Journal of the Mathematical Society of Japan

On congruence L-series.

Dedicated to Professor Z. Suetuna on his 60th birthday.

By Makoto ISHIDA

(Received June 4, 1959)

Lang [3] has defined the congruence *L*-series $L(u, \chi, U/V)$ for a Galois covering $f: U \rightarrow V$ of an algebraic variety *V* defined over a finite field with *q* elements, associated with simple characters χ of the Galois group. Expressing their logarithmic derivatives as follows:

$$\frac{d}{du} \log L(u, \chi, U/V) = \sum_{\mu=1}^{\infty} c_{\mu}(\chi) u^{\mu-1},$$

Lang proved that the coefficients $c_{\mu}(\chi)$ satisfy some inequalities and explained the behavior of $L(u, \chi, U/V)$ in the disk $|u| < q^{-(r-1/2)}$, where r is the dimension of V (also of U). Moreover he gave a conjecture concerning the zeros of $L(u, \chi, U/V)$ on the circle $|u| = q^{-(r-1/2)}$. In the present paper, we shall prove that this conjecture holds under some assumption.

We shall first give another definition of $L(u, \chi, U/V)$. It can be shown that our definition is equivalent to Lang's, in the case where $f: U \rightarrow V$ is unramified and U is non-singular, after some cumbersome but not difficult calculations. Both definitions are not equivalent in general; but the L-series which we shall define will have the same behavior as Lang's L-series in the disk $|u| < q^{-(r-1)}$ in all cases, as will be shown by the birational nature of Corollary of Theorem 1 below. (We shall omit here the proof of equivalence of definitions for the unramified, non-singular case. Hereafter the notations $L(u, \chi, U/V)$ and $c_u(\chi)$ will be used to mean our L-series and their coefficients.)

Our definition of *L*-series will be given by the formulas (8) and (9) below, where $N_{\mu}(U, T_{\sigma})$ is the number of certain points on *U*, defined at the beginning of § 1. Theorem 1 concerns a fundamental inequality on $N_{\mu}(U, T_{\sigma})$, which has important consequences on $c_{\mu}(\chi)$, as will be given as Corollary.

In view of the "birational equivalence" (in the sense above explained) of our definition with Lang's, the content of Corollary of Theorem 1 is covered by the result of [3]. So Theorem 1 could be also derived from the result of [3] simply by applying the orthogonality relations of group-characters. We prefer however to prove directly Theorem 1 by the same principle as in [3], since the method of this proof will be applied to a more general case in § 2.

In §2, we shall show that the analogue of the "trace formula" for $N_{\mu}(U, T_{\sigma})$ and the conjecture of Lang explained above follow from the assumption (*). If the covering is trivial i.e. U = V, then our result is already obtained in Taniyama [9] under a weaker assumption than ours. (On an explicit form of the conjecture of Lang, see Ishida [1].)

In the following, we shall use the results of Lang [3] and Serre [8] often without references.

§1. A fundamental inequality.

1. Let U be a normal, projective variety of dimension r, defined over a finite field k with q elements; let T be a birational transformation of U into itself also defined over k. We suppose that T is everywhere defined on U and has a finite order n, i. e. T^n is the identity transformation of U. Let G be a cyclic group of biregular, birational transformations of U generated by T. Then, since U is projective and G is a finite group regularly operating on U, we can define the quotient variety $U_0 = U/G$, which is also irreducible, normal, projective and of dimension r. Moreover we can construct U_0 and the canonical mapping f of U onto U_0 to be defined over the algebraic closure of k. Hence we may assume, by replacing k by a finite extension of k if necessary, that U_0 and f are also defined over k.

Let I_{μ} be the rational transformation of the ambient projective space of U given by the endomorphism of the universal domain: $\xi \to \xi^{q^{\mu}}$.

We denote by $N_{\mu}(U, T)$ the number of the points P on U such that $T(P) = I_{\mu}(P)$.

THEOREM 1. Let the notations be as explained above. Then there exist constants γ and δ such that, for any positive rational integer μ , we have the following inequality:

(1)
$$|N_{\mu}(U,T)-q^{\mu r}| \leq \gamma q^{\mu(r-1/2)} + \delta q^{\nu(r-1)},$$

and the set of such constants γ is a birational invariant of U.

In §2, we shall show that this constant γ is deeply related to the characteristic roots of the *l*-adic representation of the automorphism of an Albanese variety of U given by T.

2. Now we prove Theorem 1. Let Z_0 be a k-closed algebraic subset of U_0 containing every point P_0 on U_0 which either ramifies in the Galois covering $f: U \rightarrow U_0$ or is multiple on U_0 ; then the dimension of Z_0 is less than r.

