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On the groups of C. Chevalley.
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Let g be a semi-simple Lie algebra over the field C of complex numbers.
Then there is a basis of g such that every structure constant of g with
respect to this basis is an integer. This basis generates a Lie algebra g,
over the ring of integers Z. TFor any field K, the tensor product gr=g,RQK
has a structure of the Lie algebra over K. Chevalley has constructed a
group Gg which is a subgroup of the group A(gx) of automorphisms of gk
and he has proved that, if g is simple, the commutator subgroup Gy’ of Gg
is simple (except for a few exceptional cases). (cf. Chevalley [3))

In this note, we shall consider some properties of the groups Gx and
determine the automorphisms of G with some restrictions on the character-
istic of the ground field. Namely, let g be a simple Lie algebra over C and
h be a Cartan subalgebra of g. We denote by P the additive group generated
by the weights (with respect to §) of all representations of g, and by P, the
subgroup of P generated by the roots of g. Then P/P, is a finite group
isomorphic to the center of the compact simply connected Lie group whose
Lie algebra is a real form of g.» In §1, we shall introduce the group Gg
constructed in Chevalley [3], and show that if g is simple and K is an in-
finite field whose characteristic is 2,3 and not a factor of ord(P/P,), then
Gy is a simple algebraic group whose Lie algebra is adgx which is isomorphic
to gx. In §2, we shall consider the case where g is one of the simple Lie
algebras of the main four types and show that G’ is isomorphic to a classical
simple group. In §§3, 4, we shall consider the birational and biregular auto-
morphisms of the simple algebraic groups Gx of §1 and show that every
such automorphism of Gg is inner except for the type (D,), and for the type
(D)), the factor group of the group of automorphisms by its normal subgroup
of inner automorphisms is the cyclic group of order 3. The automorphisms
of the classical groups has been treated by J. Dieudonné [4], and also
that of the unimodular group (the type A) and the symplectic group (the

1) P/P, is the cyclic group of order /+1 if g is of the type (4;), the cyclic group
of order 2 if g is one of the types (B;), (C;) or (£7), the cyclic group of order 4 if g
is the type (D;), /=4 and / is even, the direct product of two cyclic groups of order
2 if g is of the type (D)), />4 and / is odd, the cyclic group of order 3 if g is of the
type (Eg), and has a unit element only if g is one of the types (G,), (Fy) or (Es).



16 E. ABE

type C) has been determined by L.K. Hua and I. Reiner [6], and [117].
Our method is entirely different from that of J. Dieudonné or L.K. Hua and
I. Reiner’s, and allows to treat the various types of simple groups uniformly.
However, in the classical case, if we observe the correspondence between
classical simple groups and groups of Chevalley, there are some analogies
in the methods of L.K. Hua and I. Reiner’s and ours, and as for the auto-
morphisms of PR,(K,f), our result gives a partial solution (i.e. for the case
where f is a quadratic form of maximal index) of a problem which J.
Dieudonné has left open (cf. 6° of the last section of [4]).

The author wishes to thank Mr. T. Ono for his kind discussions and
valuable suggestions during the preparation of this paper.

§1. Simple Lie algebras and the groups of Chevalley.

Let g be a semi-simple Lie algebra over the field C of complex numbers,
and § be a Cartan subalgebra of g. We call co-weight the elements H of Y
such that w(H)eZ (the ring of integers) for all weP. They form a free
abelian group [% of rank / where [ is the rank of g. We denote by B(X,Y)
=Trace(ad X-ad Y), X, Yeg, the Killing form on ¢. Since the restriction of
B to Y is non-degenerate, for any root # there is a unique element H,’ of b,
such that B(H,’, H)=r(H) for all HeY. Then H,=2r(H,’)'H,’ is a co-weight
and r(H,)=2. The H,, for all root 7, generate the group (&, and there is a
system {X,} of root vectors satisfying the following conditions:

1 (X, X_,]=H, for all root 7,
(2) LXs Xs1= N, s Xiis if 7,5 and r+s are roots where N, =+(p+1)
and p is-the greatest integer /=0 such that s—ir is a root.?

Let F:(a,, as ,a) be a fundamental root system (f.r.s.) of g Set
aij:—ai(Haj) and A=(a;;). Then A is a (/,/)-matrix with integer coefficients
such that®
3) a;=—2, a;;=0 if i#j, and a,;=0 whenever ;=0 (1=4,j</),

@) 0=a;a;=3 if 5
5) det A=ord(P/P,).
We can associate to F' a diagram formed by dots and lines defined as follows:

i) The dots of the diagram and the roots of F correspond one to one.

ii) Two dots are not connected if and only if the corresponding roots

2) Chevalley [3, § I, Theorem 17.
3) Chevalley [8, §I, IV and V]. The matrices A for any simple Lie algebras can
be determined from their root diagrams. (As for the forms of the matrices A4, we

shall find them in the proof of in §2.) If we calculate their deter-
minants, we may have (5) immediately.
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7,s of F are orthogonal, i.e. »(H)=0.

iii) Two dots are connected by a single line if »(H))s(H,)=1.

iv) Two dots are connected by a double line with a direction from 7 to
s if r(Hy)s(H,)=2 and r(H;)=—2.

v) Two dots are connected by a triple line with a direction from 7 to s
if »(H)s(H,)=3 and r(H;)=-—3.

The matrix A determines the root diagram completely and the structure
of the diagram depends only on the algebra g. Reciprocally, the algebra g
is determined up to an isomorphism by the diagram associated to g.

If g is simple, the diagram associated to it, whose dots we denote by
(S, Ss,-+, Sp), is one of the following:

a) For the type (A): S;.; and S; (2=i=/) are connected by a single line.

b) For the type (B): S;,.; and S; (2<i</—1) are connected by a single
line, and S,., and S, are connected by a double line with a direction from
S;-1.to S

c¢) For the type (C): S;_; and S; (2<i=</-—1) are connected by a single
line, and S,_; and S, are connected by a double line with a direction from S,
to S;_;.

d) For the type (D): S;_; and S; 2=i=/—1), S;., and S, are connected
by a single line,

e) For the type (E),/=6,7 and 8:S;_; and S; (:=2,3,4 and =6), S, and
S, are connected by a single line.

f) For the type (F,):S, and S,, S; and S, are connected by a single line
and S, and S, are connected by a double line with a direction from S, to S,.

g) For the type (G,): S, and S, are connected by a triple line with a
direction from S; to S,.

