On congruence L-series.

Dedicated to Professor Z. Suetuna on his 60 th birthday.

By Makoto Ishida

(Received June 4, 1959)

Lang [3] has defined the congruence L-series $L(u, \chi, U / V)$ for a Galois covering $f: U \rightarrow V$ of an algebraic variety V defined over a finite field with q elements, associated with simple characters χ of the Galois group. Expressing their logarithmic derivatives as follows:

$$
\frac{d}{d u} \log L(u, \chi, U / V)=\sum_{\mu=1}^{\infty} c_{\mu}(\chi) u^{\mu-1}
$$

Lang proved that the coefficients $c_{\mu}(\chi)$ satisfy some inequalities and explained the behavior of $L(u, \chi, U / V)$ in the disk $|u|<q^{-(r-1 / 2)}$, where r is the dimension of V (also of U). Moreover he gave a conjecture concerning the zeros of $L(u, \chi, U / V)$ on the circle $|u|=q^{-(r-1 / 2)}$. In the present paper, we shall prove that this conjecture holds under some assumption.

We shall first give another definition of $L(u, \chi, U / V)$. It can be shown that our definition is equivalent to Lang's, in the case where $f: U \rightarrow V$ is unramified and U is non-singular, after some cumbersome but not difficult calculations. Both definitions are not equivalent in general; but the L-series which we shall define will have the same behavior as Lang's L-series in the disk $|u|<q^{-(r-1)}$ in all cases, as will be shown by the birational nature of Corollary of Theorem 1 below. (We shall omit here the proof of equivalence of definitions for the unramified, non-singular case. Hereafter the notations $L(u, \chi, U / V)$ and $c_{\mu}(\chi)$ will be used to mean our L-series and their coefficients.)

Our definition of L-series will be given by the formulas (8) and (9) below, where $N_{\mu}\left(U, T_{\sigma}\right)$ is the number of certain points on U, defined at the beginning of $\S 1$. Theorem 1 concerns a fundamental inequality on $N_{\mu}\left(U, T_{\sigma}\right)$, which has important consequences on $c_{\mu}(\chi)$, as will be given as Corollary.

In view of the "birational equivalence" (in the sense above explained) of our definition with Lang's, the content of Corollary of Theorem 1 is covered by the result of [3]. So Theorem 1 could be also derived from the result of [3] simply by applying the orthogonality relations of group-characters. We prefer however to prove directly Theorem 1 by the same principle as in [3], since the method of this proof will be applied to a more general case in $\S 2$.

In $\S 2$, we shall show that the analogue of the "trace formula" for $N_{\mu}\left(U, T_{\sigma}\right)$ and the conjecture of Lang explained above follow from the assumption (*). If the covering is trivial i. e. $U=V$, then our result is already obtained in Taniyama [9] under a weaker assumption than ours. (On an explicit form of the conjecture of Lang, see Ishida [1].)

In the following, we shall use the results of Lang [3] and Serre [8] often without references.

§ 1. A fundamental inequality.

1. Let U be a normal, projective variety of dimension r, defined over a finite field k with q elements; let T be a birational transformation of U into itself also defined over k. We suppose that T is everywhere defined on U and has a finite order n, i. e. T^{n} is the identity transformation of U. Let G be a cyclic group of biregular, birational transformations of U generated by T. Then, since U is projective and G is a finite group regularly operating on U, we can define the quotient variety $U_{0}=U / G$, which is also irreducible, normal, projective and of dimension r. Moreover we can construct U_{0} and the canonical mapping f of U onto U_{0} to be defined over the algebraic closure of k. Hence we may assume, by replacing k by a finite extension of k if necessary, that U_{0} and f are also defined over k.

Let I_{μ} be the rational transformation of the ambient projective space of U given by the endomorphism of the universal domain : $\xi \rightarrow \xi^{q^{\prime \prime}}$.

We denote by $N_{\mu}(U, T)$ the number of the points P on U such that $T(P)$ $=I_{\mu}(P)$.

Theorem 1. Let the notations be as explained above. Then there exist constants γ and δ such that, for any positive rational integer μ, we have the following inequality:

$$
\begin{equation*}
\left|N_{\mu}(U, T)-q^{\mu r}\right| \leqq r q^{\mu(r-1 /-)}+\delta q^{\mu(r-1)} \tag{1}
\end{equation*}
$$

and the set of such constants γ is a birational invariant of U.
In $\S 2$, we shall show that this constant r is deeply related to the charactersitic roots of the l-adic representation of the automorphism of an Albanese variety of U given by T.
2. Now we prove Theorem 1. Let Z_{0} be a k-closed algebraic subset of U_{0} containing every point P_{0} on U_{0} which either ramifies in the Galois covering $f: U \rightarrow U_{0}$ or is multiple on U_{0}; then the dimension of Z_{0} is less than r.

If P is a point on U such that $T(P)=I_{\mu}(P)$, then we have $f \cdot T(P)=f \cdot I_{\mu}(P)$; and so, as $f \cdot T=f$ and f is defined over k, we see that $P_{0}=f(P)$ is a rational point on U_{0} over k_{μ}, the unique extension over k of degree μ.