If P is a point on U such that $T(P) = I_{\mu}(P)$, then we have $f \cdot T(P) = f \cdot I_{\mu}(P)$; and so, as $f \cdot T = f$ and f is defined over k, we see that $P_0 = f(P)$ is a rational point on U_0 over k_{μ} , the unique extension over k of degree μ .

M. Ishida

REMARK. Therefore, even in the case where U is not necessarily irreducible, we have

$$N_{\mu}(U,T) \leq [U:U_0] \cdot N_{\mu}(U_0),$$

where $N_{\mu}(U_0)$ denotes the number of rational points on U_0 over k_{μ} . Hence *we have*, by Lang-Weil [6],

$$N_{\mu}(U, T) = O(q^{\mu r}).$$

In our proof, we shall first construct a suitable system of algebraic curves on U, each member of which is T-invariant.

Let P^* be the dual space of the ambient space P of U_0 and Γ the (r-1)-fold product of P^* . Denoting the number of rational points on P over k by κ_{M+1} , we have

$$\kappa_{\rm M+1} \!=\! \frac{q^{\rm M+1}\!-\!1}{q\!-\!1}$$
 ,

where *M* is the dimension of *P*. Clearly Γ has κ_{M+1}^{r-1} rational points over *k*. We need the following inequalities afterwards:

$$\left| \left(\frac{\kappa_{M+1}}{\kappa_M} \right)^{r-1} - q^{r-1} \right| \leq c_1 q^{r-2},$$
$$q^{(M-1)(r-1)} \leq \kappa_M^{r-1},$$

(2)

with a constant c_1 , independent of q.

Any point v on Γ defines a linear variety L_v in P. For a rational point P_0 on U_0 over k, there are exactly κ_M^{r-1} rational points a on Γ over k such that L_a contains P_0 .

By Lang [3], there is a k-closed algebraic subset F of Γ such that, if a point v on Γ does not belong to F, the following three conditions are satisfied.

1) The intersection product $U_0 \cdot L_v = C_v$ is defined and is a non-singular irreducible curve on U_0 .

2) The inverse image $f^{-1}(C_v) = W_v$ is an irreducible curve on U and simple on U. f_v (the restriction of f to W_v): $W_v \to C_v$ is a Galois covering with Galois group also generated by the restriction T_v of T to W_v and $[W_v: C_v] = [U: U_0]$. (Here W_v is not always normal, but we generalize the definition of Galois coverings.)

3) The intersection product $Z_0 \cdot C_v$ is defined and is an O-cycle on C_v . If a point P_0 on C_v does not belong to $Z_0 \cdot C_v$, then $f^{-1}(P_0)$ consists of $n = [W_v: C_v]$ different points on W_v , which are simple on W_v .

For a point v in F, we also denote $U_0 \cap L_v$ and $f^{-1}(U_0 \cap L_v)$ by C_v and W_v respectively. Those W_v 's form a system of T-invariant curves on U, which we are looking for.

Denoting by N(F) the number of rational points on F over k, we have,

by Lang-Weil [6] and by the above inequality (2),

(3)
$$N(F) \leq c_2 q^{M(r-1)-1} \leq c_2 \kappa_M^{r-1} q^{r-2},$$

with a constant c_2 , independent of q.

As shown above, for any point P on U such that $T(P) = I_1(P)$, there are κ_M^{r-1} linear varieties L_a which contain $P_0 = f(P)$ and are defined over k. Hence there are κ_M^{r-1} curves C_a containing P_0 and defined over k; and so there are also κ_M^{r-1} curves W_a containing the given P and defined over k.

Therefore we have

(4)
$$N_1(U, T) = \frac{1}{\kappa_M^{r-1}} \sum_{a \in (\Gamma - F)_k} N_1(W_a, T_a) + \frac{1}{\kappa_M^{r-1}} \sum_{a \in F_k} N_1(W_a, T_a),$$

where the first and second sums range over all rational points on $\Gamma - F$ and F over k respectively.

