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Homogeneous hypersurfaces in euclidean spaces.
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S. Kobayashi proved that a compact connected homogeneous Rieman-
nian manifold M of dimension # is isometric to the sphere if it is isometri-
cally imbedded in the euclidean space E of dimension »#+1. In this paper
we shall prove that a connected homogeneous Riemannian space M (compact
or not) of dimension # is isometric to the Riemannian product of a sphere
and a euclidean space if M is isometrically imbedded in the euclidean space
E of dimension #+1 and the rank of the second fundamental form H is of
rank # 2 at some point.

Manifolds and mappings between them will always be of differentiability
class C=.

1. Preliminaries.

Let M be a connected Riemannian manifold. Assume that there exists
an isometric map f of M into a euclidean space E, in which we fix a cartesian
coordinate system. f is isometric in the sense that the dual map of the
differential f/ of f carries the Riemannian metric of E to that of M.

Assigning to a point p of M the A-th coordinate component of f(p),
1< A=<dimE, we obtain a function f4 on M. For any vector X tangent to
M at x, we denote by Xf the vector tangent to E at f(x) whose A-th com-
ponent is Xf4 and call Xf the covariant differentiation of f in X. We shall
write X for Py or X*F, in coordinates as long as no ambiguity might be
feared. In the same way one can define the covariant differentiation Xy’ of
the differential f’ of f and other objects such as a map of M into the tangent
bundle of E or into the isometry group of E. It goes without saying that,
when X has x as the origin, Xf’ is a linear map of the tangent space M, to
M at x into the tangent space Ey(,) for any x in M, and that Xf=7'X.

It is easy to see that (Xf/)Y is normal to f(M) for any vectors X and ¥
at a point x Thus (Xf/)Y is a linear combination of the normal vectors

(Xf,)Y:: > Enzy
1=t=d
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where n, are linearly independent vectors normal to f(M) at f(x) and d equals
dim E—dim M. Each H,=H/(X, Y) is a bilinear form on M,. The rank of f
at x is by definition the minimum number of linear forms on M, in which
H, can be expressed; it is independent of the choice of the normal vectors.

From now on we shall assume that d=1; f(M) is a hypersurface of E.
Given an orientable neighborhood U in M, we fix a map n of U into the tangent
bundle of E such that n(x) is a unit normal to f(U) at f(x) for each x in U.
Then a covariant tensor field H of degree 2 is defined by

(1.1) (XY =HX, Y)nkx), X, YeM,.

H is the second fundamental form of f, which depends on the choice of n
and is determined on U up to a constant e with e2=1 if U is connected.
From follows
1.2) Xn is tangent to f(M) and the inner product of Xn with f'Y equals
—HX YY), (Xn,fY)=—H(X,Y).
Some of the following propositions in this section are known. (See [T]

and [5]).

Tueorem 1.1. Let f and f be isometric maps of M into E. Assume that
for any connected orientable neighborhood U in M there exists a constant e with
¢ =1 such that we have H=eH on U, H and H being the second Sundamental
forms of f and f respectively. Then there exists an isometry o of E onto itself
satisfying of = f

Note that M is not necessarily orientable.

Proor. For a point x of M, take a connected orientable neighborhood
U of x and consider the isometry a, of E onto itself defined by
L3 a (/) =7,

14  a)/f'=f on M,,
15) a/n=en.
a, is independent of the choice of U, as is easily seen. Thus we obtain a
map a of M into the isometry group of E such that a(x)=«, By [(I.I),
(1.4) and (1.5) together with A= eH, we have
(Xa)(f'Y) =X f'Y)—a'(Xf)Y—a/f XY = X' Y—a’H(X, Y n—f' XYV

= Xf'Y—HX, Y)i—f' XY

=Xf'Y—(Xf)Y—f' XV =0
for any vector X tangent to U and a vector field Y on U. To prove Xa’=0
we have to show (Xa/)n=0. By (1.2), (1.4) and (1.5) we get

(Xa'yn = X(a'n)—a’ Xn = eXA—f/f ' Xn=0;

in fact by (1.2) the inner product '
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(ff = X, YY) =(f"1Xn, Y)= (Xn, /Y) =—H(X, Y)=—eH(X, V)
= (eX#, /'Y)
for any tangent vector Y with the same origin as X.

