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\S 1. Preliminaries.

The object of the present paper is to generalise some of recent results
of Andr\’e Avez $[1]^{*}$ to the case of non-compact Einstein spaces and to the
case of spaces of constant curvature.

We shall here give notations and the formulas which will be used in
the sequel.

Let $M$ be an $n$ dimensional Riemannian space of class $C^{4}$ with the
fundamental metric tensor $ g_{l^{l}}\lambda$ whose signature is not necessarily positive
definite. We denote by $\nabla_{\mu}$ the covariant differentiation with respect to the
Christoffel symbols {,,$\kappa_{\lambda\}}$ by $K_{\nu\mu\lambda\kappa}$ the curvature tensor, by $K_{\mu\lambda}$ the Ricci
tensor and by $K$ the curvature scalar.

For an arbitrary skew-symmetric tensor field $w:w_{\lambda_{1}\lambda_{2}\cdots\lambda_{p}}$ of order $p$, we
write
(1.1) $(dw)_{\rho\rho\lambda_{1}\lambda_{2}\cdots\lambda p}=(p+1)\nabla_{I\mu}w_{\lambda_{1}\lambda\cdots\cdot\lambda_{p}1}$

and
\langle 1.2) $(\delta w)_{\lambda\lambda_{S}\cdots\lambda p}=\nabla_{\mu}w_{\lambda_{2}\lambda_{8}\cdots\lambda p}^{\mu}$ .

Then the de Rham operator $\Delta=d\delta+\delta d$ applied to $w$ gives [2]

$(\Delta w)_{\lambda_{1}\lambda_{2}\cdots\lambda p}=g^{\nu\mu}\nabla_{\nu}\nabla_{\mu}w_{\lambda_{1}\lambda\cdots\lambda p}$

$-pw_{|_{1^{I}}|\lambda_{2}\cdots\lambda_{p}3}.$ .

Especially, if $w$ is a vector field,

(1.3) $(\Delta w)_{\lambda}=g^{\nu\mu}\nabla_{\nu}\nabla_{\mu}w_{\lambda}-K_{\lambda^{\kappa}}w_{\kappa}$

and if $w$ is a skew-symmetric tensor field of order two,

$(\Delta w)_{\lambda\kappa}\}\mu|K\supset$

or
(1.4) $(\Delta w)_{\lambda\kappa}=g^{\nu\mu}\nabla_{\nu}\nabla_{\mu}w_{\lambda\kappa^{-}}-(2K_{\zeta\lambda}^{\subset\nu}A_{\kappa J}^{\mu 3}+K_{\lambda\kappa}^{\nu’ x})w_{\nu\mu}$ .

*See the Bibliography at the end of the paper.
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A skew-symmetric tensor field $w$ is said to be closed (or coclosed) if
$dw=0$ (or $\delta w=0$). By the well known properties of the operators $d$ and $\delta$ ,

we have $d^{2}=0,$ $\delta^{2}=0,$ $d\Delta=\Delta d$ and $\delta\Delta=\Delta\delta$ . Thus if $w$ is closed (or coclosed),

then $\Delta w$ is also closed (or coclosed).

\S 2. Two theorems.

Let $T_{\mu\lambda}$ be a tensor field of class $C^{1}$ and put $T_{\lambda}^{\kappa}=T_{\lambda\alpha}g^{oi\mathcal{K}}$ . The following
theorem is essentially due to A. Avez [1], but we shall omit the condition
of symmetry for $T_{u\lambda\ell}$ and give a simple proof.

THEOREM 1. If the dimension $n$ of $M$ is greater than 1, the following three
properties of $T_{\mu\lambda}$ are equivalent:

(a) $T_{\mu\lambda}=cg_{\mu\lambda}$ where $c$ is a constant.

(b) $T_{\lambda}^{\alpha}w_{\alpha}$ is closed for all closed $vec_{l}^{1}or$ field $w$ of class $C^{3}$ .
(c) $T_{\lambda}^{a\}}w_{\alpha}$ is coclosed for all coclosed vector field $w$ of class $C^{3}$ .

PROOF. If we assume (a), then $T_{\lambda}^{\alpha}w_{\alpha}=cw_{\lambda}$ and as $c$ is a constant, it
follows easily (b) and (c). So it is sufficient to prove (a) under the condi-
tion (b) or (c).