Remark. Therefore, even in the case where U is not necessarily irreducible, we have

$$
N_{\mu}(U, T) \leqq\left[U: U_{0}\right] \cdot N_{\mu}\left(U_{0}\right),
$$

where $N_{\mu}\left(U_{0}\right)$ denotes the number of rational points on U_{0} over k_{μ}. Hence we have, by Lang-Weil [6],

$$
N_{\mu}(U, T)=O\left(q^{\mu r}\right) .
$$

In our proof, we shall first construct a suitable system of algebraic curves on U, each member of which is T-invariant.

Let \boldsymbol{P}^{*} be the dual space of the ambient space \boldsymbol{P} of U_{0} and Γ the $(\boldsymbol{r}-1)$ fold product of \boldsymbol{P}^{*}. Denoting the number of rational points on \boldsymbol{P} over k by κ_{M+1}, we have

$$
\kappa_{M+1}=\frac{q^{M+1}-1}{q-1},
$$

where M is the dimension of \boldsymbol{P}. Clearly Γ has κ_{M+1}^{r-1} rational points over k. We need the following inequalities afterwards:

$$
\begin{align*}
& \left|\left(\frac{\kappa_{M+1}}{\kappa_{M}}\right)^{r-1}-q^{r-1}\right| \leqq c_{1} q^{r-2}, \\
& q^{(M-1)(r-1)} \leqq \kappa_{M}^{r-1}, \tag{2}
\end{align*}
$$

with a constant c_{1}, independent of q.
Any point v on Γ defines a linear variety L_{v} in \boldsymbol{P}. For a rational point P_{0} on U_{0} over k, there are exactly κ_{M}^{r-1} rational points a on Γ over k such that L_{a} contains P_{0}.

By Lang [3], there is a k-closed algebraic subset F of Γ such that, if a point v on Γ does not belong to F, the following three conditions are satisfied.

1) The intersection product $U_{0} \cdot L_{v}=C_{v}$ is defined and is a non-singular irreducible curve on U_{0}.
2) The inverse image $f^{-1}\left(C_{v}\right)=W_{v}$ is an irreducible curve on U and simple on $U . f_{v}$ (the restriction of f to W_{v}): $W_{v} \rightarrow C_{v}$ is a Galois covering with Galois group also generated by the restriction T_{v} of T to W_{v} and [W_{v} : $\left.C_{v}\right]=\left[U: U_{0}\right]$. (Here W_{v} is not always normal, but we generalize the definition of Galois coverings.)
3) The intersection product $Z_{0} \cdot C_{v}$ is defined and is an O-cycle on C_{v}. If a point P_{0} on C_{v} does not belong to $Z_{0} \cdot C_{v}$, then $f^{-1}\left(P_{0}\right)$ consists of $n=\left[W_{v}\right.$: $\left.C_{v}\right]$ different points on W_{v}, which are simple on W_{v}.

For a point v in F, we also denote $U_{0} \cap L_{v}$ and $f^{-1}\left(U_{0} \cap L_{v}\right)$ by C_{v} and W_{v} respectively. Those W_{v} 's form a system of T-invariant curves on U, which we are looking for.

Denoting by $N(F)$ the number of rational points on F over k, we have,
by Lang-Weil [6] and by the above inequality (2),

$$
\begin{equation*}
N(F) \leqq c_{2} q^{M(r-1)-1} \leqq c_{2} \kappa_{M}^{r-1} q^{r-2}, \tag{3}
\end{equation*}
$$

with a constant c_{2}, independent of q.
As shown above, for any point P on U such that $T(P)=I_{1}(P)$, there are κ_{M}^{r-1} linear varieties L_{a} which contain $P_{0}=f(P)$ and are defined over k. Hence there are κ_{M}^{r-1} curves C_{a} containing P_{0} and defined over k; and so there are also κ_{M}^{r-1} curves W_{a} containing the given P and defined over k.

Therefore we have

$$
\begin{equation*}
N_{1}(U, T)=\frac{1}{\kappa_{M}^{r-1}} \sum_{a \in(\Gamma-F)_{k}} N_{1}\left(W_{a}, T_{a}\right)+\frac{1}{\kappa_{M}^{r-1}} \sum_{a \in F_{k}} N_{1}\left(W_{a}, T_{a}\right), \tag{4}
\end{equation*}
$$

where the first and second sums range over all rational points on $\Gamma-F$ and F over k respectively.
3. Let a belong to F and be rational over k. Then we have, by the remark given above,

$$
N_{1}\left(W_{a}, T_{a}\right) \leqq n \cdot N_{1}\left(C_{a}\right),
$$

where $N_{1}\left(C_{a}\right)$ denotes the number of rational points on C_{a} over k. On the other hand, by Lang [3], we have

$$
\left|\frac{1}{\kappa_{M}^{r-1}} \sum_{a \in F_{k}} N_{1}\left(C_{a}\right)\right| \leqq c_{3} q^{r-1 / 2},
$$

with a constant c_{3}, independent of q. Therefore we have
(5)

$$
\left|\frac{1}{\kappa_{M}^{r-1}} \sum_{a \in F_{k}} N_{1}\left(W_{a}, T_{a}\right)\right| \leqq n \cdot c_{3} q^{r-1 / 2}
$$

