On local cyclotomic fields.

Dedicated to Professor Z. Suetuna.

By Kenkichi IWASAWA

(Received May 4, 1959)

Introduction.

Let p be an odd prime, Q_p the p-adic number field, and \mathcal{Q} an algebraic closure of Q_p . For each $n \geq 0$, we denote by F_n the extension field of Q_p generated by the set W_n of all p^{n+1} -th roots of unity in \mathcal{Q} . The local cyclotomic field F_n is then a cyclic extension of degree $p^n(p-1)$ over Q_p . Let W be the union of the increasing sequence of groups W_n $(n \geq 0)$ and let F be the union of the increasing sequence of fields F_n $(n \geq 0)$. Then $F = Q_p(W)$, and it is an infinite abelian extension of Q_p . Let M be the maximal abelian extension of F in \mathcal{Q} ; M is clearly a Galois extension of Q_p .

We now consider the following problems on the local fields F_n and M: To determine the structure of the multiplicative group of the field F_n acted on by the Galois group $G(F_n/Q_p)$, and to describe explicitly the structure of the Galois group of the extension M/Q_p . In the present paper, we shall give a solution to these problems by using the result of a previous paper, in which we studied some arithmetic properties of local cyclotomic fields in applying the theory of Γ -finite modules.\(^1)\) We hope that the result of the present paper, combined with our previous results on Galois groups of local fields,\(^2)\) will give us further insight into the structure of the Galois group of the extension Ω/Q_p .

1. The structure of the multiplicative group of F_n .

Let U be the group of all p-adic units in Q_p and U^0 the subgroup of all a in U such that $a \equiv 1 \mod p$. Then U is the direct product of U^0 and a cyclic subgroup V of order p-1 consisting of all roots of unity in Q_p :

$$U = U^{\scriptscriptstyle 0} \! imes V$$
 .

¹⁾ Cf. K. Iwasawa, On the theory of cyclotomic fields, Ann. of Math., 70 (1959), 530-561.

²⁾ Cf. K. Iwasawa, On Galois groups of local fields, Trans. Amer. Math. Soc., 80 (1955), 448-469.

By local class field theory, there exists a topological isomorphism κ of $G = G(F/Q_p)$ onto U such that

$$\zeta^{\sigma} = \zeta^{\kappa(\sigma)}, \qquad \sigma \in G,$$

for every ζ in W. Then, for any σ in G, there exists a unique element η_{σ} in V such that

$$\kappa(\sigma) \equiv \eta_{\sigma} \mod p$$
,

and the mapping $\sigma \to \eta_{\sigma}$ defines a homomorphism of G onto V with kernel $G(F/F_0)$.

Let $n \ (\ge 0)$ be fixed. Let \mathfrak{p}_n be the unique prime ideal of F_n dividing the rational prime p, and let B_n and B_n^0 denote, respectively, the group of all \mathfrak{p}_n -adic units in F_n and the subgroup of all β in B_n such that $\beta \equiv 1 \mod \mathfrak{p}_n$. Then B_n is the direct product of B_n^0 and V:

$$B_n = B_n^0 \times V$$
.

The groups B_n , B_n^0 , and V are invariant under the Galois group $G_n = G(F_n/Q_p)$. The action of G_n on V is obviously trivial. But the action of G_n on B_n^0 is given as follows³: Let R_n be the group ring of G_n over the ring O_p of p-adic integers, and let I_n be the ideal of R_n consisting of all elements of the form $\sum_{\sigma} a_{\sigma} \sigma$ ($a_{\sigma} \in O_p$) with $\sum_{\sigma} a_{\sigma} = 0$. Since B_n^0 is a p-primary compact abelian group, we may consider O_p as an operator domain of B_n^0 . Hence we may also consider R_n as acting on B_n^0 . As an R_n -group, B_n^0 is then the direct product of U^0 , W_n , and a subgroup C_n isomorphic with the R_n -module I_n :

$$B_n^0 = U^0 \times W_n \times C_n$$
.

Since $U = U^0 \times V$, we also have

$$B_n = U \times W_n \times C_n$$
, $C_n \cong I_n$.

Now, let A_n denote the multiplicative group of the field F_n and let π_n be any prime element of F_n . Then A_n/B_n is an infinite cyclic group generated by the coset of $\pi_n \mod B_n$, and the Galois group G_n acts trivially on A_n/B_n . Therefore $\pi_n^{\sigma-1}$ is contained in B_n for any σ in G_n . For such a σ , we also put

$$\eta_{\sigma} = \eta_{\sigma'}$$
 ,

where σ' is any element of $G = G(F/Q_p)$ inducing σ on F_n . We then have the following

Lemma. For any prime element π_n of F_n and for any σ in G_n ,

$$\pi_n^{\sigma-1} \equiv \eta_\sigma \mod \mathfrak{p}_n$$
.