First assume that $T_{\mu\lambda}$ has the property (b). Then for an arbitrary
closed vector field $w_{\lambda}$ , we have

$\nabla_{\subset\mu}(T_{\lambda j}^{a}w_{a})=(\nabla_{\subset\mu}T_{\lambda I}^{a})u_{\alpha}+T_{r\lambda}^{a}\nabla_{J\ddagger}w_{\alpha}=0$

or
(2.1) $(\nabla_{\subset\mu}T_{\lambda j}^{\alpha})w_{\alpha}+T\zeta\lambda^{\alpha}A_{u\ddagger}^{\beta}\nabla_{\mathcal{B}}w_{\alpha}=0$ .

If we fix a point of $M$ and consider the above equations at this point,
then $w_{\alpha}$ can take any values and $\nabla_{\beta}w_{\alpha}$ can also take any values except the
condition $\nabla_{\subset\beta}w_{\alpha 3}=0$ at this point. So we have

(2.2) $\nabla_{\subset\mu}T_{\lambda j}^{\alpha}=0$

and
(2.3) $T_{I\lambda}^{(\alpha}A_{\mu J}^{\beta)}=0$ .

From the last equation we obtain, by contraction with respect to $\beta$

and $\chi\ell$ ,

1
$T_{\lambda^{a}}=nT_{\beta^{\beta}}A_{\lambda}^{\alpha}$

or
$T_{\mu\lambda}=cg_{\mu\lambda}$ .

Substituting this into (2.2) we easily find that $c$ is a constant.
Next assume that $T_{\mu\lambda}$ has the property (c). Then for an arbitrary

coclosed vector field $w_{\lambda}$ , we have
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$\nabla^{\mu}(T_{\mu^{\text{{\it \‘{A}}}}}w_{\lambda})=(\nabla^{\mu}T_{\mu}^{\lambda})w_{\lambda}+T_{\mu\lambda}(\nabla^{\mu}w^{\lambda})=0$ .
Considering this equation at a point of $M$, we get

(2.4) $\nabla^{\mu}T_{\mu}^{\lambda}=0$

and
(2.5) $T_{\lambda}\lrcorner=cg_{\lambda}$ ,

for $w_{\lambda}$ can take any values and $\nabla^{\prime t}w^{\lambda}$ can take any values except the condi-
tion $g_{\mu\lambda}\nabla^{\prime 1}w^{\lambda}=0$ at the point. Substituting (2.5) into (2.4), we easily find
that $c$ is a constant.

Before going to theorem 2, we shall prove some lemmas.
Consider a tensor $T_{\nu\mu\lambda\kappa}$ at a point $P$ of $M$ which is skew-symmetric

with respect to the first two indices and also with respect to the last two
indices and put $T_{\nu\mu}^{\lambda}‘‘=T_{\nu\mu\beta a}g^{\beta\lambda}g^{\alpha\kappa}$.

LEMMA 1. Under the assumption $n>1$ , the equation

(2.6) $T_{\subset\mu\lambda^{\beta a}}S_{\nu 3\beta\alpha}=0$

holds good for an $arbi_{l}^{1}rary$ tensor $S_{\nu\mu\lambda}$ at $P$ satisfying

(2.7) $S_{\nu(\ell u\lambda)}=0$

and
(2.8) $S_{[\nu\mu\lambda]}=0$ ,

if and only if
$T_{\nu/z\lambda\kappa}=c(g_{\nu\lambda}g_{\mu\kappa}-g_{\nu\kappa}g_{\mu\lambda})$ .

PROOF. Assume that $T_{\nu_{l}!\lambda\kappa}=c(g_{\nu\lambda}g_{\mu\kappa}-g_{\nu\kappa}g_{\mu\lambda})$ , then $T_{\mathfrak{c}\mu\lambda^{\beta\alpha}}S_{\nu J\beta\alpha}=2cS_{[\nu\mu\lambda]}$ .
Thus if $S_{\nu\mu\text{{\it \‘{A}}}}$ satisfies (2.7) and (2.8) we can conclude $T_{\ddagger\mu\lambda^{\beta a}}S_{\nu 1\beta\alpha}=0$ .

