform spaces and some topological
spaces.

Let X be a Tychonoff space. Let {V,} and {Vy’} be two equivalent
uniformities for X. Then for each V, there is a V}’ contained in V,, and
it follows that Vy’ <V, for some Vy, where Va and V' are the interiors
of the closures of Va and Vj’ respectively taken in fXx fX. Similarly, for
each V,’ there isa V; such that Vi 17@’. Therefore R = Q V, is identical

with R’ = @ 173’, and consequently the set R is determined by the uniform

structure for X. The set R defined above will be called throughout this
research the radical of uniform space (X, {V,}). In this section we treat
the characterization of the completeness in terms of the radical. A neces-
sary and sufficient condition for the completeness will be given in Theorem
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2.1. However, the proof of the sufficiency of the condition requires some-
what intricate considerations, so it will be given in the next section. We
shall use the notations and the basic results concerning Cauchy filters that
are used in A. Weil’s monograph [187]

Prorosition 2.1. Let {C,} be a Cauchy filter of a complete uniform space
(X, {V)) and let C, denote the closure of C, in a compactification BX of X.
Then N\C, is a point of X.
Proor. If (X, {V,}) is complete, then there is a point p= X such that
the Cauchy filter {p} is equivalent to {C,}. It follows that p= N C, and
a

that for each V, there is a C, such that C,C V,(p), in view of the definition
of equivalent Cauchy filters. Let g (#p) be any point of BX, then there is
obviously a neighborhood U(p) of p such that Clgx(U(p)) ¢. On the other
hand, it is clear that V,(p)C U(p)AXC U(p) for some V,, and it follows
that ¢ is not contained in C, for some a. This proves the proposition.

ProposiTion 2.2. Let X be a dense subspace of a Tychonoff space Y and

let {V,} be a uniformity for X, where each V, is assumed to be symmeltric and
regularly open in XxX. Let V, be the interior of the closure of V, taken in

YxY. Then VoV, Vyo Vo and therefore Ve Vi © V, implies that Vo Ve ¥,
Proor. Suppose that V,oV,a¢ V,oV,. Then there is by Lemma 1.1 an

open set C V.oV, such that Cn VZ:IJ/(,:@ since mm is regularly open
and I7wo IZ, is open in Yx Y. Let (p,q) be a point of C~\(Xx X), then (p, ')
= V, and (, ¢) = V, for some point ' € Y. Since X is dense in Y and since
V., is open in Y x Y, there is a point » = X such that (p, e V, and (,¢)
V.. It follows that (p,ne V,AXxX)=V,, np<s V,n(XxX)=V, by
Lemma 1.3, (b), and therefore (p,¢9) € VoV, But this contradicts the fact

that Cn mfm:@ and therefore we have V, oV, Ir/;JV,,. The last state-
ment is an immediate consequence of this fact.

As the radical is determined by the uniform structure for X, we may
assume throughout, without loss of generality, that each member V, of a
uniformity U={V,} is symmetric and regularly open.

Tureorem 2.1. A uniform space (X, {V,}) is complete if and ownly if the
radical is identical with the diagonal 4dy. That is, me:R:A x> Where dx =
{(p D) e XXX, pe X}

Proor. (Necessity.) As it is evident that 4, R, it is only necessary
to show that 4,DR. If (p,¢) =R, then (p,q) V, for each V,, and since
V, is open there are open neighborhoods Uyp), W,(q) of p and g respectively
such that U,(p)x W, (g)< V.. By virtue of Proposition 2.2, there is for each
Ve a V, such that V,eV,c Vs It follows that Uy(p)x Ulp) < Voo Vo V
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and W,(q)x Wnig) < V,e V, Vs, and therefore [(U(p)\Y Waul@)N\X 1 x [(ULp)\V
WAINX)]S (Vo V)NXx X)C V(X% X) =V This implies that {C,} =
{(ULVY W)X} is a Cauchy filter relative to the uniformity {V,}. By
virtue of Proposition 2.1, it follows that p =g € X, since p Q\C, and g Q'C_w

and therefore 4D R. Thus we have 4= R, and the necessity of the
condition is proved.

Proof of the sufficiency will be given in the next section.

CoroLLary 1. A complete metric space is a Gy in pX.