Let a belong to $\Gamma-F$ and be rational over k. Let W_{a}^{*} be a non-singular irreducible curve, birationally equivalent to W_{a} over k. Then the number of points, at which the birational transformation between W_{a} and $W_{a}{ }^{*}$ is not biregular, is less than $\left[W_{a}: C_{a}\right] \operatorname{deg}\left(C_{a} \cdot Z_{0}\right)$, by the condition 3); hence it is uniformly bounded. The genus g_{a}^{*} of W_{a}^{*} is also uniformly bounded. Moreover T_{a} induces naturally a biregular, birational transformation $T_{a}{ }^{*}$ of $W_{a}{ }^{*}$, which has also a finite order. Clearly we have

$$
\left|N_{1}\left(W_{a}, T_{a}\right)-N_{1}\left(W_{a}^{*}, T_{a}^{*}\right)\right| \leqq c_{4},
$$

with a constant c_{4}, independent of a. On the other hand, since the degree of the automorphism T_{a}^{*} is 1 , we have, by Weil (or more explicitly by Mattuck-Tate [7]),

$$
\mid N_{\mathrm{l}}\left(W_{a}^{*}, T_{a}^{*}\right)-q!\leqq 2 g_{a}^{*} q^{1 / 2}+1 \leqq c_{5} q^{1 / 2},
$$

with a constant c_{5}, independent of q and a. Hence we have

$$
\begin{equation*}
\left|N_{1}\left(W_{a}, T_{a}\right)-q\right| \leqq c_{6} q^{1 / 2}, \tag{6}
\end{equation*}
$$

with a constant c_{6}, independent of q and a. On the other hand, we have, by (2) and (3),

$$
\begin{equation*}
\left|\frac{1}{\kappa_{M}^{r-1}} \sum_{a \in(\Gamma-F)_{k}} 1-q^{r-1}\right|=\left|\frac{\kappa_{M+1}^{r-1}-N(F)}{\kappa_{M}^{r-1}}-q^{r-1}\right| \leqq c_{7} q^{r-2} \tag{7}
\end{equation*}
$$

with a constant c_{7}, independent of q.
Therefore we have, by (4), (5), (6) and (7),

$$
\left|N_{1}(U, T)-q^{r}\right| \leqq r q^{r-1 / 2}+\delta q^{r-1},
$$

with constants γ and δ, independent of q.
If we extend the ground field k to its finite extension k_{μ} with q^{μ} elements, we have also an estimation of $N_{\mu}(U, T)$ as stated in Theorem 1.

Moreover if X is a T-invariant k-closed algebraic subset of U, then it is clear that we have, by the remark in $\mathbf{2}$,

$$
\left|N_{\mu}(U, T)-N_{\mu}(U-X, T)\right| \leqq c_{8} q^{\mu^{(r-1)}}
$$

with a constant c_{8}, independent of μ. Therefore the set of such constants γ is a birational invariant of U.

Thus the proof of Theorem 1 is completed.
4. Let $f: U \rightarrow V$ be a Galois covering of degree n, defined over a finite field k with q elements, where U and V are normal, projective varieties of dimension r. The elements of the Galois group G will be denoted by T_{σ}, T_{τ}, \cdots. Then, by the definition of Galois coverings, the numbers $N_{\mu}\left(U, T_{\sigma}\right)$, $N_{\mu}\left(U, T_{\tau}\right), \cdots$ are well defined.

For a simple character χ of G, we define the congruence L-series $L(u, \chi$, $U / V)$ by the following logarithmic derivative:

$$
\begin{equation*}
\frac{d}{d u} \log L(u, \chi, U / V)=\sum_{\mu=1}^{\infty} c_{\mu}(\chi) u^{\mu-1}, \tag{8}
\end{equation*}
$$

and by the condition $L(O, \chi, U / V)=1$, where the coefficients $c_{\mu}(\chi)$ are given by

$$
\begin{equation*}
c_{\mu}(\chi)=-\frac{1}{n} \sum_{T_{\sigma} \in(;} \chi\left(T_{\sigma}\right) N_{\mu}\left(U, T_{\sigma}\right) . \tag{9}
\end{equation*}
$$

Then, by the orthogonality relations of group-characters and Theorem 1, we have the following

Corollary. We have, for every positive rational integer μ,

$$
\begin{align*}
& \left|c_{\mu}(\chi)\right| \leqq r_{x} q^{\mu(r-1 / 2)}+\delta_{x} q^{\mu(r-1)}, \text { if } \chi \text { is not principal, } \tag{10}\\
& \left|c_{\mu}\left(\chi_{0}\right)-q^{\mu r}\right| \leqq r_{\chi_{0}} q^{\mu(r-1 / i)}+\delta_{\chi_{0}} q^{\mu(r-1)} \text {, if } \chi_{0} \text { is principal, }
\end{align*}
$$

where γ_{x} and δ_{x} are constants, independent of μ. Therefore $L(u, \chi, U / V)$ with $\chi \neq \chi_{0}$ have neither zero nor pole in the disk $|u|<q^{-(r-1 / 2)}$.

§ 2. The conjecture of Lang.

5. Let the notations be as explained in 1. By Theorem 1, we can write

$$
\begin{equation*}
N_{\mu}(U, T)=q^{\mu r}+\gamma_{\mu} q^{\mu(r-1 / 2)}+O\left(q^{\mu(r-1)}\right), \tag{11}
\end{equation*}
$$

for each μ, where γ_{μ} are constants bounded in absolute value by a fixed constant γ.