3. Let a belong to F and be rational over k. Then we have, by the remark given above,

$$N_1(W_a, T_a) \leq n \cdot N_1(C_a)$$
 ,

where $N_1(C_a)$ denotes the number of rational points on C_a over k. On the other hand, by Lang [3], we have

$$\left|rac{1}{\kappa_M^{r-1}}\sum_{a\in F_{m k}}N_1(C_a)
ight| \leq c_3 q^{r-1/2}$$
 ,

with a constant c_3 , independent of q. Therefore we have

(5)
$$\left|\frac{1}{\kappa_M^{r-1}}\sum_{a\in F_k}N_1(W_a, T_a)\right| \leq n \cdot c_3 q^{r-1/2}.$$

Let *a* belong to $\Gamma - F$ and be rational over *k*. Let W_a^* be a non-singular irreducible curve, birationally equivalent to W_a over *k*. Then the number of points, at which the birational transformation between W_a and W_a^* is not biregular, is less than $[W_a: C_a] \deg(C_a \cdot Z_0)$, by the condition 3); hence it is uniformly bounded. The genus g_a^* of W_a^* is also uniformly bounded. Moreover T_a induces naturally a biregular, birational transformation T_a^* of W_a^* , which has also a finite order. Clearly we have

$$|N_1(W_a, T_a) - N_1(W_a^*, T_a^*)| \leq c_4$$
,

with a constant c_4 , independent of a. On the other hand, since the degree of the automorphism T_a^* is 1, we have, by Weil (or more explicitly by Mattuck-Tate [7]),

$$|N_1(W_a^*, T_a^*) - q| \leq 2g_a^* q^{1/2} + 1 \leq c_5 q^{1/2},$$

with a constant c_5 , independent of q and a. Hence we have

(6)
$$|N_1(W_a, T_a)-q| \leq c_0 q^{1/2},$$

with a constant c_6 , independent of q and a. On the other hand, we have, by (2) and (3),

(7)
$$\left|\frac{1}{\kappa_{M}^{r-1}}\sum_{a\in(\Gamma-F)_{k}}1-q^{r-1}\right| = \left|\frac{\kappa_{M+1}^{r-1}-N(F)}{\kappa_{M}^{r-1}}-q^{r-1}\right| \le c_{7}q^{r-2}$$

with a constant c_7 , independent of q.

Therefore we have, by (4), (5), (6) and (7),

$$|N_1(U, T)-q^r| \leq \gamma q^{r-1/2} + \delta q^{r-1}$$
,

with constants γ and δ , independent of q.

If we extend the ground field k to its finite extension k_{μ} with q^{μ} elements, we have also an estimation of $N_{\mu}(U, T)$ as stated in Theorem 1.

Moreover if X is a T-invariant k-closed algebraic subset of U, then it is clear that we have, by the remark in 2,

$$|N_{\mu}(U,T)-N_{\mu}(U-X,T)| \leq c_{8}q^{\mu(r-1)}$$
,

with a constant c_8 , independent of μ . Therefore the set of such constants γ is a birational invariant of U.

Thus the proof of Theorem 1 is completed.

4. Let $f: U \to V$ be a Galois covering of degree *n*, defined over a finite field *k* with *q* elements, where *U* and *V* are normal, projective varieties of dimension *r*. The elements of the Galois group *G* will be denoted by T_{σ} , T_{τ}, \cdots . Then, by the definition of Galois coverings, the numbers $N_{\mu}(U, T_{\sigma})$, $N_{\mu}(U, T_{\tau}), \cdots$ are well defined.

For a simple character χ of G, we define the congruence L-series $L(u, \chi, U/V)$ by the following logarithmic derivative:

(8)
$$\frac{d}{du} \log L(u, \chi, U/V) = \sum_{\mu=1}^{\infty} c_{\mu}(\chi) u^{\mu-1},$$

and by the condition $L(O, \chi, U/V) = 1$, where the coefficients $c_{\mu}(\chi)$ are given by

(9)
$$c_{\mu}(\chi) = -\frac{1}{n} \sum_{T_{\sigma} \in G} \chi(T_{\sigma}) N_{\mu}(U, T_{\sigma}).$$

Then, by the orthogonality relations of group-characters and Theorem 1, we have the following

COROLLARY. We have, for every positive rational integer μ ,

(10)
$$\begin{aligned} |c_{\mu}(\chi)| &\leq \gamma_{\chi} q^{\mu(r-1/2)} + \delta_{\chi} q^{\mu(r-1)}, \text{ if } \chi \text{ is not principal,} \\ |c_{\mu}(\chi_{0}) - q^{\mu r}| &\leq \gamma_{\chi_{0}} q^{\mu(r-1/2)} + \delta_{\chi_{0}} q^{\mu(r-1)}, \text{ if } \chi_{0} \text{ is principal,} \end{aligned}$$

where γ_{χ} and δ_{χ} are constants, independent of μ . Therefore $L(u, \chi, U/V)$ with $\chi \neq \chi_0$ have neither zero nor pole in the disk $|u| < q^{-(r-1/2)}$.