Proor. Let {V,} be the metric uniformity for X and let X, ={pc pX;
(p,p)= V). Then X, is open and dense in AX and it follows from the

above theorem that X={pepX; (p,p)ef:\1 V)= /3 (peX;(p,pe V)=
[an. Hence X is a G; in gX.

Remark. It is worth while to notice that each locally compact space
X is open and dense in AX,» and that each complete metric space X is an
intersection of a countable number of open dense subsets of X as we have
just observed. These are deservedly the situtation that Baire’s theorem
should hold; namely, each countable intersection of open dense subset of
X is itself dense in X.

CoroLrary 2. X is a Q-space if and only if it is complete relative to the
weakest uniform structure with vespect to which every continuous function is
uniformly continuous.

Proor. The uniform structure stated in this proposition is given by
the uniformity generated by {Vf,n}f%(;m, where V,,={(p,9 € Xx X; |f(p)—

fl@)] <1/2%}. The proof may easily be completed by Theorem 2.1 and Pro-
position 1.1.

A space X is said to be topologically complete if there is a uniformity U
such that (X, ) is complete. We now discuss some topological properties
which are closely related to topological completeness. If the family of all
neighborhoods of the diagonal of X'x X forms a uniformity for X, then we
shall say that the space X is ewtirely normal. It is well known that each
paracompact space is entirely normal® and that each entirely normal space
is collectionwise normal” hence is normal. J. Kelley [9] suggests the pos-
sibility of characterizing paracompactness by the entire normality plus
another condition similar to topological completeness, and an answer was
given by H. Corson [4]. We are now able to give another result on this
problem. First, we observe the relationship between entire normality and

5) See [7]
6) See [6]
7) See [3]
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topological completeness.

TueEOREM 2.2. An entively normal space X is topologically complete if and
only if there is for each point p < BX—X a regularly open set V in BXxBX
containing Ay such that Vs (p, D).

Proor. By virtue of Theorem 2.1, it follows that X is topologically
complete if and only if there is a uniformity {V,} = U such that n V,=dy,

and therefore the necessity of the condition is clear. Suppose conversely
that for each pefX—X there is VpDd4y such that Ve3(p,p). Then

(Peﬂf; XVp)f\AgXZ—“ dx and it follows immediately that X is complete relative

to the universal uniform structure, by Theorem 2.1.

ExampLeE:. There is an example of entirely normal space which is not
topologically complete. Let £, be the set of all ordinals less than the first
uncountable ordinal £, and let r be the order topology for £, Then the
topological space (£, 7) is entirely normal as may easily be seen from the
fact that VD dg, for each neighborhood V of the diagonal of Xx X. Simi-
larly, it is clear that (£, r) is not topologically complete (see [5]).

The following theorem establishes a relationship between paracompact-
ness and entire normality. ,

Theorem 2.3. A space X is paracompact if and only if it is entirvely normal
and there is for each compact set G in X—X a regularly open set V containing
dy such that VﬂAG =@, where dq¢={(p, p) = X = X; p = G}.

Proor. (Necessity.) To prove the necessity, we have only to construct
a regularly open set V' in AXx AX containing 4y such that V~4;=¢. For
each point p e X, there is in AX an open neighborhood U(p) of p such that
Clgx(U(p))NG = ¢. Consider a covering {U’(p)}, where U'(p) = U(p)nX, and
take a locally finite refinement {U;} of {U'(p)}. Let 3 ¢,=1 be a locally
finite partition of unity subordinate to the refinement {U,} and put d(p,q)
=2 19:0)—9i@|. Then d(p,q) defines a pseudo-metric for X. Put V=
{(p,) e XxX; dp,g)<1/2} and let V be the interior of the closure of V
taken in fXxBX. We shall show that (z,2) & V for each z& G, which will
complete the proof. Suppose that there is ze G such that (z,z)= V, then
W(z)x W(z)c V for some neighborhood W(z) of z. Let p be a point of
W(z)NX, then there exists only a finite number of ¢;s, say ¢,, -+, ¢,, which

do not vanish at p. We put H;={x< X; ¢:(x) >0}. Since g L”)lHk implies
k=

that d(p,q) =1, it follows that W(z)mX(:k\_nj1 H, and hence z is contained in

Clﬁx(kQHk)- But H; is clearly contained in some U(p), since {U,;} is a

refinement of {U’(p)}, and therefore CIBX(’Q H,) is disjoint from G. Thus,

we have a contradiction, and the necessity is then proved.
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(Sufficiency.) Let {U,} be any open covering of X. For each U, there
is U,* which is open in BX such that U,*nX=U,. Put F,=(U,*° and put
F=NF,, then F is a compact set which is contained in fX—X. There is