Let $U(m)$ be the m-fold symmetric product of U; we may assume that $U(m)$ is also defined over k. Then T induces naturally a biregular, birational transformation of $U(m)$ into itself, which has the same order n. Let h be the canonical mapping of the m-fold product $U \times U \times \cdots \times U$ of U onto $U(m)$ and let Δ be the diagonal of $U \times U$. Then $X=h(\Delta \times U \times \cdots \times U)$ is a subvariety of $U(m)$ and has the dimension $(m-1) r$. Clearly X is invariant by T and I_{μ} for all μ. Any point a on $U(m)-X$ has a representative ($P_{1}, P_{2}, \cdots, P_{m}$) with points P_{i} on U, where any two of the points P_{1}, \cdots, P_{m} are different from each other.

Let \mathfrak{a} be a point on $U(m)-X$ such that $T(\mathfrak{a})=I_{\mu}(\mathfrak{a})$, where I_{μ} denotes also the $q^{\prime \prime}$-th power transformation of the ambient space of $U(m)$. If (P_{1}, \cdots, P_{m}) is a representative of \mathfrak{a}, then, by a suitable change of indices, the points P_{1}, \cdots, P_{m} are divided into several sets as follows:

$$
\begin{aligned}
& T\left(P_{1}\right)=I_{\mu}\left(P_{2}\right), T\left(P_{2}\right)=I_{\mu}\left(P_{\mathrm{s}}\right), \cdots, T\left(P_{\rho_{1}}\right)=I_{\mu}\left(P_{1}\right) ; \\
& T\left(P_{\rho_{1}+1}\right)=I_{\mu}\left(P_{\rho_{1}+2}\right), \cdots, T\left(P_{\rho_{1}+\rho_{s}}\right)=I_{\mu}\left(P_{\rho_{\rho_{1}+1}}\right) ;
\end{aligned}
$$

where $\sum \rho_{i}$ equals to m and ρ_{i} is a positive rational integer. Then \mathfrak{a} is called to be " of type ($\rho_{1}, \rho_{2}, \cdots$)" and ($\left.P_{1}, \cdots, P_{\rho_{1}}\right),\left(P_{\rho_{1}+1}, \cdots, P_{\rho_{1}+\rho_{2}}\right), \cdots$ are called "cycles of length $\rho_{1}, \rho_{2}, \cdots$ of \mathfrak{a} " respectively. We denote by [a] the number of cycles of a.

Let $\left(P_{1}, \cdots, P_{\rho}\right)$ be a cycle of length ρ of some point \mathfrak{a} on $U(m)-X$ such that $T(\mathrm{a})=I_{\mu}(\mathrm{a})$. As T is defined over k, we have $T \cdot I_{\mu}=I_{\mu} \cdot T$ and so

$$
\begin{equation*}
T^{p}\left(P_{1}\right)=I_{\rho_{\mu}}\left(P_{1}\right) \tag{12}
\end{equation*}
$$

and $P_{\rho}=T^{-1} I_{\mu}\left(P_{1}\right), \cdots, P_{2}=\left(T^{-1} I_{\mu}\right)^{\rho-1}\left(P_{1}\right)$ are uniquely determined by P_{1}. Moreover, as \mathfrak{a} is in $U(m)-X$, any two of P_{1}, \cdots, P_{ρ} are different from each other. Hence ρ is the smallest value with which P_{1} satisfies (12).

It is easily verified, by Theorem 1, that the number of points on U, which satisfy (12) with ρ as the smallest value, is given by

$$
\begin{equation*}
N_{\rho_{\mu}}\left(U, T^{\rho}\right)+O\left(q^{\mu(\rho-1) r}\right) . \tag{13}
\end{equation*}
$$

Conversely if a point P on U satisfies (12) with ρ as the smallest value, then any two of $\left(T^{-1} I_{\mu}\right)^{\nu}(P)$ with $\nu=0,1, \cdots, \rho-1$ are different from each other.

Hence, by (13), ($\left.P,\left(T^{-1} I_{\mu}\right)^{\rho-1}(P), \cdots,\left(T^{-1} I_{\mu}\right)(P)\right)$ appears as a cycle of length ρ of some point \mathfrak{a} on $U(m)-X$ such that $T(\mathfrak{a})=I_{\mu}(\mathfrak{a})$ and $[\mathfrak{a}]=s$, where s is any positive rational integer not larger than $m-\rho+1$.

Hence the number of points \mathfrak{a} on $U(m)-X$, such that $T(\mathfrak{a})=I_{\mu}(\mathfrak{a})$ and $[\mathfrak{a}]=s$, is given by

$$
\frac{1}{s!} \sum_{\substack{\left(\begin{array}{c}
\left.1 \\
1, \ldots, \rho_{s}\right) \\
\rho_{1}+\cdots+\rho_{s}=m \tag{14}
\end{array}\right.}} \frac{N_{\rho_{s} \mu}\left(U, T^{\rho_{s}}\right)}{\rho_{1}} \cdots \frac{N_{\rho_{s / 2}}\left(U, T^{\left.\rho_{s}\right)}\right.}{\rho_{s}}+O\left(q^{\mu(m-1) r}\right)
$$

Here the sum $\underset{\substack{\left(\rho_{0}, \ldots, \rho_{s}\right) \\ \rho_{1}+\cdots+\rho_{s}=m}}{ }$ ranges over all the s-permutations $\left(\rho_{1}, \cdots, \rho_{s}\right)$ of positive rational integers with $\sum_{i=1}^{s} \rho_{i}=m$, where each of the s integers may be repeated. Moreover the error term of (14) is due to that of (13) and the fact that our consideration is restricted to points on $U(m)-X$.