Conversely suppose that when $S_{\nu\mu\lambda}$ satisfies (2.7) and (2.8) we have
$T_{I\mu\lambda^{\beta\alpha}}S_{\nu J\beta\alpha}=0$ . Let $P_{\nu\mu\lambda}$ be an arbitrary tensor of order three and put

$S_{\nu\rho z\lambda}=P_{\nu\rho r\lambda}+P_{1\nu\lambda}-P_{\nu\lambda\mu}-P_{\lambda\nu\mu}$ ,

then $S_{\nu/x\lambda}$ satisfies (2.7) and (2.8). Thus we have
$T_{\ddagger\mu\lambda^{\beta\alpha}}S_{\nu\ddagger\beta\alpha}=2T_{\mathfrak{c}\mu\lambda^{\beta\alpha}}P_{\nu J\beta a}+2T_{\zeta\mu\lambda^{\beta\alpha}}P_{|\beta|\nu 1a}$

$=2(T_{\ddagger\mu\lambda^{\beta\alpha}}A_{\nu j}^{\gamma}+T_{\subset\mu\lambda^{\gamma\alpha}}A_{\nu J}^{\beta})P_{\gamma\beta\alpha}$

$=0$ .
As $P_{\mathcal{T}\beta\alpha}$ is arbitrary, we get from this

$\tau_{\mathfrak{c}\mu_{\ell}\downarrow^{\beta\alpha}A_{\nu j}^{\gamma}+T_{\ddagger\lambda^{\gamma a}}A_{\nu J}^{\beta}=0}l^{l}$

Contracting with respect to $\gamma$ and $\nu$ , we have

(2.9) $T_{\mu\lambda^{\beta a}}=\frac{1}{n-1}(T_{\mu}^{a}A_{\text{{\it \‘{A}}}}^{\beta}-T_{\lambda}^{a}A_{\mu}^{\beta})$ ,

where $T_{\mu}^{\alpha}=T_{\mu\beta^{\beta\alpha}}=T_{\beta\mu^{\alpha\beta}}$ . From this we get by contraction with respect to
a and $\mu$
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$T_{\lambda}^{\beta}=\frac{1}{n}T_{\alpha}^{a}A_{\lambda}^{\beta}$ ,

and substituting this into (2.9) we have
$T_{\nu\mu\lambda\kappa}=c(g_{\nu\lambda}g_{\mu\kappa}-g_{\nu\kappa}g_{\mu\lambda})$ .

LEMMA 2. $T_{\nu\mu\lambda\kappa}$ is as in Lemma 1 and assume $n>1$ . The equation

(2.10) $T_{r\lambda^{\beta a}}S^{r_{\beta\alpha}}=0$

holds good for an arbitrary tensor $S_{\mu\lambda}^{\nu}$ at $P$ satisfying

(2.11) $S_{\mu\lambda}^{\nu}+S_{\lambda_{\ell}\alpha}^{\nu}=0$

and
(2.12) $S_{a\lambda}^{a}=0$ ,

if and only if
$T_{\nu\mu\lambda\kappa}=c(g_{\nu\lambda}g_{\mu\kappa}-g_{\nu\kappa}g_{\mu\lambda})$ .

PROOF. If $T_{\nu\mu\lambda\kappa}=c(g_{\nu\lambda}g_{\mu\kappa}-g_{\nu\kappa}g_{\mu\lambda})$ , then $T_{\gamma\lambda^{\beta a}}S^{\tau_{\beta\alpha}}=c(S_{\alpha\lambda}^{\alpha}-S_{\lambda\alpha}^{a})$ . Thus if
$S_{\rho_{l}\lambda}^{\nu}$ satisfies (2.11) and (2.12) we easily find that $T_{\gamma\lambda^{\beta\alpha}}S^{r_{\beta\alpha}}=0$.

Conversely suppose that when $S_{\mu\lambda}^{\nu}$ satisfies (2.11) and (2.12), we have
$T_{\gamma_{\Lambda}}^{\beta a}S^{\tau_{\beta\alpha}}=0$ . Let $P_{\mu\lambda}^{\nu}$ be an arbitrary tensor at a point $P$ and put

$S_{\mu\lambda}^{\nu}=P_{[\rho r\lambda]}^{\nu}-\frac{1}{n-1}\{P_{aI\lambda}^{a}A_{\mu\ddagger}^{\nu}-P_{I\lambda 1aI}^{a}A_{\mu I}^{\nu}\}$ ,

then $S_{\mu\lambda}^{\nu}$ satisfies (2.11) and (2.12). Thus we have

$T_{\tau\lambda^{\beta\alpha}}S^{r_{\beta a}}=T_{\mathcal{T}\lambda^{\beta\alpha}}P^{r_{\beta\alpha}}-\frac{1}{n-1}\{T_{\mathcal{T}\lambda^{\gamma\alpha}}P_{\sigma\alpha}^{\sigma}-T_{\gamma\lambda^{\gamma a}}P_{\alpha\sigma}^{\sigma}\}$