³⁾ Cf. l. c. 1), Theorem 19.

18 K. Iwasawa

PROOF. Let π_n' be any other prime element of F_n . Then $\pi_n' = \beta \pi_n$, with β in B_n ; and since G_n acts trivially on V, $\beta^{\sigma-1} \equiv 1 \mod \mathfrak{p}_n$. Hence $\pi_n'^{\sigma-1} \equiv \pi_n^{\sigma-1} \mod \mathfrak{p}_n$, and we see that it is sufficient to prove the lemma for one particular π_n . Let ζ_{n+1} be a primitive p^{n+1} -th root of unity in F_n . Then $\pi_n = 1 - \zeta_{n+1}$ is a prime element of F_n , and

$$\begin{split} \pi_n{}^\sigma &\equiv \pi_n{}^{\sigma\prime} \equiv 1 - \zeta_{n+1}{}^{\kappa(\sigma\prime)} \equiv 1 - (1 - \pi_n)^{\kappa(\sigma\prime)} \\ &\equiv \kappa(\sigma\prime) \pi_n \equiv \eta_{\sigma\prime} \pi_n \equiv \eta_\sigma \pi_n & \text{mod } \mathfrak{p}_n{}^2 \,. \end{split}$$

Therefore $\pi_n^{\sigma-1} \equiv \eta_\sigma \mod \mathfrak{p}_n$, q. e. d.

Let π_n be again any prime element of F_n . By the above lemma, we put

$$\pi_n^{\sigma-1} = eta_\sigma \eta_\sigma$$
 , $\sigma \in G_n$,

with β_{σ} in B_n^0 . We then denote by $D(\pi_n)$ the closure of the subgroup of the compact group B_n^0 generated by these β_{σ} ($\sigma \in G_n$); $D(\pi_n)$ consists of all elements of the form

$$\prod \beta_{\sigma}^{a_{\sigma}}$$

with arbitrary *p*-adic integers a_{σ} . Since the elements β_{σ} ($\sigma \in G_n$) define a 1-cocycle of G_n in B_n^0 and satisfy the relations $\beta_{\tau\sigma} = \beta_{\sigma}\beta_{\tau}^{\ \sigma}$ ($\sigma, \tau \in G_n$), $D(\pi_n)$ is an R_n -subgroup of B_n^0 .

Theorem 1. There exists a prime element π_n of F_n such that

$$B_n = U \times W_n \times D(\pi_n)$$
.

The R_n -group $D(\pi_n)$ is then isomorphic with the R_n -module I_n under an isomorphism φ such that $\varphi(\beta_{\sigma}) = \sigma - 1$ ($\sigma \in G_n$).

PROOF. Let $B_n = U \times W_n \times C_n$ as in the above, and let g be the projection from B_n on the factor C_n . For any ξ in A_n , $\xi^{\sigma-1}$ ($\sigma \in G_n$) is always contained in B_n . Hence we put

$$\xi_{\sigma} = g(\xi^{\sigma-1}), \qquad \sigma \in G_n.$$

Then $\{\xi_{\sigma}\}$ defines a 1-cocycle of G_n in C_n ; and since $H^1(G_n; A_n) = 1$, the mapping $\xi \to \{\xi_{\sigma}\}$ induces a homomorphism of A_n/B_n onto the cohomology group $H^1(G_n; C_n)$. Let f be an R_n -isomorphism of C_n onto I_n , and let ω_{σ} ($\sigma \in G_n$) be the elements of C_n such that $f(\omega_{\sigma}) = \sigma - 1$. It is then easy to see that $H^1(G_n; C_n)$ is a cyclic group of order p^n generated by the cohomology class of $\{\omega_{\sigma}\}$. Take a prime element π_n of F_n . Since A_n/B_n is an infinite cyclic group generated by the coset of $\pi_n \mod B_n$, the 1-cocycle $\{g(\pi_n^{\sigma-1})\}$ also generates $H^1(G_n; C_n)$. Therefore there is an integer m, prime to p, such that

$$g(\pi_n^{\sigma-1}) = \omega_{\sigma}^m \gamma^{\sigma-1}, \qquad \sigma \in G_n,$$

with an element γ in C_n . Since $\pi_n \gamma^{-1}$ is also a prime element of F_n , we