Therefore, by the above arguments and the remark in 2 , we have the following formula (cf. Taniyama [9]):

$$
\begin{align*}
N_{\mu}(U(m), T) & =N_{\mu}(U(m)-X, T)+O\left(q^{\mu(m-1) r}\right) \tag{15}\\
= & \frac{N_{m \mu}\left(U, T^{m}\right)}{m}+\frac{1}{2!} \sum_{\substack{\left(\rho_{1}, \rho_{2}\right) \\
\rho_{1}+\rho_{3}=m}} \frac{N_{\rho_{1} \mu}\left(U, T^{\rho_{1}}\right)}{\rho_{1}} \cdot \frac{N_{\rho_{2} \mu}\left(U, T^{\rho_{2}}\right)}{\rho_{2}} \\
& +\frac{1}{3!} \sum_{\substack{\left(\rho_{1}, \rho_{2}, \rho_{\rho_{2}}\right) \\
\rho_{2}+\rho_{2}+\rho_{3}=m}} \frac{N_{\rho_{1} \mu}\left(U, T^{\rho_{1}}\right)}{\rho_{1}} \cdot \frac{N_{\rho_{2} \mu}\left(U, T^{\rho_{s}}\right)}{\rho_{2}} \cdot \frac{N_{\rho_{3} \mu}\left(U, T^{\rho_{s}}\right)}{\rho_{3}} \\
& +\cdots+\frac{N_{\mu}(U, T)^{m}}{m!}+O\left(q^{\mu(m-1) r)}\right)
\end{align*}
$$

We note that, as r is larger than 0 , we have $(m-1) r \leqq m r-1$.
On the other hand, by Theorem 1, we have

$$
\left|N_{\mu}(U(m), T)-q^{\mu m r}\right| \leqq \gamma^{*} q^{\mu(m r-1 / 2)},
$$

with a constant γ^{*}, independent of μ. Hence, comparing the coefficients of $q^{\mu m r}$ in the both sides of the above expression (15) of $N_{\mu}(U(m), T)$, we have

$$
1=\frac{1}{m}+\frac{1}{2!} \sum_{\substack{\left(\rho_{1}, \rho_{2}\right) \tag{16}\\
\rho_{1}+\rho_{3}=m}} \frac{1}{\rho_{1}} \frac{1}{\rho_{2}}+\frac{1}{3!} \sum_{\substack{\left(\begin{array}{c}
\left.1 \\
\rho_{1}, \rho_{2}, \rho_{3}\right) \\
\rho_{1}+\rho_{2}+\rho_{3}=m
\end{array}\right.}} \frac{1}{\rho_{1}} \frac{1}{\rho_{2}} \frac{1}{\rho_{3}}+\cdots+\frac{1}{m!} .
$$

As $\mu\left(\left(m-\rho_{i}\right) r+\rho_{i} r-\frac{1}{2} \rho_{i}\right)=\mu\left(m r-\frac{1}{2} \rho_{i}\right)$, a term of order $q^{\prime \prime(m r-1 / 2)}$ appears in $N_{\rho_{1 \mu}}\left(U, T^{\rho_{1}}\right) \cdot N_{\rho_{\rho_{\mu}}}\left(U, T^{\rho_{s}}\right) \cdots N_{\rho_{s \mu}}\left(U, T^{\rho_{s}}\right)$ with $\sum_{i=1}^{s} \rho_{i}=m$ if and only if some ρ_{i} is equal to 1 . Hence, if m is larger than 1 , the sum of the terms of order $q^{\mu(m r-1 / 2)}$ in the right side of (15) is given by

$$
\begin{aligned}
& \frac{2}{2!} \quad \frac{1}{m-1} \gamma_{\mu} q^{\mu(r-1 / 2)+\mu(m-1) r}+\frac{3}{3!} \sum_{\substack{\left(\rho_{1}, \rho_{2}\right) \\
\rho_{1}+\rho_{2}=m-1}} \frac{1}{\rho_{1}} \frac{1}{\rho_{2}} \gamma_{\mu} q^{\mu(r-1 / 2)+\mu(m-1) r} \\
& \left.\quad+\cdots+\frac{m}{m!} \gamma_{\mu} q^{\mu(r-1 / 2)+\mu(m-1) r}\right\} \\
& = \\
& =\left\{\frac{1}{m-1}+\frac{1}{2!} \sum_{\substack{\left(\rho_{1}, \rho_{r}\right) \\
\rho_{1}+\rho_{2}=m-1}} \frac{1}{\rho_{1}} \frac{1}{\rho_{2}}+\cdots+\frac{1}{(m-1)!}\right\} \gamma_{\mu} q^{\mu(m r-1 / 2)} \\
& =
\end{aligned}
$$

by the formula (16) for $m-1$.
Therefore we have also

$$
N_{\mu}(U(m), T)=q^{\mu m r}+\gamma_{\mu} q^{\mu(m r-1 / 2)}+O\left(q^{\mu(m r-1)}\right)
$$

6. Now we shall restrict ourselves to the case where U is non-singular and T satisfies the following condition: If the a-th power T^{a} of T leaves at least one point on U fixed, then a is divisible by the order n of T. This condition imposed on T is always satisfied when T is an element of the Galois group of some unramified Galois covering. However, in order to study the constant γ in Theorem 1, these assumptions are not essential, because of the birationality of the constants γ.