$=[T_{\gamma 4}^{\beta\alpha}+\frac{1}{n-1}(T_{\lambda}^{\alpha}A_{\gamma}^{\beta}-T_{\lambda}^{\beta}A_{\gamma}^{\alpha})]P^{\tau_{\beta\alpha}}$

$=0$ .
As $P_{\mu\lambda}^{\nu}$ is arbitrary we get

(2.13) $T_{\nu\mu}^{\lambda^{\mathcal{K}}}=\frac{1}{n-1}(T_{\mu}^{\lambda}A_{\nu}^{\kappa}-T_{\mu}^{\kappa}A_{\nu}^{\lambda})$ .

From this we have easily
1

$T_{\lambda^{\kappa}}=_{n}--T_{a}^{\alpha}A_{\lambda}^{\kappa}$ .

Substituting this into (2.13) we find
$T_{\nu\mu\lambda\kappa}=c(g_{\nu\lambda}g_{\mu\kappa}-g_{\nu\kappa}g_{\mu\lambda})$ .

Using these lemmas we shall prove the following theorem.
THEOREM 2. Let $T_{\nu\mu\lambda\kappa}$ be a tensor field of class $C^{1}$ and skew-symmetric with

respect to the first two indices and also with respect to the last two indices and
assume that the dimension $n$ of $M$ is greater than 2, then the following three
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conditions for $T_{\nu/\lambda\kappa}1$ are equivalent.

(a) $T_{\nu\mu\lambda\kappa}=c(g_{\nu\lambda}g_{\mu k}-g_{\nu\kappa}g_{\mu\lambda})$ , where $c$ is a constant.
(b) $T_{\mu\lambda^{\beta a}}w_{\beta a}$ is closed for any closed tensor field $w$ of class $C^{3}$ .
(c) $T_{\mu\lambda^{\beta\alpha}}w_{\beta\alpha}$ is coclosed for any coclosed tensor field $w$ of class $C^{3}$ .

PROOF. Suppose (a), then $T_{\mu\lambda^{\beta\alpha}}w_{\beta\alpha}=2cw_{\mu\lambda}$ and as $c$ is a constant, it
follows easily (b) and (c). So it is sufficient to prove (a) under the condi-
tion (b) or (c).

Suppose first (b), then we have for an arbitrary closed tensor field $w_{\mu\lambda}$

(2.14) $\nabla_{\subset\nu}(T_{\mu\lambda j}^{\beta a}w_{\beta a})=(\nabla_{\ddagger\nu}T_{\mu\lambda 3}^{\beta\alpha})w_{\beta a}+T_{\mathfrak{c}\mu\lambda^{\beta\alpha}}\nabla_{\nu 1}w_{\beta\alpha}=0$ .
Considering the above equation at a point of $M$ we get

(2.15) $\nabla_{\subset\nu}T_{l^{y}\lambda 3}^{\beta\alpha}=0$

and
(2.16) $T_{\ulcorner}^{\beta\alpha}\nabla_{\nu j}w_{\beta\alpha}=0/14$

’

for $w_{\beta a}$ can take any values except the condition $w_{\beta\alpha}+w_{\alpha\beta}=0$ at the point.
As $\nabla_{\nu}w_{\beta a}$ can take any values except the condition $\nabla_{\nu}w_{\beta\alpha}+\nabla_{\nu}w_{\alpha\beta}=0$ and
$\nabla_{\zeta\nu}w_{\beta 0’\supset}=0$, we have, from (2.16) and Lemma 1,

$T_{\nu\mu\lambda\kappa}=c(g_{\nu\lambda}g_{/J\kappa}-g_{\nu\kappa}g_{\mu\lambda})$ .
Substituting this into (2.15) we find by the assumption $n>2$ that $c$ is

a constant.
Next suppose (c) then for an arbitrary coclosed tensor field $w_{\mu\lambda}$ we have