§ 2. The conjecture of Lang.

(11)
$$N_{\mu}(U,T) = q^{\mu r} + \gamma_{\mu} q^{\mu(r-1/2)} + O(q^{\mu(r-1)}),$$

for each μ , where γ_{μ} are constants bounded in absolute value by a fixed constant γ .

Let U(m) be the *m*-fold symmetric product of U; we may assume that U(m) is also defined over k. Then T induces naturally a biregular, birational transformation of U(m) into itself, which has the same order n. Let h be the canonical mapping of the *m*-fold product $U \times U \times \cdots \times U$ of U onto U(m) and let Δ be the diagonal of $U \times U$. Then $X = h(\Delta \times U \times \cdots \times U)$ is a subvariety of U(m) and has the dimension (m-1)r. Clearly X is invariant by T and I_{μ} for all μ . Any point \mathfrak{a} on U(m)-X has a representative (P_1, P_2, \cdots, P_m) with points P_i on U, where any two of the points P_1, \cdots, P_m are different from each other.

Let a be a point on U(m)-X such that $T(\mathfrak{a}) = I_{\mu}(\mathfrak{a})$, where I_{μ} denotes also the q^{μ} -th power transformation of the ambient space of U(m). If (P_1, \dots, P_m) is a representative of \mathfrak{a} , then, by a suitable change of indices, the points P_1, \dots, P_m are divided into several sets as follows:

> $T(P_1) = I_{\mu}(P_2), \ T(P_2) = I_{\mu}(P_3), \ \cdots, \ T(P_{\rho_1}) = I_{\mu}(P_1);$ $T(P_{\rho_1+1}) = I_{\mu}(P_{\rho_1+2}), \ \cdots, \ T(P_{\rho_1+\rho_2}) = I_{\mu}(P_{\rho_1+1});$

where $\sum \rho_i$ equals to *m* and ρ_i is a positive rational integer. Then \mathfrak{a} is called to be "of type (ρ_1, ρ_2, \cdots) " and $(P_1, \cdots, P_{\rho_1}), (P_{\rho_1+1}, \cdots, P_{\rho_1+\rho_1}), \cdots$ are called "cycles of length ρ_1, ρ_2, \cdots of \mathfrak{a} " respectively. We denote by $[\mathfrak{a}]$ the number of cycles of \mathfrak{a} .

Let (P_1, \dots, P_{ρ}) be a cycle of length ρ of some point \mathfrak{a} on U(m)-X such that $T(\mathfrak{a}) = I_{\mu}(\mathfrak{a})$. As T is defined over k, we have $T \cdot I_{\mu} = I_{\mu} \cdot T$ and so

(12)
$$T^{\rho}(P_1) = I_{\rho\mu}(P_1)$$

and $P_{\rho} = T^{-1}I_{\mu}(P_1), \dots, P_2 = (T^{-1}I_{\mu})^{\rho-1}(P_1)$ are uniquely determined by P_1 . Moreover, as a is in U(m) - X, any two of P_1, \dots, P_{ρ} are different from each other. Hence ρ is the smallest value with which P_1 satisfies (12).

It is easily verified, by Theorem 1, that the number of points on U, which satisfy (12) with ρ as the smallest value, is given by

(13)
$$N_{\rho\mu}(U, T^{\rho}) + O(q^{\mu(\rho-1)r}).$$

Conversely if a point P on U satisfies (12) with ρ as the smallest value, then any two of $(T^{-1}I_{\mu})^{\nu}(P)$ with $\nu = 0, 1, \dots, \rho-1$ are different from each other.

M. Ishida

Hence, by (13), $(P, (T^{-1}I_{\mu})^{\rho-1}(P), \dots, (T^{-1}I_{\mu})(P))$ appears as a cycle of length ρ of some point \mathfrak{a} on U(m)-X such that $T(\mathfrak{a})=I_{\mu}(\mathfrak{a})$ and $[\mathfrak{a}]=s$, where s is any positive rational integer not larger than $m-\rho+1$.