We choose m to be prime to n. We suppose that, for a positive rational integer a not divisible by n, there exists a point \mathfrak{a} on $U(m)$ which is fixed by T^{a}. Let $\left(P_{1}, P_{2}, \cdots, P_{m}\right)$ be a representative of \mathfrak{a}; then we may assume that the points P_{1}, \cdots, P_{m} are divided into several sets as follows:

$$
\begin{aligned}
& T^{a}\left(P_{1}\right)=P_{2}, \quad T^{a}\left(P_{2}\right)=P_{3}, \quad \cdots, \quad T^{a}\left(P_{\rho_{1}}\right)=P_{1} \\
& T^{a}\left(P_{\rho_{1}+1}\right)=P_{\rho_{1}+2}, \quad \cdots, \quad T^{a}\left(P_{\rho_{1}+\rho_{\mathbf{2}}}\right)=P_{\rho_{1+1}}
\end{aligned}
$$

where $\sum \rho_{i}$ equals to m and ρ_{i} is a positive rational integer. Then we have

$$
T^{a \rho_{1}}\left(P_{1}\right)=P_{1}, \quad T^{a \rho_{2}}\left(P_{\rho_{1}+1}\right)=P_{\rho_{1}+1}, \cdots
$$

Hence, by the assumption of T, each $a \rho_{i}$ must be divisible by n; so $a m=$ $\sum a \rho_{i}$ is divisible by n, which contradicts to our choice of m. Therefore we can choose m so that if a is not divisible by n then T^{a} has no fixed point on $U(m)$.

Let A be an Albanese variety attached to U and α a canonical mapping of U into A. As k is finite, A and α may be assumed to be defined over k. A is also an Albanese variety attached to $U(m)$ and α induces naturally a canonical mapping α_{m} of $U(m)$ into A. For a generic point P on U over k, we have, by the universal mapping property of Albanese varieties,

$$
\alpha \cdot T(P)=\eta \cdot \alpha(P)+t
$$

where η is an automorphism of A defined over k and t is a rational point on A over k, which are independent of the choice of P. So, for a generic point \mathfrak{u} on $U(m)$ over k, we have

$$
\alpha_{m} \cdot T(\mathfrak{u})=\eta \cdot \alpha_{m}(\mathfrak{u})+m t .
$$

We note that α and α_{m} are everywhere defined on U and $U(m)$ respectively because U is non-singular by our assumption.

If a point \mathfrak{a} on $U(m)$ satisfies $T(\mathfrak{a})=I_{\mu}(\mathfrak{a})$, then we have $\alpha_{m} \cdot T(\mathfrak{a})=\alpha_{m} \cdot I_{\mu}(\mathfrak{a})$. As α_{m} is defined over k, we have

$$
\eta \cdot \alpha_{m}(\mathfrak{a})+m t=\pi^{\mu} \alpha_{m}(\mathfrak{a}),
$$

where π is the endomorphism of A given by the endomorphism of the universal domain: $\xi \rightarrow \xi^{q}$.

Now we choose m to be prime to n and sufficiently larger than $2 g+2$, where g is the dimension of A. For a point a on $A, W(m, a)$ denotes the subvariety of $U(m)$ consisting of all points \mathfrak{a} such that $\alpha_{m}(\mathfrak{a})=a$. Then, for our choice of $m, W(m, a)$ is irreducible and of dimension $m r-g$, by Taniyama [9].

We denote also by $N_{\mu}(W(m, a), T)$ the number of points \mathfrak{a} on $W(m, a)$ such that $T(\mathrm{a})=I_{\mu}(\mathrm{a})$. Since T does not generally map $W(m, a)$ into itself and also $W(m, a)$ is not generally defined over k, we can not apply Theorem 1 to this case. However, for such a point a on A that $\eta(a)+m t=\pi^{\mu}(a)$, we have an analogous inequality as we shall show afterwards.

By the above arguments and the fact that T and α_{m} are everywhere defined on $U(m)$, we have

$$
\begin{equation*}
N_{\mu}(U(m), T)=\sum_{a} N_{\mu}(W(m, a), T), \tag{17}
\end{equation*}
$$

where the sum ranges over all points a on A such that

$$
\eta(a)+m t=\pi^{\mu}(a) .
$$

We note that there are exactly $\operatorname{det} M_{l}\left(\pi^{\mu}-\eta\right)$ such points a on A, where M_{l} denotes the l-adic representation of the ring of endomorphisms of A with a rational prime l different from the characteristic of the universal domain. In fact, if x is a generic point on A over k, we have $k(\eta(x))=k(x)$ and so $k\left(\pi^{\mu}(x)\right.$, $\left.\left(\pi^{\mu}-\eta\right)(x)\right)=k(x)$; hence we have $\nu_{i}\left(\pi^{\mu}-\eta\right)=1$ and so $\nu_{s}\left(\pi^{\mu}-\eta\right)=\operatorname{det} M_{l}\left(\pi^{\mu}-\eta\right)$.
7. Now we shall calculate the number $N_{\mu}(W(m, a), T)$ for a point a on A such that $\eta(a)+m t=\pi^{\mu}(a)$.