Therefore we have Xa’=0; i.e. the rotation part a’ of «a is constant.

Finally (1.3) and (1.4) imply that
(Xa)f = Xaf—a'Xf = Xf—a/f X=F'X—f'X=0.
Hence « is constant on M, and we have af=/.

Lemma 1.2, Let f and f be as in Theorem 1.1. Denote by r=v(x) and
7=7(x) the ranks at x of f and f respectively. Then r equals either 7 or 1—7.
In particular the inequality 1 <r gives ¥ =7r.

For the proof we recall the Gauss formula:

(1.6) K denoting the curvature temsor of M, the vector K(X, Y)Z, with the
components K,u*?X*YBZ?, is the dual of the one-form 0

0: W—HX, WYH(Y, Z)—HY, WYHX, Z)=(K(X, Y)Z, W).

Fix a basis of M, and denote by ¢, the form (on M,): Y— H(X, Y) where
X is the v-th vector of the basis. ¢, is defined analogously by means of A.
Then » equals the number of linearly independent forms in the system {¢,}.
Hence the number of linearly independent forms in the system {¢,A¢,} is
r(r—1)/2. On the other hand ¢,A¢, equals qg,l/\q’;,, by (1.6). Hence we have
r(r—1)/2 =7#(#—1)/2, and so we have (r—#)(r+#—1)=0.

CoroLrary 1.3. Let f be an isometric map of M into E, and p an isometry
of M onto itself. Then the vank v(x) of f at x is equal to either r(o(x)) or 1—
r(o(x)). In particular 1 <r(x) implies v(x) =r(o(x)).

Put f = fp. Since o is an isometry, o0 commutes with the covariant dif-
ferentiation; in particular we have (X(f0))Y = ((0’X)f)o’Y. Hence we have
H(X, Y)n(x) = H(p' X, p’ Y)n(o(x)). From [emma 1.2 thus follows

Tueorem 1.4. Let f and f be as in Theorem 1.1. If r=3 at every point,
then therve exists an isometry « of E onto itself such that af = f

Proor. From ¢, A ¢, :qgﬂ/\ <f>,, (see the proof of 1.2) follows

9;/1/\¢/1/\¢v:$ﬂ/\$/1/\$y=0.

If ¢;,, and ¢, are linearly independent, any ¢, is a linear combination of ¢,
and ¢, contrary to the assumption. Thus we have $u=Cub, for each g, c,
being some real number. Hence é,lAdA),:cucyqﬁﬂ/\qSy. It follows that c¢,’s
are all equal to a number ¢ with ¢2=1. From this and the definition of ¢,
we conclude H=eH. Now Theorem 1.4 follows from Theorem 1.1.
Cororrary 1.5. Let f be an isometric map of M into E. If an isometry
group G of M is transitive and the vank v of f satisfies 3=<r at some point,
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then for any p in G there exists a unique isometry « of E on itself such that
fo=af.

By Corollary 1.4, we have 3<r at every point. Thus there exists an
isometry a with fo=af by [Theorem 1.4. « is unique, for otherwise f(M)
would be symmetric with respect to a hyperplane with which f(M) would
coincide locally, contrary to » =3 everywhere.

2. The case 3=r.

This section is devoted to the proof of

Lemma 2.1, Assume that there exists an isometric map f of a connected
homogeneous Riemannian manifold M onto a hypersurface of a euclidean space
E. If the vank v of f satisfies 3=v at some point, then M is isometric to the
Riemannian product of a sphere and a euclidean space. In particular | is unique
up to the composition of with an isometry o of E.

For brevity we identify M with f(M). By the connected
isometry group G of M can be identified with a subgroup of the isometry
group of E. Take an arbitrary line y normal to M. If there exists a G-
orbit G(p) of dimension <z, n=dim M, p<r, then o shall be one of such
points. Otherwise o shall be an arbitrary point on r n M. Denote by N the
G-orbit G(o) and by F the plane (= a linear subspace) which is the union
of the lines normal to N at o.