$\nabla^{\mu}(T_{\mu\lambda^{\beta\alpha}}w_{\beta\alpha})=(\nabla^{\mu}T_{\mu\lambda^{\beta\alpha}})w_{\beta\alpha}+T_{\mu\lambda^{\beta a}}(\nabla^{\mu}w_{\beta\alpha})=0$ .
If we fix a point in the space, $w_{\beta a}$ can take any values except the condition
$w_{\beta a}+w_{\alpha\beta}=0$ and $\nabla^{\mu}w_{\beta a}$ can also take any values except the conditions
$\nabla^{\mu}w_{\beta a}+V^{\mu}w_{\alpha\beta}=0$ and $\nabla^{\mu}w_{xa}=0$ . Thus from Lemma 2, we get

$\nabla^{\mu}T_{\mu\lambda^{\beta\alpha}}=0$ and $T_{\nu\mu\lambda\kappa}=c(g_{\nu\lambda}g_{/’\kappa}-g_{\nu\kappa}g_{\mu\lambda})$ .
Substituting the second into the first we find that $c$ is a constant.

Thus the proof of the theorem is complete.

\S 3. Applications to Einstein spaces and spaces of constant curvature.

We shall prove in this section the necessary and sufficient conditions
for a space to be an Einstein space and these for a space to be a space of
constant curvature using the results of the above section.

THEOREM 3. If the dimension $n$ of $M$ is greater than 2, the following three
conditions are equivalent:

(a) $M$ is an Einstein space.
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(b) $g^{\nu/1}\nabla_{\nu}\nabla_{\mu}w_{\lambda}$ is closed for any closed $vecto^{\backslash }r$ field $w_{\lambda}$ of class $C^{3}$ .
(c) $g^{\nu/1}\nabla_{\nu}\nabla_{\mu}w_{\lambda}$ is coclosed for any coclosed vector field $w_{\lambda}$ of class $C^{3}$ .

A. Avez has proved in [1] the equivalence of (a) and (b) and also proved
the equivalence of (a) and (c) in the case $M$ is compact.

PROOF OF THEOREM 3. From the formula (1.3) we find that when $w_{\lambda}$ is
closed (or coclosed), $g^{\nu u}\nabla_{\nu}\nabla_{\mu}w_{\lambda}$ is closed (or coclosed) if and only if $K_{\lambda^{\alpha}}w_{\alpha}$ is
closed (or coclosed). Thus (b) is equivalent to the condition:
$(b^{\prime})$ $K_{\Lambda^{\mathcal{O}}}w_{\alpha}$ is closed for any closed vector field $w_{\lambda}$ of class $C^{3}$,

and (c) is equivalent to the condition:
$(c^{\prime})$ $K_{\lambda^{\alpha}}w_{\alpha}$ is coclosed for any coclosed vector field $w_{\lambda}$ of class $C^{3}$ .

From Theorem 1 these $(b^{\prime})$ and $(c^{\prime})$ are equivalent to
$ K_{\mu\lambda}=cg,x\lambda$

where $c$ is a constant and this is just the condition (a).

REMARK. If the dimension of $M$ is equal to 2, it is well known that $M$

is an Einstein space and consequently $K_{\mu\lambda}=cg_{\mu\lambda}$ but as in this case $c$ is
not always a constant Theorem 1 cannot be applied.

The following theorem 4 is an extension of Theorem 3 to the case of a
space of constant curvature.

THEOREM 4. If the dimension $n$ of $M$ is greater than 2 and not equal to 4,
the following three conditions are equivalent:

(a) $M$ is a space of constant curvature.

(b) $g^{\nu_{fJ}}\nabla_{\nu}\nabla_{\mu}w_{\lambda\kappa}$ is closed for any closed tensor field $w_{\lambda\kappa}$ of class $C^{3}$ .
(c) $g^{\nu_{f1}}\nabla_{\nu}\nabla_{\mu}w_{\lambda\kappa}$ is coclosed for any coclosed tensor field $w_{\lambda\kappa}$ of class $C^{3}$ .

PROOF. Put $T_{\nu\mu}^{\lambda^{\kappa}}=2K_{c\nu}^{I\lambda}A_{\mu 1}^{\kappa J}+K_{\nu\mu}^{\lambda\kappa}$, then from the formula (1.4) we have
$(\Delta w)_{\lambda\kappa}=g^{\nu\mu}\nabla_{\nu}\nabla_{\mu}w_{\nu\kappa}-T_{\lambda\kappa^{\beta\alpha}}w_{\beta a}$ ,

and we find that when $w_{\lambda\kappa}$ is closed (or coclosed) $g^{\nu_{l^{J}}}\nabla_{\nu}\nabla_{\mu}w_{\lambda\kappa}$ is closed (or

cocloses) if and only if $T_{\lambda\kappa^{\beta\alpha}}w_{\beta\alpha}$ is closed (or coclosed). Thus the condition
(b) is equivalent to the condition:
$(b$ ‘

$)$ $T_{\lambda\kappa^{\beta\alpha}}w_{\beta\alpha}$ is closed for any closed tensor field $w_{\lambda\kappa}$ of class $C^{3}$ ,

and the condition (c) is equivalent to the condition:
$(c^{\prime})$ $T_{\lambda\kappa}^{\beta a}w_{\beta\alpha}$ is coclosed for any coclosed tensor field $w_{\lambda\kappa}$ of class $C^{3}$ .