Hence the number of points a on U(m)-X, such that $T(\mathfrak{a}) = I_{\mu}(\mathfrak{a})$ and $[\mathfrak{a}] = s$, is given by

(14)
$$\frac{1}{s!} \sum_{\substack{(\rho_1, \cdots, \rho_s) \\ \rho_1 + \cdots + \rho_s = m}} \frac{N_{\rho_1 \mu}(U, T^{\rho_1})}{\rho_1} \cdots \frac{N_{\rho_s \mu}(U, T^{\rho_s})}{\rho_s} + O(q^{\mu(m-1)r}).$$

Here the sum $\sum_{\substack{(\rho_1,\dots,\rho_s)\\\rho_1+\dots+\rho_s=m}}$ ranges over all the *s*-permutations (ρ_1,\dots,ρ_s) of positive

rational integers with $\sum_{i=1}^{s} \rho_i = m$, where each of the *s* integers may be repeated. Moreover the error term of (14) is due to that of (13) and the fact that our consideration is restricted to points on U(m)-X.

Therefore, by the above arguments and the remark in 2, we have the following formula (cf. Taniyama [9]):

(15)
$$N_{\mu}(U(m), T) = N_{\mu}(U(m) - X, T) + O(q^{\mu(m-1)r})$$
$$= \frac{N_{m\mu}(U, T^{m})}{m} + \frac{1}{2!} \sum_{\substack{(\rho_{1}, \rho_{2}) \\ \rho_{1} + \rho_{2} = m}} \frac{N_{\rho_{1}\mu}(U, T^{\rho_{1}})}{\rho_{1}} \cdot \frac{N_{\rho_{2}\mu}(U, T^{\rho_{2}})}{\rho_{2}} \cdot \frac{N_{\rho_{3}\mu}(U, T^{\rho_{2}})}{\rho_{3}}$$
$$+ \frac{1}{3!} \sum_{\substack{(\rho_{1}, \rho_{3}, \rho_{3}) \\ \rho_{1} + \rho_{2} + \rho_{3} = m}} \frac{N_{\rho_{1}\mu}(U, T^{\rho_{1}})}{\rho_{1}} \cdot \frac{N_{\rho_{2}\mu}(U, T^{\rho_{3}})}{\rho_{2}} \cdot \frac{N_{\rho_{3}\mu}(U, T^{\rho_{3}})}{\rho_{3}}$$
$$+ \dots + \frac{N_{\mu}(U, T)^{m}}{m!} + O(q^{\mu(m-1)r}).$$

We note that, as r is larger than 0, we have $(m-1)r \leq mr-1$. On the other hand, by Theorem 1, we have

 $|N_{\mu}(U(m), T) - q^{\mu m r}| \leq \gamma^* q^{\mu(mr-1/2)},$

with a constant γ^* , independent of μ . Hence, comparing the coefficients of $q^{\mu m r}$ in the both sides of the above expression (15) of $N_{\mu}(U(m), T)$, we have

(16)
$$1 = \frac{1}{m} + \frac{1}{2!} \sum_{\substack{(\rho_1, \rho_2)\\\rho_1 + \rho_2 = m}} \frac{1}{\rho_1} \frac{1}{\rho_2} + \frac{1}{3!} \sum_{\substack{(\rho_1, \rho_2, \rho_3)\\\rho_1 + \rho_2 + \rho_3 = m}} \frac{1}{\rho_1} \frac{1}{\rho_2} \frac{1}{\rho_3} + \dots + \frac{1}{m!}.$$

As $\mu((m-\rho_i)r+\rho_ir-\frac{1}{2}\rho_i)=\mu(mr-\frac{1}{2}\rho_i)$, a term of order $q''^{(mr-1/2)}$ appears in $N_{\rho_1\mu}(U, T^{\rho_1})\cdot N_{\rho_1\mu}(U, T^{\rho_1})\cdots N_{\rho_{s}\mu}(U, T^{\rho_s})$ with $\sum_{i=1}^{s}\rho_i=m$ if and only if some ρ_i is equal to 1. Hence, if *m* is larger than 1, the sum of the terms of order $q^{\mu(mr-1/2)}$ in the right side of (15) is given by

28

$$\frac{2}{2!} \frac{1}{m-1} \gamma_{\mu} q^{\mu(r-1/2)+\mu(m-1)r} + \frac{3}{3!} \sum_{\substack{(\rho_{1},\rho_{1})\\\rho_{1}+\rho_{2}=m-1}} \frac{1}{\rho_{1}} \frac{1}{\rho_{2}} \gamma_{\mu} q^{\mu(r-1/2)+\mu(m-1)r} \\
+ \dots + \frac{m}{m!} \gamma_{\mu} q^{\mu(r-1/2)+\mu(m-1)r} \\
= \left\{ \frac{1}{m-1} + \frac{1}{2!} \sum_{\substack{(\rho_{1},\rho_{1})\\\rho_{1}+\rho_{2}=m-1}} \frac{1}{\rho_{1}} \frac{1}{\rho_{2}} + \dots + \frac{1}{(m-1)!} \right\} \gamma_{\mu} q^{\mu(mr-1/2)} \\
= \gamma_{\mu} q^{\mu(mr-1/2)}$$

by the formula (16) for m-1.