Since $U(m)$ is projective and the cyclic group generated by T is a finite group of biregular, birational transformations of $U(m)$ into itself, we can define the quotient variety; and then, by our choice of m, we have an unramified Galois covering and we may assume that this covering is defined
over k. W_{0} denotes the image of $W(m, a)$ by the canonical projection f of this covering.

By the definition, $T(W(m, a))$ coincides with $W(m, \eta(a)+m t)=W\left(m, \pi^{\mu}(a)\right)$; and, as α_{m} is defined over $k, I_{\mu}(W(m, a))$ coincides with $W\left(m, \pi^{\mu}(a)\right)$ and consequently with $T(W(m, a))$. It is clear, by considering the dimensions, $W(m, a)$ and $T(W(m, a))=I_{\mu}(W(m, a))$ are irreducible components of the inverse image $f^{-1}\left(W_{0}\right)$. Hence, as f is defined over k and $f \cdot T=f$, it is easily verified that W_{0} is defined over k_{μ}. Moreover, let $W_{1}=W(m, a), W_{2}=T(W(m, a)), W_{3}, \cdots$ be all the irreducible components of the inverse image $f^{-1}\left(W_{0}\right)$. Since each W_{i} is written as $W\left(m, b_{i}\right)$ with some point b_{i} on A and so the intersection $W_{i} \cap$ W_{j} is empty for distinct b_{i} and b_{j}, any two of W_{i} 's have no point in common. Then, by Lang-Serre [4] and [5], we have $\sum_{i}\left[W_{i}: W_{0}\right]_{s} \leqq n$, where n is the degree of the covering and the symbol $\left[W_{i}: W_{0}\right]_{s}$ denotes the separable part of the degree $\left[W_{i}: W_{0}\right]$. We note that $\left[W_{i}: W_{0}\right]_{s}$ is equal to the number of points on W_{i} lying over a generic point of W_{0}. As $W_{i} \cap W_{j}$ is empty and the covering is unramified, we have $n=\sum_{i}\left[W_{i}: W_{0}\right]_{s}$ and so, by the remark in [5], we have $\left[W_{i}: W_{0}\right]_{s}=\left[W_{i}: W_{0}\right]$. Especially it follows that the function fields of $W(m, a)$ and of $T(W(m, a))$ are separable over that of W_{0}. Hence we can conclude that $f_{1}: W(m, a) \rightarrow W_{0}$ and $f_{2}: T(W(m, a)) \rightarrow W_{0}$ are unramified coverings, where f_{1} and f_{2} are the restrictions of f on $W(m, a)$ and $T(W(m, a))$ respectively. (If necessary, we may replace $W(m, a), T\left(W(m, a)\right.$) and W_{0} by their normalizations, because of the birational nature of the following statements.) Let $C_{u}{ }^{\prime}$ be a generic hyperplane section curve on W_{0} over k_{μ} with defining coefficients (u) and $W_{u}{ }^{\prime}$ the inverse image $f_{1}{ }^{-1}\left(C_{u}{ }^{\prime}\right)$ contained in $W(m, a)$. Then $T\left(W_{u}{ }^{\prime}\right)$ coincides with the inverse image $f_{2}{ }^{-1}\left(C_{u}{ }^{\prime}\right)$ contained in $T(W(m, a))$. Let $C_{b}{ }^{\prime}$ be a specialization of $C_{u^{\prime}}{ }^{\prime}$ over a specialization $(u) \rightarrow$ (b) with reference to k_{μ} and be rational over k_{μ}. For almost all such $C_{b}{ }^{\prime}$, by similar arguments as in 2, $W_{b}{ }^{\prime}=f_{1}{ }^{-1}\left(C_{b}{ }^{\prime}\right)$ and $T\left(W_{b}{ }^{\prime}\right)=f_{2}{ }^{-1}\left(C_{b}{ }^{\prime}\right)$ are irreducible curves on $W(m, a)$ and $T(W(m, a))$ respectively. As f and $C_{b}{ }^{\prime}$ are defined over $k_{\mu}, I_{\mu}\left(W_{b}^{\prime}\right)$ is contained in $I_{\mu}(W(m, a))=T(W(m, a))$ and has the projection $C_{b}{ }^{\prime}$ on W_{0}; so $I_{\mu}\left(W_{b}{ }^{\prime}\right)$ must coincide with $T\left(W_{b}{ }^{\prime}\right)$. Also, by Weil or by Mattuck-Tate [7], we have, for almost all such $W_{b}{ }^{\prime}$,

$$
\left|N_{\mu}\left(W_{b^{\prime}}^{\prime}, T\right)-q^{\mu}\right| \leqq c_{9} q^{\mu / 2}+1
$$

with a constant c_{9}, independent of q and (b). Therefore, by the same principle as in the proof of Theorem 1, we have

$$
\begin{equation*}
\left|N_{\mu}(W(m, a), T)-q^{\mu_{s}}\right| \leqq \gamma_{a}^{\prime} q^{\mu(s-1 / 2)}+\delta_{a}^{\prime} q^{\mu(s-1)} \tag{18}
\end{equation*}
$$

with constants $\gamma_{a}{ }^{\prime}$ and $\delta_{a}{ }^{\prime}$, independent of q, where $s=m r-g$ is the dimension of $W(m, a)$.