In the following paragraphs we shall consider the roots of the f.r.s.
(@, @3-+, a;) of the simple Lie algebra numbered so that the diagram of g is
one of the above by the correspondence ¢;—S; (1=i<)).

We denote by g, the additive group generated by a basis (H,, H,,, H)
of [¥ and X,, for all root ». Let K be an arbitrary field. Then the tensor
product gx=g,QK has a structure of Lie algebra over K. We set hx=[4RK,
and the elements H,Q1gx, HRlg, X,Q1x and X®1g, where 1. is the unit element
of K and Xeg,, we denote again by H,, H;, X, and X. Then the set H; 1=i<))
and X, (r root) forms a basis of gg, which we call a canonical basis.

Lemma 1. If the characteristic of the field K is not a factor of ord(P/P,),
then ad H,, 1<i<l) are linearly independent over K and they form a basis of
ad hg.

Proor. From the hypothesis of the Lemma, the matrix A is non-singular
in K. Set B=(b;;) the inverse matrix of the transpose of A and
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(6) H¥*= ~i1bijlfaj (I=:=D).
=
Then H*eYg. For any root rzé) m;(a;, we have
i=1

L L [4
r(H;¥)= =25 byr(Ho )= — 20 bigmu@)a(Ho )= 2 bygarsmi(r) =my(r) .
J=1 ik=1 Jik=1
Thus
1) - (ad )X, =[H*, X,]=r(;*) X,=m,1nX, .

Therefore we may see that the diagonal matrix ad H;*¥ (1=i</) are linearly
independent and also we have our assertion. q.e.d.

PropositioN 1. If the characteristic of the field K is not a factor of ord(P/P,)
and +2, them gg has no center.

Proor. Since [H,, X, 1=r(H,)X,, v(H,)=2, the operation ad X, is not null,
and we have from [Lemma T, ad §x is isomorphic to Y, so the kernel of the
adjoint representation of gx is null. g.e.d.

Lemma 2. If 7 and s are roots, not all of the following are roots :

r—2s, r—s, r, r+s, r+2s.

Therefore the absolute values of integers N, of (2) do not exceed 4.

Proor. If all the above are roots, then 2s=(r+2s)—¢ and 2(r4s)=
(r+-2s)4r are not roots. From this we have (#+2s)(H,)=0.9 Therefore
r(H,)=—2s(H,). Similarly (r—2s)*#» are not roots, and (r—2s)(H,)=0, i.e.
r(H,)=2s(H,). Thus »(H,)=0, and this is a contradiction. The second assertion
is an immediate consequence. q.e.d.

Lemma 3. If g is simple, for any two linearly independent roots r,s, there
exist a f.v.s. F and a finite series (r,,vs,7,) of roots such thalt r=rvr,&F,
r;—7;—, are roots (2=i{=h) and s=v,.

Proor. There is a f.r.s. I such that F contains r and that s is a positive
root with respect to F.» Then there is a finite series (sj, sy, ;) of roots
such that s,€F, s;—s,_;=F (2<i=j) and s;=s.9 Since 7, and s, are in F and
g is simple, there is a subset (u,, #,, -, u;) of F such that, in the corresponding
diagram of F, dots of #u; and #;., (1=i<k—1) are connected by a line and
u =1y, =51, Set ty=u;+uyt+u; 1=I=R), L= Uiri+Uigo Tt o 1=Sisk—
1). Then the series (¢, -, fs-s S, S;) has the required property of the
Lemma. q.e.d.

ProrosiTion 2. If g is simple and the chavacteristic of the field K is not 2
or 3, then Qg is simple over its center.

4) Chevalley [3, §1I, VII].
5) Chevalley [3, § I, Lemma 1].
6) Chevalley [3, §I, Lemma 4].
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Proor. Let L be an extension field of K, then g,=¢,XL. So it is suffi-
cient to see the proposition when the field K is an infinite field. ‘

Let a be an ideal containing the center of g, we shall first show that
there is a root » such that X,ca. Let X=H+> c(»X,, HShs, be an element

of a, not in the center. If [ X, H,]=0 for all root s, then X=H, an element
of hx. Since H is not in the center, there is a root » such that »(H)+0. Then
[H, X, J=r(H)X, and X,=a. If [ X, H,1#0 for some root s, then there is a root
r such that ¢()#0, and since K is infinite, there is an element H<Y, such
that »(H)+u(H) for all root # not equal to . Then

C-[[X HIH]--H1Z cr(H)* X, a.
—

Since the Vandermonde’s determinant is not 0, we have X, =a.

Let s be any root linearly independent to #, then by Lemma 3, there is
a f.r.s. F and a finite series (r,, 75, -, 7,) of roots such that »,€F, a())=r,—7,_,
are roots (2<i<h) and r,=s. Then

['”[[:Xfr, Xu(2)]Xa(3):|'"Xa(h)]:CXs ’

where ¢+0 from Lemma 2 and the condition of the characteristic of K.
Ther~fore X,=q, [ X,, X_{]=H,=a. Thus X, H,ea for all root r and a=g.
q.e.d.

Turorem 1. If g is simple and the characteristic of the field K is not 2 or 3
and is not a factor of ord(P/P,), then Qg is also simple.

This follows from Propositions 1 and 2.