a regularly open set V containing 4, such that VnAF:gb, in view of our
assumption. Put V, = VN\(Xx X), then since X is assumed to be entirely
normal there is a V, such that V,eV,C Vi. It follows that there is a
countable family {V,} such that V,-V,C V,.,. We now consider the space
(X, 7) topologized by the uniformity {7V,}. Obviously, (X,7) is pseudo-
metrizable hence is paracompact.® Let d be the pseudo-metric such that
d(p,q) =1 whenever (p,q) < V,, and consider a covering {G(p)} of X, where
G(p)={qe X, d(p,q) <1/2°}. Let {W,} be a locally finite open refinement
of {G(p)}, then Clpz(W)NF=¢ as we now verify. Since the original topo-
logy for X is stronger than r, {W;} is necessarily an open locally finite
refinement with respect to the original topology. By the same reason,
de(q) =d(p,q) is a bounded continuous function on X with respect to the
original topology and hence it has a continuous extension d} over FX, in
view of Theorem 1.2. Suppose that Clpgx(W)NF+# ¢ for some W), and let r
be a point of Clgx(W)NF. Since W,CG(p) for some p< X, there is for
each neighborhood U(») of  a point g U)X such that dp(g) <1/2% It
follows that d¥(r) =1/22 and therefore W)X C V,*(p) for some neighborhood
W(r) of r, where Vy*= {(p,q) € Xx X; d(p,q) <1/2}. It is clear that V,*-V,*
C Vi.  Therefore (W(NAX)x (WANX)C V¥ Vi*c Vi V, and we have
W@)x Wir)c V. This implies that (r,7) e V and hence VmAF;b ¢, which is
a contradiction. Consequently, we have a locally finite covering {W,} of
X consisting of open sets W, in X such that Clgx(W)NF=¢. Returning
to the covering {U,} of X, we find that {U,*} covers W,l:Clﬁx(W,l), for
{U*} covers BX—F and W,c gX—F. Since W, is compact, there is a
finite number of U,*, say U,%, ---, U,* which cover W,. Putting W;n\U,% = Hj 5
and constructing a finite open sets H,y, for each 1 in this way, we have a
locally finite refinement {H,,} of {U,}. The proof is completed.

From the proof of the preceding theorem, we have:

CoroLLarY.?) A space X is paracompact if and only if for each compact
set FC RX—X, there is an “ entourage” V such that Vf\AF:qS.

We now give a characterization of the topological completeness.

Tueorem 2419 A space X is topologically complete if and only if for each
point pe BX—X, there is a locally finite partition of unity 3 ¢,=1 such that
0=0;=1 and ¢;*(p)=0 for each X, where ¢, C(X) and @¢;*¥ denotes the

8) See [9, p. 160] or [14].
9) J. Nagata’s result [10, Corollary] may be derived from this corollary.

10) Cf. [17]
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continuous extension of ¢, over BX.

Proor. From the proof of the sufficiency of the preceding theorem, it
follows that if X is topologically complete, then for each point p= pX—X,
there is a covering {W,} such that Clgx(W;) 2p. It should be noticed here
that the space (X, r) mentioned above is paracompact and that {W;} is a
locally finite covering of (X, 7). It follows that there is a locally finite
partition of unity 3 ¢;=1 subordinate to { W,}. Since the original topology
for X is stronger than r, ¢, is continuous and 3 ¢;=1 is a locally finite
partition of unity with respect to the original topology for X. The necessity
is then proved. Conversely, if the condition of the present theorem is
satisfied, then there is for each point p € fX—X an “entourage” V such
that V' (p,5). (Let V={(5,5) € Xx X; @) —¢u(»)| <1/2}, then V' (5,5)

as may easily be seen from the proof of the necessity of the above theorem.)
It follows that X is topologically complete, in view of Theorem 2.1.

A space X is said to be pseudo-compact if and only if C(X)=C*X); in
other words, every continuous function on X is bounded.

CororLrary. Every pseudo-compact topologically complete space is compact.