Therefore we have also

$$N_{\mu}(U(m), T) = q^{\mu m r} + \gamma_{\mu} q^{\mu(m r - 1/2)} + O(q^{\mu(m r - 1)}).$$

6. Now we shall restrict ourselves to the case where U is non-singular and T satisfies the following condition: If the *a*-th power T^a of T leaves at least one point on U fixed, then a is divisible by the order n of T. This condition imposed on T is always satisfied when T is an element of the Galois group of some unramified Galois covering. However, in order to study the constant γ in Theorem 1, these assumptions are not essential, because of the birationality of the constants γ .

We choose *m* to be prime to *n*. We suppose that, for a positive rational integer *a* not divisible by *n*, there exists a point *a* on U(m) which is fixed by T^{a} . Let $(P_{1}, P_{2}, \dots, P_{m})$ be a representative of *a*; then we may assume that the points P_{1}, \dots, P_{m} are divided into several sets as follows:

$$T^{a}(P_{1}) = P_{2}, \quad T^{a}(P_{2}) = P_{3}, \quad \cdots, \quad T^{a}(P_{\rho_{1}}) = P_{1};$$
$$T^{a}(P_{\rho_{1}+1}) = P_{\rho_{1}+2}, \quad \cdots, \quad T^{a}(P_{\rho_{1}+\rho_{2}}) = P_{\rho_{1}+1};$$

where $\sum \rho_i$ equals to *m* and ρ_i is a positive rational integer. Then we have

 $T^{a\rho_1}(P_1) = P_1, \quad T^{a\rho_2}(P_{\rho_1+1}) = P_{\rho_1+1}, \cdots.$

Hence, by the assumption of T, each $a\rho_i$ must be divisible by n; so $am = \sum a\rho_i$ is divisible by n, which contradicts to our choice of m. Therefore we can choose m so that if a is not divisible by n then T^a has no fixed point on U(m).

Let A be an Albanese variety attached to U and α a canonical mapping of U into A. As k is finite, A and α may be assumed to be defined over k. A is also an Albanese variety attached to U(m) and α induces naturally a canonical mapping α_m of U(m) into A. For a generic point P on U over k, we have, by the universal mapping property of Albanese varieties,

$$\alpha \cdot T(P) = \eta \cdot \alpha(P) + t,$$

where η is an automorphism of A defined over k and t is a rational point on A over k, which are independent of the choice of P. So, for a generic point u on U(m) over k, we have

$$\alpha_m \cdot T(\mathfrak{u}) = \eta \cdot \alpha_m(\mathfrak{u}) + mt$$
.

We note that α and α_m are everywhere defined on U and U(m) respectively because U is non-singular by our assumption.

If a point a on U(m) satisfies $T(\mathfrak{a}) = I_{\mu}(\mathfrak{a})$, then we have $\alpha_m \cdot T(\mathfrak{a}) = \alpha_m \cdot I_{\mu}(\mathfrak{a})$. As α_m is defined over k, we have

$$\eta \cdot \alpha_m(\mathfrak{a}) + mt = \pi^{\mu} \alpha_m(\mathfrak{a}),$$

where π is the endomorphism of A given by the endomorphism of the universal domain: $\xi \to \xi^q$.

Now we choose *m* to be prime to *n* and sufficiently larger than 2g+2, where *g* is the dimension of *A*. For a point *a* on *A*, W(m, a) denotes the subvariety of U(m) consisting of all points a such that $\alpha_m(a) = a$. Then, for our choice of *m*, W(m, a) is irreducible and of dimension mr-g, by Taniyama [9].

We denote also by $N_{\mu}(W(m, a), T)$ the number of points a on W(m, a) such that $T(a) = I_{\mu}(a)$. Since T does not generally map W(m, a) into itself and also W(m, a) is not generally defined over k, we can not apply Theorem 1 to this case. However, for such a point a on A that $\eta(a) + mt = \pi^{\mu}(a)$, we have an analogous inequality as we shall show afterwards.

By the above arguments and the fact that T and α_m are everywhere defined on U(m), we have

(17)
$$N_{\mu}(U(m), T) = \sum_{a} N_{\mu}(W(m, a), T),$$

where the sum ranges over all points a on A such that

$$\eta(a)+mt=\pi^{\mu}(a)$$
.