Let y be a homomorphism of P, into the multiplicative group K* of the
non-zero elements of K. Denote by 4(y) the automorphism of gx such that
H— H for all Heby and X,— y()X, for all root ». Denote by $x the group
formed byi h(y) for all yeHom(P,, K*) and by ' the subgroup of $; formed
by A(y) for all y of Hom(P,, K*) which can be extended to the homomorphism
of P into K*. :

Prorposition 3. If K is an infinite field whose characteristic is not a factor
of ord(P/P,), then x is an irreducible algebraic group, whose Lie algebra is
ad Bg. '

Proor. The $ is an irreducible algebraic group of dimension .» Let
2: be an element of Hom(P,, K*) such that x(a;)=t, teK*, and x(a;)=1 for
i#4, then the matrix of A(y;) with respect to the canonical basis of g is the

diagonal matrix of degree » (where » is the dimension of gg), whose diagonal
l

elements are 1g, / times, and ™™ (r=3 m;(r)a;), for all root 7, and we denote
i=1

it by Z;(¢8). Then #4;,(#), teK*, form l-dimensional irreducible subgroup £; of

7) Ono [8, Proposition 5]
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Hx. From (7), the matrix of ad H;* is diagonal and whose diagonal elements
are 0,/ times, and m,(#), for all root . If T is a transcendental element over
K, h(T) is a generic point of §; over K. Let D; be a derivation of L=K(T)
such that D(T)=T, then D;4,(T)=(ad II;*)h,(T). Thus the Lie algebra of 9,
is generated by ad H;*® Since §,S 9%, ad I7;* is in the Lie algebra of Hx
for all i, and ad H;* (1=i=!/) generate the /-dimensional Lie algebra ad li.
Therefore the Lie algebra of i is ad fz q.e.d.

FFor any root 7, set x,(f)=exp f(ad X,), teC. Then there is a matrix A(T)
=(A,,(T)), whose coefficients are the polynomials of 7" with integer coeffi-
cients such that the matrix of x,(#) with respect to the canonical basis of g
is A,(/) for all teC. For teK, we denote also by x,(/) the automorphism of
0k, which is represented by A,(f) with respect to the canonical basis of qg.
Denote by ¥, the group formed by x.(f), t€K, and by Ug (résp. Bi) the sub-
group of A(gx) generated by X, where » runs over all the positive (resp.
negative) roots with respect to the regular order of P, defined by the f.r.s.
(@, a).» Then we have

Prorosition 4. If K is an infinite field, Uy (resp. Bg) is an irreducible
algebraic group, whose Lie algebra is ad ug (resp. ad bg) where ug (resp. ad vg)
is the nilpotent subalgebra of Qx gemerated by X,, for all positive (resp. negative)
ool 7.

Proor. The N and By are irreducible algebraic groups of dimension N,
where N is the number of the positive roots.!® If T is a transcendental
element over K, x,(T')=(A,,;;(T)) is a generic point of ¥, over K. Let D, be
a derivation of L=K(A, ;(T))=K(T) with respect to T, then we can easily
see that D,x.(T)=(ad X,)x,(T"). So the Lie algebra of ¥, is generated by
ad X,.® Therefore the Lie algebra of Ug (resp. Bx) contains adug (resp.
ad vg), and comparing the dimensions of U, and ad ug, we have our assertion.
q.e.d.

We denote by Gg the subgroup of A(gx) generated by $x and X, for all
root 7, and by Gz’ the subgroup of Gi generated by ¥, for all root . Then
9% SGx’ and

® Gr/Gr' =%/ 9%, G NOx=9""V,
9 ()2 OA() ' =2x,(x()P) for all root 7, and tcK.

If g is simple and K is not a finite field of two or three elements, G’ is the
commutator subgroup of Gk and is a simple group.!®

8) Chevalley [2, Proposition 4, p. 132].

9) Chevalley [3, p. 20].

10y Ono [8, Propositions 2 and 4].

11) Chevalley [3, §IV, Lemmas 2 and 4].

12) Chevalley 8, §1V, Corollary to Theorem 3].
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We call an algebraic group G is simple, when G has no normal algebraic
sub-group except for G itself and the group formed by the unit element
only. Then we have

Tureorem 2. If g is simple and K is an infinite field of characteristic +2,3
and not a factor of ord(P/P,), then Gg is an irreducible simple algebraic group,
whose Lie algebra is ad gx, which is isomorphic to Q.

Proor. Gg is an irreducible algebraic group of dimension %, » being the
dimension of ¢! The Lie algebra of G, contains ad gg, whose dimension
is equal to . Therefore the Lie algebra of Gg is adgg Since ad gg=gy is
simple, G is a simple algebraic group. q.e.d.

For any root 7, there is a homomorphism ¢, of SL,(K) onto a subgroup

10

of A, such that ¢,(; 1)=2.0, 6,5 1)=x for all tek, and 4,(5 ")

=h(y,) for all ze K*, where x, is an element of Hom(P,, K*) such that x,(s)
=z for all root s.* (N.B. In particular if g is of the type (A4,), G¢’ is

the homomorphic image of SL,(K) by ¢,, and isomorphic to PSL,(K).) We

denote by a),:qﬁ,(_(l) (1) and by 28 the group generated by $x and w, for

all root . Then there is one and only one epimorphism ¢ of 28 onto the
Weyl group W such that if w28 and w={(),

10) X0 =X, for all root 7,
an (o™ 1=h(y") for all yeHom(P,, K¥%)

where y’cHom(P,, K*) is defined by x')=xw ') for all root r.!» We
denote by w(w) the element of 28 such that {(w(w))=w. If weW, we denote
by E,’ (resp. E,’’) the set of positive root » such that w(r) > 0 (resp. w(r) < 0),
and denote (g, (resp. (Ug),’”) the group generated by ¥, for all root r&kE,’
(resp. E,’"). Then Gg is the union of the sets Ug9rw(w)Wg),’’, for all weW,
and any element s of Gx can be expressed uniquely in the following form

12) ‘s=xhow)x’, x&Ug, heDg, x Uy, weW 10

§2. Groups of Chevalley constructed from simple Lie algebras of main
four types.

We denote by gl(#, K) the Lie algebra of all (#, »)-matrix with coefficients
in K, and by GL(n, K) the group of all non-sigular (x,#)-matrix with coeffi-
cients in K. The notation of the classical groups we refer to J. Dieudonné [5]

13) Ono [8, Theorem 2 and Proposition 7, Corollary 1].
14) Chevalley [3, p. 36-37].

15) Chevalley [3, Lemma 3, p. 37].

16) Chevalley [3, §III, Theorem 2].
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Denote by I, the unit matrix of degree n, by E;; the (n,n)-matrix whose
@G, j)-component is 1, and all other component is zero, and by diag(z,, -, 2x)
the diagonal matrix whose (i, /)-component is z;, (1=i=n).