Proor. Suppose that X is topologically complete and is not compact,
then there will be a point p= gX—X. We have by Theorem 2.4 a locally
finite partition of unity X ¢,=1 such that ¢;*(p) =0 for each 2. It is clear

that the number of ¢,’s is infinite, since f} ¢, =1 implies that i ¢:*=1 on
k=1 k=1
BX which is impossible. Choose an enumerable infinite number of ¢,’s, say
@, Pry o, and put = 3 ay9i, where @, is a constant such that there is
k=1

pe X for which a,¢:(p) > k. Then % is evidently an unbounded continuous
function on X, and therefore X can not be pseudo-compact. It follows that
every pseudo-compact topologically complete space must be compact.

We now give a characterization of the pseudo-compactness in terms of
the uniformity.

TueoreMm 2510 A space X is pseudo-compact if and only if each uniformity
for X is totally bounded.

Proor. Notice first that if X is a dense subspace of Y and if X is
pseudo-compact, then ¥ must be pseudo-compact. Let U be any uniformity
for X and let X be the completion of (X, 4/). Then X is obviously a pseudo-
compact topologically complete space. Therefore X must be compact in
view of the preceding corollary. It follows that < is totally bounded.
Conversely, if each uniformity for X is totally bounded, then we have
vX=p8X by corollary 2 of Theorem 2.1. It is clear that vX= gX implies

11) This is a generalization of P. Samuel’s result [12, Theorem XV].
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C(X)=C*X), since C(X)=C@¥X) and C*X)=C(8X). This completes the
proof.

§ 3. Completion of uniform space.

Let (X,{V,}) be a uniform space and let (X{V,,,}) be its completion.
Let X and X be the Stone-Cech compactification of X and X respectively.
Then AX is also a compactification of X, and therefore there is by Theorem
1.1 a continuous map ¢ of BX onto fX such that ¢ induces a homeomor-
phism on X and ¢(BX—X)=pX—X’, where X’ =¢(X). Putting O(p,q) =
(9(9), ¢(g)), we have a continuous map @ of X x AX onto fXx BX such that
@ induces a homeomorphism on XxX and O X'xX)=XxX. We put
o(X)=X and O(XxX)=X'xX’, and the image of V, with respect to the
map @ will be denoted by V,/. It will be assumed throughout that each
V, is symmetric and regularly open in X x X and also that V,/ = IZ,(\(X’ x X").
Then, we have:

Lemma 3.1, The interior of the closure of V,/ taken in ,8)? X ,8)? is identical
with that of V.

Proor. To prove that Intﬁgxﬁg((}lﬂ,}xgg(n’))=Intggxgjf(CIngﬁj(f’w)), it is
only necessary to show that the restrictions on X’ x X’ of both sides of this
equality is identical, by virtue of Lemma 1.3, (¢). Since 17“ is assumed to be
regularly open and since V, = Awm(X’xX’), it follows that V,’ is regularly
open in X’ x X’ by Lemma 1.3, (a), and therefore V,’ = Intpz.px(Clpz«px(Va' NN
(X’ x X") by Lemma 1.3, (b). Similarly, we have Intpz.p3(Clpzxpi( Vw))m(X’ x X’)
= Intpz.px(Claz s V) N X x )NX % X) = Vo(X' x X') = V,/, and the proof
is completed.

Prorosition 3.1. Let V, and V,j* be the interiors of the closures of V,
and 17@ taken in BXx BX and BX x BX respectively. Then, vV, D0 1(V,*).

Proor. It is evident that V, is regularly open and ®-1(V,*) is open in
BXxpBX. By virtue of Lemma 1.3, (c), it is sufficient to show that V,m
XxX)DO0 (V5N (XxX). Since @ induces a homeomorphism on Xx X, it
follows from Lemma 3.1 that OV )N\ XxX)=0"Y(V, IXN0O"(X' x X))
O (VIHNX x XN =0V, )= V,= V.n(XxX). The proof is completed.

The following proposition shows that the radical R is identical with
the complete inverse image of 43 (in AXx fX) with respect to the map O.

Proposition 3.2. A point (p,q) € BX x BX is contained in R if and only if
P(p) = () € X. .