We note that there are exactly det $M_l(\pi^{\mu}-\eta)$ such points a on A, where M_l denotes the *l*-adic representation of the ring of endomorphisms of A with a rational prime l different from the characteristic of the universal domain. In fact, if x is a generic point on A over k, we have $k(\eta(x)) = k(x)$ and so $k(\pi^{\mu}(x), (\pi^{\mu}-\eta)(x)) = k(x)$; hence we have $\nu_i(\pi^{\mu}-\eta) = 1$ and so $\nu_s(\pi^{\mu}-\eta) = \det M_l(\pi^{\mu}-\eta)$.

7. Now we shall calculate the number $N_{\mu}(W(m, a), T)$ for a point a on A such that $\eta(a) + mt = \pi^{\mu}(a)$.

Since U(m) is projective and the cyclic group generated by T is a finite group of biregular, birational transformations of U(m) into itself, we can define the quotient variety; and then, by our choice of m, we have an unramified Galois covering and we may assume that this covering is defined

over k. W_0 denotes the image of W(m, a) by the canonical projection f of this covering.

By the definition, T(W(m, a)) coincides with $W(m, \eta(a) + mt) = W(m, \pi^{\mu}(a))$; and, as α_m is defined over k, $I_{\mu}(W(m, a))$ coincides with $W(m, \pi^{\mu}(a))$ and consequently with T(W(m, a)). It is clear, by considering the dimensions, W(m, a)and $T(W(m, a)) = I_{\mu}(W(m, a))$ are irreducible components of the inverse image $f^{-1}(W_0)$. Hence, as f is defined over k and $f \cdot T = f$, it is easily verified that W_0 is defined over k_{μ} . Moreover, let $W_1 = W(m, a)$, $W_2 = T(W(m, a))$, W_3 , \cdots be all the irreducible components of the inverse image $f^{-1}(W_0)$. Since each W_i is written as $W(m, b_i)$ with some point b_i on A and so the intersection $W_i \cap$ W_j is empty for distinct b_i and b_j , any two of W_i 's have no point in common. Then, by Lang-Serre [4] and [5], we have $\sum_{i} [W_i: W_0]_s \leq n$, where *n* is the degree of the covering and the symbol $[W_i: W_0]_s$ denotes the separable part of the degree $[W_i: W_0]$. We note that $[W_i: W_0]_s$ is equal to the number of points on W_i lying over a generic point of W_0 . As $W_i \cap W_j$ is empty and the covering is unramified, we have $n = \sum_{i} [W_i: W_0]_s$ and so, by the remark in [5], we have $[W_i: W_0]_s = [W_i: W_0]$. Especially it follows that the function fields of W(m, a) and of T(W(m, a)) are separable over that of W_0 . Hence we can conclude that $f_1: W(m, a) \rightarrow W_0$ and $f_2: T(W(m, a)) \rightarrow W_0$ are unramified coverings, where f_1 and f_2 are the restrictions of f on W(m, a) and T(W(m, a))respectively. (If necessary, we may replace W(m, a), T(W(m, a)) and W_0 by their normalizations, because of the birational nature of the following statements.) Let $C_{u'}$ be a generic hyperplane section curve on W_0 over k_{μ} with defining coefficients (u) and $W_{u'}$ the inverse image $f_1^{-1}(C_{u'})$ contained in W(m, a). Then $T(W_u')$ coincides with the inverse image $f_2^{-1}(C_u')$ contained in T(W(m, a)). Let C_b' be a specialization of C_u' over a specialization $(u) \rightarrow$ (b) with reference to k_{μ} and be rational over k_{μ} . For almost all such $C_{b'}$, by similar arguments as in 2, $W_b' = f_1^{-1}(C_b')$ and $T(W_b') = f_2^{-1}(C_b')$ are irreducible curves on W(m, a) and T(W(m, a)) respectively. As f and $C_{b'}$ are defined over k_{μ} , $I_{\mu}(W_{b}')$ is contained in $I_{\mu}(W(m, a)) = T(W(m, a))$ and has the projection $C_{b'}$ on W_0 ; so $I_{\mu}(W_{b'})$ must coincide with $T(W_{b'})$. Also, by Weil or by Mattuck-Tate [7], we have, for almost all such W_b' ,

$$|N_{\mu}(W_{b}', T) - q^{\mu}| \leq c_{9}q^{\mu/2} + 1$$
,

with a constant c_9 , independent of q and (b). Therefore, by the same principle as in the proof of Theorem 1, we have

(18)
$$|N_{\mu}(W(m,a),T)-q^{\mu_s}| \leq \gamma_a' q^{\mu(s-1/2)} + \delta_a' q^{\mu(s-1)},$$

with constants $r_{a'}$ and $\delta_{a'}$, independent of q, where s = mr - g is the dimension of W(m, a).