Let g be a Lie algebra formed by the matrices Xegl(n, C) such that

a) Trace X=0, n=[+1
or such that !XJ4JX=0, where

1
(13) b ]=( ! Iz), n=21+1,
l

I,
9) ]=( '), n=2[,
—1

I,
d) ]:( )9 n:2/,
I,

and let ) be the Cartan subalgebra of g formed by the matrices:

a) H=diag(4;, 23,"**, d141)
b) I{:diag(ly Z1) x2"") Al} _21) _22"", _ZZ) s
Cy) d) H:diag(lly 12)"" ll! _'le _12,"" '_Xl) ’

If we denote by A,=2,(H), then A; is a linear form on .

a) A=Ay @F51547S14D); a=—A (=i2),

b) £,y £, G£5,1=54751); a=24—Ay AZiSI-1), ai=4,
Q) E£AEy, £24 (#5154 ai=2— Ay (SISI-1), ai=24;,
d) £+ (#5,1=4,i=0; ai=2—2Aip A=ISI-1), ai=21+4,

are complete set of roots of g with a f.r.s. (@, s, @) and the following are
corresponding root vectors

a) Xa-1=Ei;,

b) X/L,;+/1j= T+14+1,5+1 ‘“Ej+l+1,7:+1 ’ X/Ii-lj: 12+1,j+1_Ej+l+1,i+L+1 ’
(14) XAi=E1,¢+z+1_ 141,10

C) X/Ii+/1j=Ei+l,j+Ej+l,i ’ Xli+/1j=Eij—Ej+l,i+b X2M=Ei,'&+l ’

d) Xli+/1j=E1:+l,j_Ej+l,i: Xzi-zr—- ij_Ej+l,i+l ’

where i<j, 1=i,7</ and X_,='X, for all root . Denote by H; the element
of § such that 2A,H)=0;; (1=i,j<[), then H,,---, H, X, for all root » form a
basis of g. For any field K, Hi®lk, HQlg, +, HQlg, X,Q1x for all root r
which we denote again by H,, -, H, X, generate a Lie algebra gf over K.
(N.B. g% is different from gz of §1. cf. proof of Theorem 3.) We also denote
by 1 the unit element 1z of K.

We assume that the characteristic of K is not 2 for b) and d). Denote
x(t, r)=exp tX, for ¢t K and root 7, then
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x(t, n=I,+tX, for all root » except for r=:=2; of b),

x(t, ) =I,1+tX+#/2)X,? for r==21; of b).
Moreover denote by A(z,i) (ze K*,1=i</) the diagonal matrix whose (%, k)-
component is 1z 2z or z7! according as the (%, k)-component of H; is 0, 1 or
—1g. If we denote by G¥ the subgroup of GL(n, K) formed by those ele-
ments s such that dets=1 for a) and sJs=J for b), ¢), d) in addition dets
=1 for b) and c), then Gg is the group SL;.(K), O3.(K, 1), Spu(K) or OF(K, f)
respectively for a), b), ¢) or d), where f is a quadratic form of maximal
index. If K is infinite, G¥ is an algebraic group, whose Lie algebra is g¥%.

Prorosition 5. The matrices h(z, 1), 1=i<], ze K*, and x(t,v), v: voot, t€K,
generate the group G¥E, where we assume that the characteristic of K is not 2
for b) and d).

Proor. We shall prove the Proposition by induction with respect to the
rank / of g. First we shall prove for /=1 in (i). Next, assuming that the
Proposition holds for the rank less than /, we shall prove for the rank / in
(ii).

For a); (i) Let s=(a;;))€SLy(K), then we may suppose @, #0. In fact, if
a,,=0, then @,,#0 and the (1,1)-component of

s 2(—1, 2;—2)x(1, ,—A)x(—1, 4, —1,)
is not zero. Thus we have
s=x(@yaiit, Aa—A)Ma,, Dx(aa,7!, A —24,) .

(ii) Let s=(a;;)eSL;(K), then we may suppose that @,,#0. In fact, if
@,,=0, there is at least one ¢ such that «,;#0 and the (1,1)-component of

s-a(—1, 4, —2)¥(, ,—A)x(—1, A, —2,)
is not zero. If we set
l
s’'=s-hla7" 1)‘i1=12x(‘”a1u A—R) X(—@y41@11, A — )

i+1
V=l w(—anaih -4,
i=

then s’/ has the following form

Therefore we may apply induction hypothesis, and we have our assertion.
For b); (i) Let s=(a;;)=G¥%, then from ‘s/s=J/, we have

(15) a1%+2031az1 =1
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(16) @13°+2a3505,=0

a7 @;5° 2033053 =0

(18) 19815+ A3+ A30055=1
(19) @110 15+ @31 59+ A3902,=0
(20) @11015+ @21 Q55+ a3153=0 .

If @,=0, then a,,=0 from [(I6), a;a;;=1, ;=0 from [I8), [19). Thus the (2,2)-
component of s-x(1, 4,) is —a,;/2#0. Moreover that of s-x(1, 2)A(—2a,;t, 1) is
1. Therefore we may assume @y,=1.

If a;,=0, then a;=a;=0 from [I6), [I9), a;;=a,;=1 from [I5), and
Q3= —gy, Ag3=—as,°/2 from [A7), [20). Therefore s=x(ay, —4,). If a,,#0, then
(1,2)-component of x(—a,, 4,)-s is zero. From above consequence we have
s=x(a9, +4)%(21, — A1)

(ii) Let s=G¥% and set

a a b
s=| %« A B
% C D

where A=(a;;), B=(b;), C=(c;;) and D=(d;;) are (/,/)-matrices and a=(a,, -, ay),
b=(b,, -+, b;), c=(cy,-+,¢,) and d=(d,,,d;) are [-dimensional vectors. We also
denote the components of s’,s”’€G¥% by A’=(a;;), B'=(b;;’) etc. Then