Proor. If (p,q9) = R, then (p,q)= V, for each «, and there are open
neighborhoods U,(p), W,(q) of p and g respectively such that U,(p)x Wnlg)
— V,, since V,is open. The similar argument done in the proof of Theorem
2.1 yields the fact that {C,} = {(U.(p)\IW ()X} is a Cauchy filter relative



114 H. TaAMANO

to the uniformity {V,} for X. Therefore {¢(C,)} ={C,’} is also a Cauchy
filter relative to the uniformity {17,,} for X. Since ¢: BX— A X is continuous
and since p & Clgx(C,), g  Clgx(C,) both ¢(p) and ¢(g) are contained (n Claz(Cy)),
and it follows that ¢(p)=¢(q) € X by Proposition 2.1. Conversely, if o(p) =
o(g) e X, then (¢(p), 9(g)) is contained in V,* and hence (p, q) € O~ (¢(p), ¢(g))
co YV, V, for each a, by Proposition 3.1. It follows that (p,¢) € R,
and the proof is completed.

We are now able to complete the proof of Theorem 2.1.

Proor or Turorem 2.1. (Sufficiency.) Suppose that (X, {V,}) is not com-
plete, then there will be a point ¢’ € X which is not contained in X’ = ¢(X).
Let g be a point in X such that ¢(q) =¢’, then (¢,9) € R by Proposition 3.2,
and since ¢ X it follows that R+ 45, which contradicts the assumption of
the theorem. Thus, the sufficiency of the condition of Theorem 2.1 is proved.

We now give a new construction of the completion of a uniform space,
which has close connection with that of H. Nakano [11]. To this end, we
prepare a lemma which concerns with the closed relations.

Lemma 3.2. Let R be a closed relation on Y, and let X be a Subspace of
Y swuch that o~ (p(X)) = X, where ¢ denotes the canonical map of Y onto Y/R.
Let Ry be the restriction of R on X. Then the quotient space X/Rx is homeo-
morphic with ¢(X) and Ry is a closed relation on X.

For the proof, see [1, p. 85, Proposition 27.

Tueorem 3.1. Let X be the completion of a uniform space (X,{V,}) and
let X be the subspace of BX consiting of the point p = BX such that (p,p) < R,
where R denotes the radical of (X, {V,}). Then R defines a closed relation R
on X, and the completion X is homeomorphic with the quotient space X/R.

Proor. First, we observe that R defines a relation ® on X. According
to Proposition 2.2, there is for each V, a ¥V}, such that 17,;0 VBC V. It
follows that R-R =R and therefore R defines a relation on X, since R is
obviously symmetric and RD4i (cf. [9, p. 9]). Next, the map ¢ of pX
onto X defines a closed relation ®* on fX and ¢ is precisely the canonical
map of X onto fX/R* (=pX). On the other hand, Proposition 3.2 shows
that p X if and only if ¢(p)= X. Therefore X=¢"1(X) and consequently
we have ¢~ !(¢(X))=X. Finally, it follows from Proposition 3.2 that the
relation ® on X defined by the radical R is identical with the restriction
on X of the relation ®*. Now, the proof may easily be completed by
Lemma 3.2.

Remark 1. By virtues of Proposition 2.2 and Lemma 3.1, we can see
that the family {17,,,}, where szlnt;xx #(Clz.2(V,)), defines a uniformity for
X, and therefore (X, {V,}) is precisely the completion of (X, {V,}).

Remarx 2. It is easy to see that the restriction of ¢ on X is a closed
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map. Therefore, if X is normal (or paracompact), then X is also normal
(respectively, paracompact'?) as may easily be seen.

CoroLrary. Let U and U’ be two uniformities for X. Then, the comple-
tions of X relative to these two uniformities arve homeomorphic each other if and
only if the radicals are homeomorphic.

Proor. By virtue of Proposition 3.2, it follows that R is determined by
the map ¢ as follows: R={(p,q) € fXx BX; ¢(p)=9(q) X}, and the neces-
sity of the condition is then clear. The converse follows immediately from
the preceding theorem.

We now discuss the possibility of extending continuous functions on X
over the completion X in terms of the radical.

Tueorem 3.2. Let X be the completion of a wuniform space (X, V). Then,
a continuous function f<CX) has a continuous extension over X if and only
if V. contains the radical R for each n, where V,, is the interior of the
closure of Vi, taken in fXxBX and V;,={(p,q) € XxX; |f(p)—f@|<1/2"}.