Now we shall prove the following lemma.

Lemma 2.2. If a one-parameter subgroup L of G leaves fixed a point q on
F, then L leaves fixed o.

Let H= H, be the isotropy subgroup of G at o. v denoting the dimension
of N, there exist v linearly independent Killing vectors u,,--,#, which,
together with the Lie algebra of H, span the Lie algebra of G. The dual
one-forms of #; will be denoted by the same letters. We have to prove

2.1) the form p=o, ANwuys A---ANwu,#0 on F.

Let U be the subset of r consisting of the points p at which we have
dim G(p) ==n. V shall be the complement of I/ in 7. The inequality o0
holds at each point p of U, for we have dim H(p)=dim F—1=n+1—v—1.
Let x be a boundary point of U, if any. Since U is open, x belongs to V.
Let H, be the isotropy subgroup of G at x. H, leaves invariant the plane
H.(~) and is transitive on the unit sphere in that plane. It follows that
eve~y point y+# x of 7 sufficiently near x belongs to U. Hence V is discrete
in 7. Further it follows that the point 0o’ #+0 of r at the same arc length
from x as o belongs to V, where we have assumed that ¥ is not empty and
contains points x other than o. Thus V is an infinite set. On the other
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hand every Killing field in E has the components expressed as polynomials
in the cartesian coordinates. Hence the form p, restricted on 7, has the
components expressed as a polynomial, say in the arc length s from o. »p
vanishes on V. We thus infer that V contains at most o only. Hence we
have o+ 0 on 7, therefore on F= H(y).

We identify F with the tangent space to F at o and E with the tangent
space to E at 0. The tangent space to N at ¢ is denoted by N,.
(2.2) H acts naturally on the tangent space E and leaves invariant the
subspaces F and N,.

Every point x of E is identified with the vector ¢ =o0x. Then any ele-
ment of the Lie algebra G’ of G is expressed by the pair (4,a) of a skew-
symmetric matrix A and a vector a in £ such that (A4, a) maps ¢ to Ar+a.

Let P and @ be the orthogonal projections of E onto F and N, respectively.
Then we have

{2.3) Pa=0, i.e. Qa=a for any (4,q) in G’.

Given a vector t in F we define a bilinear form R on G’ by R: ((4,q),
(B, b))— the inner product (r, PAb).

Since the linear map (4,a) € G'—a=Qa< N, is onto, and a=0 implies
PAQ =0 by (2.2) and therefore PAb= PAQb=0 by [2.3), R can be regarded
as a well-defined bilinear form on N,.

(2.4) The bilinear form R on N, is symmetric.

Proor. The bracket product [(A4,a),(B,b)] in G’ equals ([A, B], Ab—Bua).
By we thus have P(Ab— Ba) =0. Hence R(qa, b) = (¥, PAb) = (v, PBa)= R(b, a).
(2.5) PAQ =0 for any (A4,a) in G".

Proor. Otherwise we have R+ 0 for some vt in F. By (24) R has an
eigenvalue ¢ different from 0. Let b+ 0 be the corresponding eigenvector;
R, a) =c(b,a) (=c¢ multiplied by the inner product of b and a) for any a in
N,. We have c¢(b,a) = R(b, a) = (v, PBQa) = ("(PBQ)t, a), where ‘K denotes the
transposed matrix of K. Hence we obtain {PBQ)t=cb. Let ux be the linear
map of G’ into N, (or, more precisely, into the subspace of the tangent
space to E at the point t/¢c of F which is parallel to N,) defined by u((A4, a))
= Q(Ar/c+a). It follows then that u((B, b)) =Q(B:¢/c+b)=QBPr/c+b=
—YPBQ)t/c+b=—b--b=0. This means that the one-parameter group gener-
ated by (B, ) leaves fixed the point t/c in F, though it does not leave fixed
the point o, contrary to (2.1). Thus (2.5) is proved.