@) @425 abi=1

(22) aa]--}-g‘,l CiCy ,--}-l_Z_f)l da;;=0

(23) b+ EL] cods ’Jﬂé diby=0

24 kél i+ k‘gl Cribus+aib, =By, <, i<D)
(25) 3 Buadig 3 desbutbib,=0

M~

{
(26) akiij+k§ ckiakj-{—aia,:() .

b
1
—

If @,,=0, then ;;#0 or b,,#0 for some i. Therefore (1,1)-component of A in
s-x(1, A;—4;) or s-x(l, —4;—4;) is not zero, and we may suppose a,;#0. If we
set

{ [
s'=x(—ay, —ll)gx(cilf A+t 1) Ex(‘aualfl, A—2p)-s,
. 4
then (21120, C“,:O, a“,:O (2%2) and a“'=1. Moreover Culzz Cklaklzo, d“,
k=1

]
=x21a'“d“=1 from [(26), for i=j=1 respectively.
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Next, we set
]
"=x(—0/, 4y) ilgzx(——bu’, —Xi_“/zl)il;[zx(dil/’ Ai—2;)-s",

then b, =0, b;,'=0, d;;’’=0 (i=2). Moreover, b;;/’=0,c;/'=0 (=2) from
for i=2,j=1 respectively and «,;/’=0,d,;/'=0 (j=2) from for i=1,
j=2 and i=2, j=1 respectively. b5,,’’=0 from for i=j=1and ¢, =0, d,’" =0
from [22), for j=1 respectively. Thus we have

0 10-.- 0 0ceeveneen 0
5c/ (:] A/ B/
s"= : 0
0 Qeeveeenen 0 % 0-eeee-0
N o N
0 0

Therefore we may apply induction hypothesis and we have our assertion.
For ¢); (1) If I=1, Sp,(K)=SL,(K). We have our assertion similarly to
SLy(K). (ii) Let s=Sp,(K), and set

A B
s::
C D
where A=(a,;), B=(b;;), C=(c;;) and D=(d,;) are (/,[)-matrices. We also denote

the components of s’,s”’ €Sp,(K) by A’=(a;), A”(a;;/’) etc. Then from 's/s=],
we have

{ {
(27) > AriCr; =2, Crilry
x=1 k=1
L L
(28) k:l bkidkj ng dkibkj (1 = i, ] =
L L
29) 2 Arilig— 2] Cribrj=045 -
k=1 k=1

If @,,=0, then @,;#0 or b,;#0 for some i, and (1,1)-component of A in s-x(1,
A—A)x(—=1, —A,+2)x(1, 2, —2) or s-x(1, 22)x(—1, —22,)x(1, 24,) is not zero. There-
fore we may suppose @;;#0. If we set

[ L {
3/=x(_k21 Ak1Ck1» _2/11)].112 x(_cjh '{1+lj)'h(a11_1, 1) l_.g x(_ajiali-17 ’lj""ll) S
= = j=

then a,,’=1, a,,’=0 (1=2) and ¢;,’=0 (1=i=/). Moreover d,,’=1 from for
i=j=1. Next we set

t t !
3”=j=IIz x(dy’, 21—11)’5(—’0?1 bry dy’ 2/11)11;% x(bji/y — A1 =255

then b,,"'=0 (1=j=)), d;,’'=0 (j=2). Moreover, b,;/'=0,c;;/’=0 (1=i<0) from
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@7 for j=1 respectively and a,"’=0,d,/'=0 (i=2) from for =2,
j=1,i=1, j=2 respectively. Thus we have

1 Qeeeeee 0 0 -oveveene 0
0 0
A i B
0 eeereeen 0 1 0-eeen 0
: 0
E C/ D/
0 0

Therefore we may apply induction hypothesis and we have our assertion.
For d); (i) is trivial and (ii) may be proved similarly to b). q.e.d.
TueorREM 3.

a) If g is of the type (A, Gg'=PSL,(K),
b) If g is of the type (B, Ge'=Ply(K,f),
c) If g is of the type (C), =3, Gx'=PSp(K),

d) If ¢ is of the type (Dy), (=4, G'=P2y(K,f),

where we assume that the characteristic of K is #2 for b),d) and f is a quadratic

form of maximal index.'V
Proor. Let ¢ be a Lie algebra of (13). Then the basis of (& which is

contained in the additive group generated by H,,--, H;,, and X,, r root, of
forms a canonical basis of g for a), c) or d) and if we replace X.;, by V2 Xy,
then they form also a canonical basis of g for b). (We assume for a moment

V2K for b).)

Let P; be the additive group generated by 4, (1=i=/). Since P is gen-
erated by a fundamental system of weights which is

a), ¢) Ay=2+ 2+ +4; 1=i=),

b) Ai:’)‘1+12+“'+li (1§i_§:l'—'1),
AL:(21+/12+"'+/11)/2

d) Aiz/ll+l2+"'+/1i (1=i=l-2),

AI.—1:(11+12+ +ll—1'_ll)/2
=R+ A +4) /2,19

P, is a subgroup of P, and since P, is generated by (e, @), P, is a subgroup
of P;. Moreover we have

P=RK,DOP, for a) and ¢)
(30 P=P;=P, for b)
POP,DP, for d).

17) This result has been obtained by R. Ree [10] independently of the author, and
J. Dieudonné has supplemented the case of characteristic 2 for (By). (cf. Amer. ].
Math., 74, 922-923)

18) cf. H. Weyl [13]
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Therefore if we denote by 95’/ the subgroup of 9x formed by %4(x) such that
x€Hom(P,, K*) is extendible to the homomorphism of P;, we have from (30)
31) D29 =9k’ for a), ¢), D=9’ 29’ for b), D29 29" for d).
Denote by .. z€K*, 1=i</, the element of Hom(Z;, K*) such that 1;—
z,2;—1 (j#i). Then y,, 1=i<], ze K*, generate the group Hom(P;, K*). We
denote again by y, ; its restriction to P,
Let ¢ be the homomorphism of G% into A(gx) defined as follows:
iz, )~ h(x,,0) 1=<i</, zeK*
x(t, ) — %, r root, te K.
If we denote by Gg’’ the image of G¥ by ¢, then from (31) we have
Gx''=Gyg’ for a) and ¢), Gx'/=Gg for b), Gx2G,"' 2G,’ for d).
We can easily see that the kernel of ¢ is the center of G¥, and for b), d)
the commutator subgroup of Gg'/ is G¢’. Therefore we have our assertion.
When V2« K and g is of b), let L=K(v/2) and ¢ be a generator of the Galois
group of L/K, then G, is isomorphic to P2,,.,(L,f) and Gy is isomorphic to

the group formed by the element s of G, such that s’=s!». Therefore Gg
is isomorphic to P2y,,(K,f). q.e.d.