Proor. Suppose that f has a continuous extension f over X. Then,
since X=¢"1(X) (by Proposition 3.2), f=fo¢ is a continuous function on
X. Let f° be the extension of f over X, then clearly X— X; and we have
F(D)=fop(p)=rp) for each p= X. Reviewing the proof of Proposition 1.1,
we can see that (p,g)e V., if (p,9) € X;xX; and [FU(p)—r(q)| <1/2% If
(»,9) € R, then ¢(p)=¢(@) =X by Proposition 3.2 and hence £°(p)=7r%g),
which implies that (p,q) < 17,«,,,. Thus, we have RcC Vf,n for each n. Con-
versely, if RC Vf,n for each n, then XC X; by Proposition 1.1, and therefore
FUp)=r%g) for each point (p,q) = R. It follows that there is a function f
on X such that fop=7 (=s% on X. Since the restriction of ¢ on X is
identical with the canonical map of X onto X/®=X and since f is con-
tinuous, it follows that f is a continuous function on X!, It is clear that
f is the desired extension of f, and the proof is completed.

CoroLrary 1. Every uniformly continuous function has a continuous exten-
sion over X, and the extension is also uniformly continuous.

Proor. If f is uniformly continuous, then V,,>D V, for some V, and
therefore we have ¥,,D V,DR. This shows that f has a continuous ex-
tension over X. Let 7 be the extension of f over X, and put V, ,={(p, 9
e Xx X; |/(p)—Ff@|=1/2"}. Then V,,DIntz.5Clz2(V;.) by Lemma 1.3,
(b), and since Vf,n:) ¥, implies that Int3.5(Clz2(Vyn) D Intz.3(Cl3. (Vo))
= Vm, f is uniformly continuous. (cf. Remark 1 of Theorem 3.1.)

CoroLLary 2. Let X be the completion of a uniform space (X, U). Then,
every bounded continuous function on X has a continuous extension over X if

12) See [12].
13) See [1, p. 75, Théoréme 17.
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and only if the radical is contained in the diagonal dgx of BXx BX.
Proor. It iseasy to see that N (F\ Vi) = dgx, and therefore the pre-
ki

E0*(X) n=1
sent corollary follows immediately from Theorem 3.2.

CoroLLArY 3. Let X be the completion of a uniform space (X, U). Then
every comtinuwous function on X has a continuous extension over X if and only
if RC4,%, wheve R is the radical of (X, U) and 4,x = dgxN\(vXxvX).

Proor. In view of Proposition 1.1, it follows that A,,Xzf(\ (ﬁ Vi)

<C(X) n=1

and the proof may easily be completed by Theorem 3.2.

Finally, we observe another property of the radical of uniform space.
We have seen that there is a continuous map ¢ of X onto X and that ¢
defines a closed relation ®* on AX. Recall that the set defined by the closed
relation on a compact space E is closed in Ex E (see, [1, p. 97, Proposition
8]). The set R* defined by ®* is closed in X x 8X, and we have R*~\(Xx X)
= R by Proposition 3.2. It might be expected that the set R* shouid be
characterized by the radical R. The following proposition establishes a
relationship between R* and the radical R.

ProrositioN 3.3. R* is minimal with respect to the following properties:
(@ R*n(XxX)=R,

(b) R* is the set defined by the relation on fX. That is, it satisfies the follow-
ing conditions: (1) R* D dpy; (2) R* is symmetric; (3) R* o R* = R*.

Proor. If R’ is any set in AXx pBX satisfying the above conditions,
then R’= R’'"\R* satisfies these conditions as well. Let ¢° denotes the
canonical map of X onto AX/R° where R° is the relation on §X defined by
R°. It is easy to see that ¢ (X)) = X, and it follows from Lemma 3.2
that gX/R° is a compact Hausdorff space containing BX/® =pBX as a dense
subspace. Therefore SX/®R° is a compactification of X. On the other hand,
we have SX/®R* = (BX/R)/(R*/R%), in view of the definition of R° (see, [1,
p. 78, Proposition 3]). It therefore follows that fX/R°= pX/R*, by Theorem
1.1, and consequently we have R°= R*. This implies that R’ R*, and the
proof is completed.

It is not known to the writer whether the closure R of the radical R
taken in BXx X is identical with R* or not.

Kyoto University.
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