From (2.5) we infer that G which is transitive on N carries N, to linear
subspaces which are parallel to N, in £. Therefore we have proved that
2.6) N is a plane.

Hence for any point p in N there exists exactly one perpendicular to N
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starting at p. It follows as in that £ admits a fibre bundle structure
over N with fibre F associated with the principal bundle (G,G/H, H), for
the map (a,x) e GXF—a(x) e E is onto and we have a(x) = #(y) if and only
if ap~* belongs to H and x=a 'f(y). Assume M=+ N. Any G-orbit #N
(and in particular M) is a subbundle with a sphere S of dimension = #—dim N
as the fibre. Since N is a plane, the bundle is trivial. Thus M is homeo-
morphic to SXN. By (2.5), M is clearly isometric to the Riemannian product
SX N, which proves the lemma 2.1; in case M= N the lemma follows directly
from (2 6), though this case cannot occur because of the hypothesis 3 <7.

3. The case r <1.

In case <1, M is locally flat by the Gauss formula (1.6).

Tueorem 3.1. A connected homogeneous Riemannian manifold M which is
locally flat is the Riemannian product of a euclidean space and a torus. A torus
is the Riemannian product of a finite number of circles.

The universal covering Riemannian manifold of M is the euclidean
space, which we denote by E here. In E we fix a cartesian coordinate sys-
tem. Let G be a connected transitive isometry group of M. G induces an
isometry group G of E so that G is an extension of G by the Poincaré
group P (= the 1-dimensional homotopy group) of M. Since P is a discrete
normal subgroup of G, P is contained in the center of G. Any element of
P can be expressed by a pair (C,c) of an orthogonal matrix C and a vector
¢ in E such that (C,¢) carries a point ¢ of £ to Cr+c.

3.1 Cc=¢ for any (C,¢) in P.
Since (C,¢) commutes with any element (A4, a) of the Lie algebra G’ of

G, we have
' Act+a==Ca.
A being skew-symmetric, Ac is orthogonal to ¢. For an arbitrary vector gz,
lxll shall denote its length. Since G is transitive on E, a can be any vector.
Putting a=c¢, we get ||Ac|?+al? =|Ca|/®>= ||a|{*>. It follows Ac=0, and so (3.1).
3.2) The n-time composition \C, ¢)” of (C,¢) is (C* nc) for any (C,¢) in P.
This follows from (3.1) easily.
3.3) Ac=c for any (4,q) in G and any (C,¢) in P.
Proor. Since (C,¢)" commutes with (4, a) for any positive integer n, we
obtain from (3.2)
(34) nAc+a=C"a+nc,
that is, #(Ac—c) =C"a—a.
Assume that Ac#c¢. Then the length [#(Ac—c)| is not bounded as a
function of #n, while |C"a—a| <|C al+|a] =2|la]] is obviously bounded. Thus
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(3.3) is true.
3.5) C is the identity matrix for any (C,¢) in £.

From (3.3) and follows C*a=a; in particular Ca=a. G being transi-
tive, a can be any vector and we have (3.5).

By (3.5), P is a free abelian group contained in the translation group of
E. Hence M is the Riemannian product of a euclidean space and a subspace
N whose undelying manifold is that of a toral group 7. T is a transitive
isometry group of N. Hence N is a torus and is proved.

Lemma 3.2. Lemma 2.1 holds good with the condition 3 v replaced by r<1.
The sphere is of dimension one or zevo.
M is then locally flat as was remarked before. By M is
the Riemannian product of a euclidean space and a torus 7. By
1.3, we have 7 <1 throughout on the homogeneous space M. Restricted to
T, f gives an imbedding of T into £ whose rank does not exceed r=<1 as
is easily seen. Now the following theorem of Chern [2, p. 23] applies:
Let g be an isometric map of a compact Riemannian manifold N into a euclidean
space. Let s(p) denote the rank of g at a point p of N. Then we have

dim N < Max s(p).
peEM

And we conclude dim 7<1 and the Lemma 3.2 is proved.
The main theorem mentioned in the introduction follows from
2.1 and

College of General Education, University of Tokyo
and
University of Tokyo.
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