§3. Involutions in Gy.

We call an automorphism ¢ of gx an involution if ¢? is the identity
automorphism. Let F: (@, -, @) be a fundamental root system of g, as in §1,
and K be a field of characteristic #2. Then in £ there are 2° involutions
(D), I=(iy, iy, -, ig), 1 =4, < iy <---<i;=[, which correspond to y,=Hom(pP,, K*)
such that ygay)=-—1 if k<l and A,(a,)=1 if k<l. As for these involutions
we have the following proposition.

Prorosition 6. The involutions in Dx are conjugate to one of the following:

a) For the type (A),[=1 rQD), A(2),---, h(E) k=[14-1/2]
b) For the type (B),I=2 A, 2(2),---, A1)
c) For the type (C),1=3 A, h(2),---, h(k), k() k=[1/2]
d) For the type (D))
=4 and | is even AQD), h(2),+-, h(k), h(I—1), () k=1/2
I>4 and I is odd hQ), A(2),---, h(k), h(l) - k=I[—1/2
e) For the type (Ey), R, A(2)
(E), n(1), h(4), A(T)
(E%), h(l), k(2)
f) For the type (F)), hQ), h(3)
g) For the type (Gy), i) .

19) Chevalley [3, III p. 46], we denote by s”=(a%;) when s=(a;y).
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First, we shall prove some Lemmas.

Lemma 4. Two elements h(x,), (x,) in Ox are conjugate in Gg if and only
if there exists an element w of the Weyl group such that x,(r)=y,(w()) for all
700t 7.

In fact, the sufficiency is obvious from (11). If A(y,) and A(x,) are con-
jugate, then s-4(x,)=%4(y,)-s for some s in Gg. If we express s as then
from (9) we have

8- h(x)=xhow)x" h(x,) =xhh(x, )ow)x"

M(x3) - s=h(x)xhow)x'" =xh(x)how)x’” .
Since the expression of the element of Gg as is unique, £=x, ¥’’=x"" and
h(x)=h(x,").

Lemma 5. We denote by w, A=i=0) the reflexion by a;. Let I, J be subsets
of ¥=@,2,--,1) such that

(32)

o) (o(w;)™ =h(]) .
Then () if ikl, I=],
(1) if iel, k<] if and only if k<1, when ay; is even,
and k<] if and only if k&l when ay; is odd.
In fact, since wy(a)=a;+aua; and y(wy(a,)=x(a;) x(a;)*#%, we have the Lem-
ma immediately.
In the following we shall denote by (I)—— (J) for such a pair [, J.
t

Let F: (@, a) be a f.r.s. of ¢ and (S,,++,S;) be the dots of the diagram
of . We call a subset F’: (@, @i, -, a;) of F a connected series when Sy
and S;;,., 1=k=s—1) are connected. A connected series (a;,, @;,,"-, @;,) is called
a subsystem of the type (4,) when S;, and S,,,, (1=k=s—1) are connected by
a single line and S;, (2<k=<s—1) is not connected to any other dot. Moreover
we say that a subsystem of the type (4,): (@, @) has a border a,, (or a;),
when S;, (or S;,) is not connected to any other dot.

Lemma 6. Let F':(ay, as, -, @y) be a subsystem of the type (A,) of F having
a border a,, then h(), wheve =, 14+, 1) IS a subset of 2'=(,2,--,h), is
conjugate to h(k) for some ks’

Proor. Let A’ be a (4, h)-matrix whose (i, j)-component is @;;. Then

-2 1 0
1-2 1
1-2 1
A=
1 -2 1
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First we assume that (a;,, @;,, -, a;) is a connected series. If s is odd,

from and the form of the matrix A’,
(33) (i1 Tayey 1) N (Bgy Tgyeey 1) A — (B9, T3y 75 T5—1)
i is is-1

Repeating this process we have hA(i, i+, i, is conjugate to A(iy), k=s—1/2.
If s is even and ¢,>1, then
(34) (11, Tgyey ) - G—1, 4y, 45+, 2) e G =1, 4y, day ey Ggy) -

31 ) i3 1s—1
Repeating this process we have %(,, -, i) is conjugate to A(1,2,---,s). Then
(35) {,2,-,s) —1—> 1,3,4,--,5) T 1,2,3,5,-,s) ?_._f {,2,-,s—1).

s

Therefore we may reduce to the case where s is odd.

When the set (a;,, @;,,-, @;,) is not a connected series, if we repeat some
process of [33), for each brock of the connected series, we may reduce
to the case where (@, @;,, ", @;,) is a connected series. Thus we have our
assertion. q.e.d.

Let 2/ be a subset of ¥=(1, 2,---,/). We denote by 2y the group gen-
erated by the element w(w;), kc3’. Then we have

LemMma 7. Let I,] be two disjoint subsets of £=(1,2,---,0). If ”(I) (resp,
h()) is conjugate to h(@) (resp. k(7)) by the element of Wy, (resp. Wy, ) and if
S and J, 2, and I are disjoint vespectively, then WI,J) is conjugate to h(i, j).

This is an immediate consequence of [Lemma 5.

Proor or THE ProPoOsiTiON:

a) For the type (4): From every h(i,, i, ;) is conjugate to
h(k) for some k. We shall show that A({) is conjugate to A(l—i+1) for i<
[Z/2]. If i=1, then

1) —> (1,2) — (2,3) ——r— (1, ) — () .
1 2 3 /-1 l

If i>1, then

(36) @) — (@—1,4,i+1) — (—1,i+1,i42) —— (—1,/-1,))
i i+1 i+2 I-1
- (—110.