It is known that $W(m, a)$ is a regular variety, i.e. an Albanese variety attached to $W(m, a)$ is trivial (cf. Koizumi [2]). So, as a special case of analogues of the conjecture of Lang, we assume that the following conjecture holds.

We have, for every a on A such that $\eta(a)+m t=\pi^{\mu}(a)$,

$$
\begin{equation*}
\left|N_{\mu}(W(m, a), T)-q^{\mu s}\right| \leqq r_{0} q^{\mu(s-1)}, \tag{*}
\end{equation*}
$$

where γ_{0} is a constant, inedependent of μ and a.
Let $\pi_{1}, \pi_{2}, \cdots, \pi_{2 g}$ and $\zeta_{1}, \zeta_{2}, \cdots, \zeta_{2 g}$ be the characteristic roots of $M_{l}(\pi)$ and $M_{l}(\eta)$ respectively, where $\left|\pi_{i}\right|=q^{1 / 2}$ and ζ_{i} is a n-th root of unity. Then, as $\eta \pi^{\mu}=\pi^{\mu} \eta$ for all μ, it is easily verified that, by a suitable change of indices, $\pi_{1}{ }^{\mu}-\zeta_{1}, \pi_{2}{ }^{\mu}-\zeta_{2}, \cdots, \pi_{2 g}{ }^{\mu}-\zeta_{2 g}$ are the characteristic roots of $M_{l}\left(\pi^{\mu}-\eta\right)$. Then, by (17) in the end of 6 and by the fact that $\pi_{1} \pi_{2} \cdots \pi_{2 g}=\operatorname{det} M_{l}(\pi)=q^{g}$, we have, under the assumption (*),

$$
N_{\mu}(U(m), T)=q^{\mu m r}-\sum_{i=1}^{2 g}\left(q^{m r} \pi_{i}^{-1}\right)^{\mu} \zeta_{i}+O\left(q^{\mu(m r-1)}\right)
$$

Therefore, using the notations and results in 5, we have, for each μ,

$$
r_{\mu} q^{\mu(m r-1 / 2)}=-\sum_{i=1}^{2 g}\left(q^{m r} \pi_{i}^{-1}\right)^{\mu} \zeta_{i}+O\left(q^{\mu(m r-1)}\right),
$$

and so

$$
r_{\mu} q^{\mu(r-1 / 2)}=-\sum_{i=1}^{2 g}\left(q^{r} \pi_{i}^{-1}\right)^{\mu} \zeta_{i}+O\left(q^{\mu(r-1)}\right)
$$

Hence we have the following
Theorem 2. The notations be as explained above. Then we have, under the assumption (*),

$$
\begin{equation*}
N_{\mu}(U, T)=q^{\mu r}-\sum_{i=1}^{2 g}\left(q^{r} \pi_{i}^{-1}\right)^{\mu} \zeta_{i}+O\left(q^{\mu(r-1)}\right) \tag{19}
\end{equation*}
$$

Repeating the same calculations of $\operatorname{det} M_{l}\left(\pi^{\mu}-\eta\right)$ as in Ishida [1], we have also the following

Corollary. Let $f: U \rightarrow V$ be an unramified Galois covering defined over a finite field k with q elements, where U and also V are non-sigular, projective varieties of dimension r. Then, concerning the zeros of $L(u, \chi, U / V)$ on the circle $|u|=q^{-(r-1 / 2)}$, the conjecture of Lang holds under the assumption (*) on U.

References

[1] M. Ishida, On zeta-functions and L-series of algebraic varieties II, Proc. Japan Acad., 34 (1958), 395-399.
[2] S. Koizumi, On Albanese varieties, to appear in Illinois J. Math.
[3] S. Lang, Sur les séries L d'une variété algébrique, Bull. Soc. Math. France, 84 (1956), 385-407.
[4] S. Lang-J. P. Serre, Sur les revêtements non ramifiés des variétés algébriques, Amer. J. Math., 79 (1957), 319-330.
[5] S. Lang-J. P. Serre, Errata, Amer. J. Math., 81 (1959), 279-280.
[6] S. Lang-A. Weil, Number of points of varieties in finite fields, Amer. J. Math., 76 (1954), 819-827.
[7] A. Mattuck-J. Tate, On the inequality of Castelnuovo-Severi, Abh. Math. Semi. Univ. Hamburg, 22 (1958), 295-299.
[8] J. P. Serre, Groupes algébriques et théorie du corps de classes, Lecture note at Collège de France, 1957.
[9] Y. Taniyama, Distribution of positive 0 -cycles in absolute classes of an algebraic variety with finite constant fields, Sci. Papers Coll. Gen. Ed., Univ. Tokyo, 8 (1958), 123-137.

