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Introduction. Let p.(n; @, M) be the number of partitions of a positive
integer »# into positive summands of the form (Mixa)* ({=0,1, 2,---), where
M, @ and k are integers satisfying M=2, 0<a< M, (a,M)=1 and £=1.

The first object of the present paper is to derive a suitable transfor-
mation formula for the generating function of p.(n; ¢, M) and to determine
the asymptotic behavior of the generating function in the neighborhood of
its singularity at each rational point of the unit circle. A precise (not
asymptotic) transformation equation will be obtained in §1 of this paper.

Secondly, we shall give, in §2, an asymptotic formula for the partition
function p.(»; @, M) for large values of .

The special case k=1 of our partition problem has been discussed in

2]

It should be noted that the case M =2 is equivalent to the case M =4,
since we clearly have pi(n; 1,2) =pc(n; 1,4). Therefore we may assume that
M=3 in the sequel.

1. The transformation equation. The generating function of p(n;a, M)
is given by

Fulx; 0, M) =143 pelns o, M)s"= T (=2,
v Eia,(M)

where x is a complex variable with |x| < 1.
Now let 74, £ be coprime integers with 2=1. We set

kR, M) =D (the greatest common divisor of £ and M),
{k,M}=K  (the least common multiple of & and M);

and put 2=£k,D. Further we write
x=exp(2rih/k—2rz),

where z is a complex variable with R(z) > 0. Define
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1 (D>1),
ey bu(k, a, M) = .
{2sin(@é/M)}Y " (D=1),
where ¢ is an integer defined by ¢&m,=a (mod M) (0< &< M), the number
m; being the least positive integer such that m,*=0 (mod k). Next we
define
o, k)= 3 ((w/K)((w"/k)
0<y<K
y=xa(M)
with the abbreviation
0, if ¢ is an integer,
@=| _
t—[t]—1/2, otherwise,
[#] denoting the greatest integer not exceeding ¢#. We remark here that

ox(l,B)=0 for £ even,
since we have

> (GNEED= 3 ()

0<y<K 0<y<K
y=zxa(M) y=za(M)
== 3 (@)
K k
0<y<K
y=zxa(M)

for £ even. Further notations are as follows:

—— 7 Brila/M) (£ odd),

Bila, M) =
(@ M) (x even),

where B,,,(¢?) is the Bernoulli polynomial of order £+1;

Ep g = —ig DL
1 v*=0),
2) tys=1 V¥/k w*+0, s odd),
1—v*/k (V*=+0, s even), s=12, k),
with
3) v =" —k["/k].

Then our transformation formula may be stated in the following theorem.
Tueorem 1. We have

Fulx; a, M) = ¢k, a, M) exp{—2rzBy(a, M)

@ + IS E “e N exp(imbhy " /k)+-riodh, k)

0<y<K
y==xa(M)
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X 0H<K H“H{l exp(—2m(er,s/ K){U+u,,5)/2} 7 =2riv/K)} 1,
Jatn T

where 1Y* is always to be taken as the principal value.
Proor. Recently the author [4] has obtained the following functional

equations:

= AU+ a)z—i)+2+1- a)‘z+zﬂ)}+—23rz Besi(@)

® = 33 B (e {(+B)/2) 5+ ic) + Nensl 1B/ 2} —ia)}
rA+1/k) N\ cos@amB) o (1 1
PO S D e D)5 1) e oan
= (@) z—if)+ AU+ 1—a)z—if)
®) = 3 B (2ensl (H8)/2) @)+ 2o (+B) 21 —ia)
141 — amimg
+ én?)l/{f) 4 Tizm;; (£ even),

where 0Z=a =1, 0< <l (or 0<a<1, 0=4=<1), RE) >0,
Iei (s odd),
1—53 (s even),
A#) =—log(1—e ™) (the principal value).
It may be mentioned that the particular case £ =1 of (5) has been proved

in [2].
We shall now prove Theorem 1 in the case £ odd, by using the above

equation (5). We first notice that
v¥=h* (mod k), 0=v*¥<k
by the definition (3). Let us put
® a=v/K, B=v*/k,
so that we have 0 <a <1, 08 < 1. Substituting (8) into (5) and replacing
z by K*z, the left member of (5) becomes