M. Ishida

It is known that W(m, a) is a regular variety, i.e. an Albanese variety attached to W(m, a) is trivial (cf. Koizumi [2]). So, as a special case of analogues of the conjecture of Lang, we assume that the following conjecture holds.

We have, for every a on A such that $\eta(a)+mt=\pi^{\mu}(a)$,

(*)
$$|N_{\mu}(W(m, a), T) - q^{\mu s}| \leq r_0 q^{\mu(s-1)},$$

where γ_0 is a constant, inedependent of μ and a.

Let $\pi_1, \pi_2, \dots, \pi_{2g}$ and $\zeta_1, \zeta_2, \dots, \zeta_{2g}$ be the characteristic roots of $M_l(\pi)$ and $M_l(\eta)$ respectively, where $|\pi_i| = q^{1/2}$ and ζ_i is a *n*-th root of unity. Then, as $\eta \pi^{\mu} = \pi^{\mu} \eta$ for all μ , it is easily verified that, by a suitable change of indices, $\pi_1^{\mu} - \zeta_1, \pi_2^{\mu} - \zeta_2, \dots, \pi_{2g}^{\mu} - \zeta_{2g}$ are the characteristic roots of $M_l(\pi^{\mu} - \eta)$. Then, by (17) in the end of **6** and by the fact that $\pi_1 \pi_2 \cdots \pi_{2g} = \det M_l(\pi) = q^g$, we have, under the assumption (*),

$$N_{\mu}(U(m), T) = q^{\mu m r} - \sum_{i=1}^{2g} (q^{m r} \pi_i^{-1})^{\mu} \zeta_i + O(q^{\mu(m r-1)})$$

Therefore, using the notations and results in 5, we have, for each μ ,

$$\gamma_{\mu}q^{\mu(mr-1/2)} = -\sum_{i=1}^{2g} (q^{mr}\pi_i^{-1})^{\mu}\zeta_i + O(q^{\mu(mr-1)}),$$

and so

$$\gamma_{\mu}q^{\mu(r-1/2)} = -\sum_{i=1}^{2g} (q^{r}\pi_{i}^{-1})^{\mu}\zeta_{i} + O(q^{\mu(r-1)}).$$

Hence we have the following

THEOREM 2. The notations be as explained above. Then we have, under the assumption (*),

(19)
$$N_{\mu}(U,T) = q^{\mu r} - \sum_{i=1}^{2g} (q^{r} \pi_{i}^{-1})^{\mu} \zeta_{i} + O(q^{\mu(r-1)}).$$

Repeating the same calculations of det $M_l(\pi^{\mu}-\eta)$ as in Ishida [1], we have also the following

COROLLARY. Let $f: U \rightarrow V$ be an unramified Galois covering defined over a finite field k with q elements, where U and also V are non-sigular, projective varieties of dimension r. Then, concerning the zeros of $L(u, \chi, U/V)$ on the circle $|u| = q^{-(r-1/2)}$, the conjecture of Lang holds under the assumption (*) on U.

> Department of Mathematics University of Tokyo.

32

References

- M. Ishida, On zeta-functions and L-series of algebraic varieties II, Proc. Japan Acad., 34 (1958), 395-399.
- [2] S. Koizumi, On Albanese varieties, to appear in Illinois J. Math.
- [3] S. Lang, Sur les séries L d'une variété algébrique, Bull. Soc. Math. France, 84 (1956), 385-407.
- [4] S. Lang-J. P. Serre, Sur les revêtements non ramifiés des variétés algébriques, Amer. J. Math., 79 (1957), 319-330.
- [5] S. Lang-J. P. Serre, Errata, Amer. J. Math., 81 (1959), 279-280.
- [6] S. Lang-A. Weil, Number of points of varieties in finite fields, Amer. J. Math., 76 (1954), 819-827.
- [7] A. Mattuck-J. Tate, On the inequality of Castelnuovo-Severi, Abh. Math. Semi. Univ. Hamburg, 22 (1958), 295-299.
- [8] J.P. Serre, Groupes algébriques et théorie du corps de classes, Lecture note at Collège de France, 1957.
- [9] Y. Taniyama, Distribution of positive 0-cycles in absolute classes of an algebraic variety with finite constant fields, Sci. Papers Coll. Gen. Ed., Univ. Tokyo, 8 (1958), 123-137.