Therefore A(i) is conjugate to A(i—1,/). Moreover

(37) G—-1,0)— (—2,i—1,4,l) —— (—2,[-2,]-1,)) — (i—2,]-1).
i—1 i -2 -1

Repeating this process we have Ai(i) is conjugate to A(1,/—i+2). Then
(38) a, l—i+2)—1—>(1, 2, l—i+2)—2—>(2, 3, lﬂi+2)—3—+-'-

—1

o (=i =it —i42)

(—i+1).
I—i +1

Thus we have our assertion.
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b) For the type (B)):/=2. Since the subset (a,, s, -, a;,_;) of Fis a sub-
system of the type (4,_;) having a border a,from we have A(,, i,
oy gg), 1,=/—1, is conjugate to 4(k) for some k We shall show that A, i,
ey i D), i,=I—1, is conjugate to A(k) for some k&, 1<k<I—1. From [Lemma 7,
it is enough to consider the involution A(k,/). The matrix A for the type
(B)) has the following form:

-2 1
1-2 1
A= . .
1 -2 2
1 -2
If >1,
(B, )) — (k—1, B, k+1, 1) — (b—1, k+1, k+2,)) —>--— (k—1,[-2,]-1)
k k+1 k+2  1-1

and similarly (1,7) is conjugate to A(U/—2,/—1). Thus we may reduce to a
case of the first.
¢) For the type (Cl), /=3: Since the subset (@, @y, a;—;) of F is a sub-
system of the type (A4,.;) having a border g,, from we have A(,,
dgery 1), ls=[—1, is conjugate to A(k) for some k. We shall show that 4(i, i,
., 4, 0) is conjugate to 4(/). From it is sufficient to consider A(%, J).
The matrix A of the type (C,) has the following form
—2 1
1-2 1
1 -2 1
2 —2
If k<<i—1,
kR H—(kI—1,0)— (b, [—2,]—1,0) —>—> (B, k+1,k+2,])
l [—1 -2 k42

—s(k+1,0).
k+1

Repeating this process we have /(&) is conjugate to A(/—1,/) and (/—1,1)
—— (). Therefore we have our assertion. Finally, we shall show that (@)
[
is conjugate to A(/—i), i=[//2]. If i=1,
O— 12— 23— (-2,/-1)—> (-1).
1 2 3 -1 -2

If i>1,

@) — (@—1,i,i+1) — ¢—1,i4+1,i4+2) —>-— (—1,1-2,/-1)
i i+1 i+2 1-2

—(—-1,/-1).
-1
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If we repeat the same process as (37), we have A() is conjugate to A1, I—i+1).
Similarly to h(,l/—i+1) is conjugate to 2(/—i). Thus we have our as-
sertion.

d) For the type (D)), /=4: Since the subset (a,, s, *+, a;—y) of F is a sub-
system of the type (A4,-,) having a border «,, from we have A(,,
igyeey 1y), 1,<0—2, iS conjugate to A(k) for some k. The matrix of A of the
type (D)) has the following form

—2 1
1 -2 1
A= 1-2 1 1
1 -2
1 -2

i) &Gy, iy, i,1—1,0) and A(I—1,]) are conjugate to A(k) for some k.
In fact, from it is enough to consider Ak, [—1,0). If k<I[-3,
(ko l—1,0) — (B, {—2,1—1,]) — (k, [—3, [—2) ——>ss—s (k, k-+1, k+2)
-1 [—2 [—-3 k42
— (k+1).
k+1
If k=7-3,
(-3,i-1,H)— (-3,1-2,I-1,)) —> (I—2).
/-1 -2

Finally, ((—1,]) — ({—2,/—1,]) — (I—3,/—2), and this is a case of the first.
/-1 ) -2

(1) kG, is--, i, D) and Ay, iy, i, [—1) are conjugate to A(/—1) or A()).
In fact, it is enough to see this for A(k,/—1) and Ak, 0). If k=1,

39 a, l)—»(lZl)—>(231)—> l—-—>(l 3, [— 21) (l 2,[-1)
—»(l-—l),
-1
(40) @, l—l)——1—>(1, 2, l—l)—g—é(Z, 3,[-1) ——>;——> (-3,1—2,1-1)
l——>(l 2, l)—*(l)
If >1,
l—>(k 1,1— 31 21)—-2»(1@ 1,1—2,1— 1)-——>(k 1,1-1),

(42) (B l—-1)— . — (k—1,k, k+1,1— 1)———>(k 1, k+1,k42,1— 1)———2>
_f.
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Repeating this process, we may reduce to the case where k=1.

(iit) If 7 is odd, A(}) is conjugate to A(/—1).

In fact, 4(/) is conjugate to A(1,/—1) from (40), A(,/—1) is conjugate to
h(2,0) from (41), and 4(2,1) is conjugate to A(3,/—1) from (42). Repeating this
process we have #(/) is conjugate to A(—2,/—1) and (l—2,l—1);——1—>(l~1).

Thus 4(l) is conjugate to 2(—1). (N.B. From the same consequence as above
we may see that, if / is even, A() is not conjugate to A({/—1).)
(iv) A(@) is conjugate to A(/—i), 2=<i=<[[/2].
In fact, if i>2
(43) @—G—1,4,i41)— (—1,i4+1,74+2) —eees (i1 —1,/—3,[—2)
) i+1 i+2 [-3
—s(—1,/1-2,1-1,))—> (i—1,1-1,1]),
[—2 /-1

-1L,1-1,)— (—2,i—-1,i!-1,0)— (i—2,i,i+1,1-1,0) —>--
i—1 i i+1

— (1—2,1-3,1-2,1-1,1) —> (i—2,1-2).
-3 -2

Then repeating the same process as (37), we have A4(7) is conjugate to
h(l—9). If i=2,h(2) is conjugate to ~(1,7/—1,/) from 43), and
(1) l—']-, l) - (1: 2’ 1—1) l) — (27 3; l’"l, l) e
1 2 3
—>(—=3,1-2,1-1,) — ({—-2).
-3 -2
Thus we have our assertion.

e) For the type (£)),/=6,7 and 8: The matrix A of the type (£, has
the following form