i} (AU4v/KY K 2—iv* k) - AU+ 1—v  K) K 2 +-iv* k)
=

+282 Beu(%)
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and this is equal to
i (A(KL+9) (2 — il /) + M(KI-- K —) "z —ih /)
2rK*z AW
o1 Ben( )

while the right member of (5) becomes

©) +

> ;Z; {A(ex, o/ KL U+0* /B) o2} 5 +iv [ K)

s=1

(10) +A(er, o/ KU+ 1=(*/R)s/2} " —iv /K)}

2I'(1+1/x) . cos(2rmy* /k) [V 1Ty 1
+'*K(2??z’)'7f E C omriE "‘+2’”<Y“"2‘>( k 2 )
m=1

Next, we see that
(K—v)* = p—v* w*+0),
and hence
(11) 1—W*/k); = (1—v*/k), = (K—v)*/k), (v*+#0)
by the definition (7) of §,.
Web also note that the values of v satisfying »*=0,0<v< K and v=a
(mod M) are given by

(12) Emy, (E+Mmi, E+2Mmy, -, (E+—1)Mm,  (r==Fk/my),

where £ and m, are defined in the lines following (1); and further that the
case v* =0 may occur if and only if D=1.
Now, using [1I), we see that becomes, for v* 0,

3 3 (Mew/ K U+E*/R)) 2} o+ iv/K)

8=

(13) + (e, s/ KN U+ (B—v)*/k)5) 2} P+ i(K—v) / K) }

K
1

2r(1+1/6) N0 cosQumh™/B) o (v _ L\/v¥ 1\,
T RErz e+ — ) (% — )3

m=1

while, for v*¥ =0, is written in the form
3 B (Aewn/ KU D/2} v /E)

+A((er,s/ K (I+1D)/2} 4 i(K—v)/K) }
(14)

PR § sz ()

1) Cecncerning the assertions in this paragraph see Schoenfeld [6, p. 882].
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+ E A@v/K)+ 2 A(—w/K).

s:even
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We separate our discussion into two cases according as D>1 or D=1,

Case (i): D>1. By a remark following we have v*+#0. Equating
(9) with and summing up the result over v =a, M+a, -, (l;—1)M+a, we

obtain

3 (AGMAa) G—ih/R)+ A M+ M—a)e—ih/B)
L, 27nK"z )
TRl EB”“(T)

= 3N D (s KU+ IR (2} +iv/K)
p(-)E<:va<(JI1<l) s=1 (=0

15)

co

+- 2rA+1/e) miTE E cos(2rmhv”/k)+2mi E <—v— — -1—> (f-*-

K(@2rz)\* K 2

m=1 v v

() = Zocv<r,v=a@n) «

Here we can write

(16) 2 E cos(2amhv/k) = \E exprimhv* k),
nd y=xali)
S s = e )
so that
WD N B () = 2 b () et ).

Moreover we have
(18) W*/R)s = 1y,s
by (7) and (2). Finally it is easy to see that

20— 2) =)= Y (=) (5 —2)

v 0Cy<K
y==xa(M)

= S (G Y=o,

0< vy K
y=+a(M)

19)

2) This result will be verified by using the Fourier expansion of the Bernoulli

polynomial.
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Inserting [I6}-(19) into (15), we are led to the desired formula (4) with «
odd and D > 1.

Case (ii): D=1. In this case, we must distinguish between the]two
cases v¥#0 and y*=0. Noticing [(I3), (14), and using the values given by
(12), the equation which is corresponding to (15) is found to be

i (MG MA@ (z—ih k) + (G M- +M—a>‘<z—ﬂz/k>>}+ﬁflz E Be(c)

= 33 S M KU IR /2 R iv [K)

0<y<{K s=11=0
y

o }Z 3 Moo/ KOUAD/2) 5/ K)

(20)
+ 22%7—;:)[1//5) glm‘l‘l/" E cos@Crmhv®/k)+-2ni E (% — é) (i);i — —:]2“—~>
y¥*£0
r—1 o1
tomi ) {EFaROme S DY F LN M+ qdrm/K)
=0 q=()

r—1

+5t > A—iE+aMm/K) .
q=0

Here observing that mi,/K =m;/(Mk)=1/Mr), we have

7—-1

r=1
@1 2m-;0 {!étqél@"zk ~ 3 }( ) Z(E%M é)