replace π_n by $\pi_n \gamma^{-1}$ and denote the latter again by π_n . Then we have

$$g(\pi_n^{\sigma-1}) = \omega_\sigma^m, \qquad \sigma \in G_n$$

As in the above, let $\pi_n^{\sigma-1} = \beta_\sigma \eta_\sigma$. Then $g(\beta_\sigma) = g(\pi_n^{\sigma-1}) = \omega_\sigma^m$ ($\sigma \in G_n$) and g induces an O_ρ -homomorphism of $D(\pi_n)$ into C_n . Therefore, if h is the O_ρ -homomorphism of I_n onto $D(\pi_n)$ such that $h(\sigma-1) = \beta_\sigma$, then

$$f \circ g \circ h(\sigma - 1) = m(\sigma - 1), \qquad \sigma \in G_n$$

Since m is prime to p, $f \circ g \circ h$ is an automorphism of I_n . It follows that g induces an isomorphism of $D(\pi_n)$ onto C_n , and we have

$$B_n = U \times W \times D(\pi_n)$$
.

Suppose next that π_n is any prime element of F_n satisfying $B_n = U \times W \times D(\pi_n)$; π_n need not be the particular prime element obtained in the above argument. Clearly, there is an O_p -homomorphism ψ of I_n onto $D(\pi_n)$ such that $\psi(\sigma-1)=\beta_\sigma$. Since $\beta_{\tau\sigma}=\beta_\sigma\beta_\tau^{\ \sigma}$, ψ is then also an R_n -homomorphism. However, it follows from $B_n=U\times W_n\times C_n$ that $I_n\cong C_n\cong D(\pi_n)$. In particular, as compact abelian groups, both I_n and $D(\pi_n)$ are isomorphic with the direct sum of $p^n(p-1)-1$ copies of O_p . Hence ψ must be one-one, and $\varphi=\psi^{-1}$ is an R_n -isomorphism of $D(\pi_n)$ onto I_n such that $\varphi(\beta_\sigma)=\sigma-1$. Thus the theorem is completely proved.

Since A_n/B_n is an infinite cyclic group generated by the coset of π_n mod B_n and since the action of G_n on $U \times W_n$ is well-known, the structure of the G_n -group A_n , the multiplicative group of F_n , is completely determined by Theorem 1.

2. The structure of the Galois group $G(M/Q_2)$.

Let E be the maximal unramified extension of Q_p in Ω . It is known that E is an abelian extension of Q_p generated by all roots of unity in Ω whose orders are prime to p, and also that the Galois group $G(E/Q_p)$ is isomorphic with the so-called total completion \overline{Z} of the additive group Z of rational integers.⁴⁾ It follows that the Galois group $G(E'/Q_p)$ of the maximal p-complementary unramified extension E' of Q_p is isomorphic with the p-complementary completion $p\overline{Z}$ of Z. Furthermore, for each $n \geq 0$, EF_n is the maximal unramified extension of F_n in Ω , and $E'F_n$ is the maximal p-complementary unramified extension of F_n in Ω . Let L_n be the maximal p-complementary abelian extension of F_n in Ω . Then $E'F_n$ is contained in L_n and,

⁴⁾ For compact completions of (discrete) groups, cf. l.c. 2), 1.3. We also notice that a compact topological group is called p-primary (p-complementary) if and only if it is the inverse limit of a family of finite groups whose orders are powers of p (prime to p).

by local class field theory, $G(L_n/E'F_n)$ is naturally isomorphic with $B_n/B_n^0 \cong V$. Since $F_n \cap L_0 = F_0$, $G(F_nL_0/F_n) \cong G(L_0/F_0)$, F_nL_0 is clearly contained in L_n . But, since F_nL_0 contains both $E'F_n$ and a ramified extension of degree p-1 over F_n , it follows that

$$F_nL_0=L_n$$
 , $n\geq 0$.

If F_n' denotes the unique subfield of F_n with degree p^n over Q_p , then we also have

$$F_n'L_0=L_n$$
, $F_n'\cap L_0=Q_n$, $n\geq 0$.

Let F' be the union of the increasing sequence of subfields $F_{n'}$ in Ω . Then F' is a subfield of F such that $\kappa(G(F/F')) = V$, and we have

$$G(F'/Q_n) \cong U^0$$
.