Applying Theorem 2 to the tensor field $T_{\nu\mu\lambda\kappa}$ these conditions $(b^{\prime})$ and
$(c^{\prime})$ are equivalent to

$T_{\nu\mu}^{\lambda^{\mathcal{K}}}=c(A_{\nu}^{\lambda}A_{\mu}^{\kappa}-A_{\nu}^{\kappa}A_{\mu}^{\lambda})$

or
(3.1) $2K_{\subset\nu}^{\subset\lambda}A_{\mu J}^{\kappa J}+K_{\nu\mu}^{\lambda\kappa}=c(A_{\nu}^{\lambda}A_{u}^{\kappa}-A_{\nu}^{\kappa}A_{\mu}^{\lambda})$ ,
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where $c$ is a constant.
Thus it is sufficient to prove the equivalence of (a) and $(’\dot{\circ}.1)$ .
Assume (a), that is,

(3.2) $K_{\nu\mu\lambda\kappa}=k(g_{\nu\lambda}g_{u\kappa}-g_{\nu\kappa}g_{\alpha\lambda})$ ,

where $k$ is a constant, then we have

$K_{\mu\lambda}=\frac{K}{n}g_{\mu\lambda}$ .

Thus (3.1) is easily verified.
Conversely suppose (3.1), then by contraction with respect to rc and $\nu$ ,

we have
(3.3) $(n-4)K_{\mu\lambda}=\{2(n-1)c-K\}g_{\mu\lambda}$ .

Transvecting this by $g^{\mu\lambda}$ we get

\langle 3.4) $K=\frac{n(n-1)}{n-2}c$ .

So, $K$ is a constant and from (3.3) and the assumption $n\neq 4$ we obtain
$K_{\mu\lambda}=c^{\prime}g_{\mu\lambda}$ ,

where $c^{\prime}$ is a constant. Substituting this into (3.1) we find
$K_{\nu\mu\lambda\kappa}=k(g_{\nu\lambda}g_{\mu\kappa}-g_{\nu\kappa}g_{\mu\lambda})$ ,

where $k$ is a constant.
If we assume that the dimension of $M$ is equal to 4 and suppose that (b)

or (c) in Theorem 4 holds, we find. in the similar way in which we obtained
(3.4) in the proof of Theorem 4, that $K$ is a constant. Thus we have

THEOREM 5. If the dimension $n$ of $M$ is equal to 4 and the condition (b)

or (c) in Theorem 4 is satisfied, then $M$ has a constant curvature scalar.
REMARK. The operator $\nabla^{a}\nabla a$ appeared in Theorems 3, 4 and 5, gives an

endomorphism of the space of skew-symmetric tensor fields of order $p$ or
of the space of $p$-forms. From Theorem 3, we can easily verify that if
$\nabla^{a}\nabla_{\alpha}$ induces an endomorphism of the space of closed l-forms, then it induces
an endomorphism of the space of exact l-forms, and consequently, it induces
an endomorphism of one dimensional homology group of the manifold $M$.
Moreover, if a l-form $w$ is harmonic then $\nabla^{\alpha}\nabla_{a}w$ is also harmonic and equal

to $\frac{K}{n}w$. Thus if $M$ is compact and $K$ does not vanish, then the induced
endomorphism of the homology group is an isomorphism onto, and if $K$

vanishes, then the induced endomorphism is trivial.
In a quite similar way, if $\nabla^{a}\nabla_{\alpha}$ induces an endomorphism of the space

of closed two-forms, then it induces an endomorphism of 2-dimensional
homology group of the manifold $M$. Moreover if $M$ is compact, and the
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sectional curvature does not vanish, the induced endomorphism of the
homology group is an isomorphism onto and if the sectional curvature
vanishes, then the induced isomorphism is trivial.
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