Q=0
and

~fa::i—l Z X(Z(E—I—QM)MI/K)‘I“*‘ E A—iE+gM)m,/K)

©22) o
-5 Sz 0N} S S50 1)
q=0

since }

A{a)+A(—ia) =—2 log(2 sin 7a) ,

Afa)—A(—ia) = 27rz<a — é ~> O<a<l.
Using the identity

T 2 sin =& +‘1) = 2sin(zf) 0<p<l),

q=0
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the first sum on the right of (22) reduces to —«log2sin(zé/M)), and the
second sum is cancelled by the right member of [2I). Furthermore we can
use again [16), [T7); and the relations (I8), (19) still hold with v*#0. We
thus obtain our formula (4) from (20) in the case D=1.

This completes the proof of for & odd.

When & is even, we may start with the equation (6), and the proof will
proceed as in the case of odd «.

The special case 2=1 of perhaps deserves explicit mention,
since it exhibits the behavior of F.(x;a, M) near x=1. We have

Fyx;a M)
= {2sin(ma/M)} " exp{—2rxzB.(a, M)+2I'(1+1/£){(14-1/£)/ M(2rz)'/*}

x II fILI:%{1—6XD(—27r(6K,s/M){(l+1)/2}""—27fiV/M)}*1,

y=a,M—-a s=1

where x = e¢™2" (R(z) > 0), and {(¥) denotes the Riemann zeta-function.

2. Asymptotic properties of the partition function. In a recent paper
E. Grosswald has treated a certain type of partition functions and
derived their asymptotic formulas. The method there used is essentially a
saddle point method and is based on the following lemma :

Lemma ([1, p. 1217). Let f(x) = X5 a.x™ be analytic inside the unit circle,
and define the functions ar)=r-d(log f(r))/dr and b(r)=r-da(r)/dr of r=|x|.
Denote by p=p, the unique root of a(p)=mn, and assume that for r,<r<l,
Sunctions 0(r) >0 and u(y) exist, with the following properties: As n— oo, one
has, for some o >0:

® | F(e®)|dB = On™f(0)b(p)™ ) ;

j.Ia‘ilzd(n)

(b) fm(p)(f(pe"”)—f(p) exp{ifa(o)— é 02b(0)} )"0t

-3(p)
= (2m)'2f(0)b(0)" X (u(0)+O(n™")) ;

(©)  0(p)(p) z2alogn.
Then
an = p~"2rb(0))"*f(0) 1+u(p)+0mn")).

This lemma can also be applied to our generating function Fi(x;a, M)
by utilizing and employing a method similar to that of Gross-
wald?®.

We can thus conclude the following result, though we omit a detailed

3) See Grosswald [1, pp. 121-1247.
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derivation.
THeoreMm 2. We have, as n— co,

bi(nsa, M) = i— csc(za/M) - GM)™*n~** exp(2r(n/3M)"?)
@3

x{1—@a/3)2( 15+ 5 Boa/MD)w 10},
and, for £ =2,
De(ny @y M) = 2m)~12{2 sin(ma/ M)}~ (L-+1/k)"V2C (M) Y2y~ 2+ D/R+2>
x eXP((14-£)C(M)nV/*+1) . {1__ ,(12%2(’5]?%,:}’5l Co(M)~1p=1/x+D —l—O(n““’“"“’)}

with the abbreviation

C.(M) = (gl(lj:l{c%);gil/ﬁ)*) 'f/(rc+1).

Formula (23) may be obtained as a particular case of Grosswald’s
formula [1, p. 124, formula (17)] if M is a prime number. In fact, we can
express p,(n; a, M) exactly as a convergent infinite series (see [5).

As a direct consequence of [Theorem 2, we infer the following

CoroLLARY. For fixed two values a,,a, of a, we have

lim (pu(n; @y, M) : pe(n; @y, M)) = {sin(za,/M)}™": {sin(za,/M)}~".

n—oo

Defense Academy.
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