On the other hand, the union L of the increasing sequence of subfields L_n in Ω is, as one sees easily, the maximal p-complementary abelian extension of F in Ω . We then prove the following

Theorem 2. Let F' be the subfield of F such that $\kappa(G(F/F')) = V$ and let L_0 and L be the maximal p-complementary abelian extensions of F_0 and F in Ω , respectively. Then

$$F'L_0=L,\quad F'\cap L_0=Q_p$$
 , $G(L/Q_p)=G(L/F') imes G(L/L_0)$, $G(L/F')\cong G(L_0/Q_p),\quad G(L/L_0)\cong G(F'/Q_p)\cong U^0$.

Furthermore, $G(L_0/Q_p)$ is the p-complementary completion of a group generated by two elements σ and τ satisfying the only relations

$$\sigma \tau \sigma^{-1} = \tau^p, \quad \tau^{(p-1)^2} = 1;$$

 σ is a Frobenius automorphism for L_0/Q_p and τ is a generator of the inertia group for L_0/Q_p .

PROOF. The first half of the theorem is an immediate consequence of what is stated in the above; one has only to notice that L_0 is a Galois extension of Q_p .

The field E' defined in the above is obviously the inertia field for the tamely ramified extension L_0/Q_p . Since $[L_0: E'F_0] = [F_0: Q_p] = p-1$ and $E' \cap F_0 = Q_p$, we see that $[L_0: E'] = (p-1)^2$. The second half of the theorem is then an easy consequence of a result on the structure of the Galois group for the maximal tamely ramified extension of a local field.⁵⁾

If we are merely interested in the purely group-theoretical structure of the group $G(L/Q_p)$, we have the following corollary, which is an immediate consequence of the above theorem:

⁵⁾ Cf. l. c. 2), 3.1.

Corollary. The Galois group $G(L/Q_p)$ is the total completion of a group generated by two element λ and μ satisfying the only relations

$$\lambda \mu \lambda^{-1} = \mu^p$$
, $\mu^{(p-1)^2} = 1$.

Theorem 3. Let L and M be as in the above and let K be the maximal p-primary abelian extension of F in Ω so that KL = M, $K \cap L = F$. Then:

- i) G(M/L) is a closed normal subgroup of $G(M/Q_p)$ such that $G(M/Q_p)/G(M/L) = G(L/Q_p)$, and the group extension $G(M/Q_p)/G(M/L)$ splits,
- ii) G(L/F) acts trivially on G(M/L) so that G(M/L) can be considered as a G-group $(G = G(F/Q_p) = G(L/Q_p)/G(L/F))$, and as such, G(M/L) is naturally isomorphic with G(K/F).

PROOF. Let

$$X = G(M/Q_p), P = G(M/L_0), N = G(M/L).$$

Then P is a closed p-primary normal subgroup of X, and $X/P = G(L_0/Q_p)$ is a p-complementary compact group. Hence the group extension X/P splits and there exists a closed subgroups H of X such that

$$HP = X$$
, $H \cap P = 1$, $H \cong X/P$.

Such a group H also satisfies HN = G(M/F'). On the other hand, since $P/N = G(L/L_0) \cong U^0$, there is an element σ in P such that $N\sigma$ generates a cyclic group which is everywhere dense in P/N. Let S be the closure of the cyclic subgroup of P generated by σ . Using $P/N \cong U^0$, we then see easily that

$$NS = P$$
, $N \cap S = 1$.

Since both N and HN = G(M/F') are normal in X, we have $(\sigma H\sigma^{-1})N = \sigma(HN)\sigma^{-1} = HN$, and $\sigma H\sigma^{-1} \cap N = \sigma(H\cap N)\sigma^{-1} = 1$. Hence there is an element τ in N such that $\tau \sigma H\sigma^{-1}\tau^{-1} = H$. Let $\sigma' = \tau \sigma$. Then $N\sigma = N\sigma'$, and the closure S' of the cyclic subgroup of P generated by σ' also satisfies NS' = P and $N\cap S' = 1$. Furthermore, since $\sigma' H\sigma'^{-1} = H$, S' is contained in the normalizer of H in X. Therefore T = HS' is a closed subgroup of X, and it is easy to see that NT = X, $N\cap T = 1$. Thus the first part of the theorem is proved.

The second part is an immediate consequence of the fact that KL = M, $K \cap L = F$, and $G(M/F) = G(M/K) \times G(M/L)$.

Now, the action of $G = G(F/Q_p)$ on G(K/F) is explicitly known.⁸⁾ Therefore, combining that with the above Theorems 2, 3, we see that the structure of the Galois group $G(M/Q_p)$ is thus completely determined.

Massachusetts Institute of Technology.

⁶⁾ Cf. 1 c. 2), Lemma 5.

⁷⁾ Cf. l. c. 6).

⁸⁾ Cf. l. c. 1), Theorem 18.