-2 1
1-2 1
1-2 1 1
A= 1 -2
1 -2 1
1-2 1

(i) #(2) is conjugate to A(3). In fact,
2) —’2_) (1’ 2’ 3) —'3——) (1’ 3) 4; 5) T’ (13 2) 3, 4, 5) - (2, 4’ 5)
2

— (2: 3: 4) 5) —_— (3) .
4 3

(ii) %&(4) is conjugate to #(5). In fact,
(4) — (3: 4) - (2) 37 5) — (1, 27 5) - (1, 2: 3: 5; 6) - (17 3: 4) 6)
4 3 2 5 3
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I— (1, 4) 6) I (1; 2) 4) 6) I (21 3: 4) 6) I (37 51 6) E— (5) .
4 1 2 3 5

(iii) AQ1) is conjugate to A(6). In fact, for /=6,
1) > (1,2) (2,3) 34,5 —4,5,6)— (4,6),
1 2 3 5 6

and similarly A(1) is conjugate to 4(4,/) for /=7 and 8. On the other hand
(6)—6—>(5, 6) for /=6, and similarly A(/) is conjugate to A(5,/) for /=7 and 8.

Since A(4) is conjugate to A(5) from (ii), #(4,/) is conjugate to #(5,/) from
Therefore %(1) is conjugate to A(6).
(iv) For the type (E), 2(3) is conjugate to #(4). In fact,

(3) T (2; 3; 4, 5) '“2_> (1) 2’ 4: 5) '1—> (1! 4’ 5) T (17 3; 4: 5: 6) '3—) (1; 2; 3: 6)
—(2,6)—(2,5,6)—(2,3,5)— 3B, ) — @)
2 6 5 3 4

(v) For the type (&;), £(3) is conjugate to 4(6). In fact,
3)—,3,4,5)— (2,4,5) — (2,3,4,5,6) —> (2,3,4,6,7) —> (3,5,6, 7)
3 4 5 6 3

— (5,7 —(5,6,7)—(6).
5 7 6

(vi) For the type (&y), 4(6) is conjugate to 4(5) and A(3) is conjugate to
W7, h(8). We shall show the first two consequences for examples.

(6) — (5y 6) 7) - (57 7; 8) - (5’ 8) B (37 5: 6’ 8) -_— (3, 6’ 7; 8) B (3y 7)
6 7 8 5 6 7

- (2: 37 4) 5; 7)_‘—)(2’ 4; 57 6’ 7)_'_>(2; 4’ 6) ——_)(2’ 3) 41 6)—_)(3; 5’ 6)'—') (5> .
3 5 6 4 3 5

(3) B (2) 3: 4’ 5) — (Zy 4! 5) _— (27 3) 4: 5; 6) T (37 6) - (37 5) 67 7)
3 4 5 3 6
— (6,7 —(5,6,7,8) — (6,8 — (6,7,8) — (7).
5 7 6 8 7

From (i)---(vi), we have the following:

For the type (Fg): 2(1) and A(6); A(2), A(3), ~(4) and h(5) are conjugate.

For the type (E): 2(1), #(2), /(3) and 4(6); A(4) and A(5) are conjugate.

For the type (Ey): 2Q), h(4), A(5) and %(6); 2(2), A(3), A(T) and #(8).
are conjugate.

Since (as, ag, az, a;) is a subsystem of the type (A,) having a border a,,
Wiy, e, 4g), D=4, <o <is=8, is conjugate to 4(i) for some i.

On the other hand, since (ay, a,, as, a,, @;) is a subsystem of the type (D),
similarly to the proof for the type (Dy), ki, -+, i), 1=4; <--- < {, =<5, is conjugate
to 4@ for some i. Therefore, from any A(i,,--, i) is conjugate to
h(i,7) for 1=i<4,5<;<8 We may easily see that A(j, ) is conjugate to A(k)
for some k.

f) For the type (F,): Since (ay, a,, as), (a4, a3, @) form the f.r.s. of the
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types (By), (C;) respectively, A, i) is conjugate to A(i) for some i, if 7;#1
or is#4. If ;=1 and i{,=4, we may reduce to the case where 7, #1 or i;#4.
Finally, 4(3) and A(4), 2(1) and A(2) are conjugate respectively. In fact,

(S)T @3, 4)T>(4),
H—4,2)—2,3)—(2,3,4)—2,H)—(1,2,3,4)—(1,2,3) —> (2).
1 2 3 4 2 3 2
g) For the type (G,): (1)—1—>(1, 2)»2—>(2). Thus any involution is con-

jugate to £(1). q.e.d.

Let K be an infinite field of characteristic #2. We denote by R, the
normalizer of 4(i) in Gg, which is an algebraic subgroup of Gg, and by (%),
the irreducible component of the identity of ;. When we express the root

y by f.r.s.: r:i}lmi(ﬂai, let E, be the set of roots such that m;(») is even.
Then we have ‘zhe following :

Lemma 8. Let K be an infinite field whose characteristic is not 2, then the
Lie algebra n; of the group (%), is generated by N, the Lie algebra of 9y, and
ad X,, rek,.

Proor. Let n;/ be the Lie algebra formed by the element X=@®, the
Lie algebra of Gg, such that 4(i)Xhr()-'=X. Since @ is generated by ad X,
and ¥, and also

hOHRG)'=H for all Hej

h()(ad X )h@) 1 =(—1)™" ad X, for all root #,
n,/ is generated by % and ad X,,7rE,. It is obvious that n,/2un,. On the other
hand (R,), contains 9, 1=i=!) and ¥X,r<E; (cf. (9) of §1). Therefore its
Lie algebra n; contains § and ad X,,r<E; (cf. proof of Propositions 3 and 4).
Thus n,/=n,. q.e.d.

Prorostrion 7. If K is an infinite field whose characteristic is not 2, then
the Lie algebra n, is isomorphic to the following, where we denote by g(x) the Lie
algebra which is isomorphic to the Lie algebra of Gg constructed from the simple
Lie algebra of the type (), and by a, the 1-dimensional commutative Lie algebra.

a) For the type (A), =2

n=a;Pa(Ay)

= Pa(A; - )Da(A-) 2=i=[1+1/2].
b) For the type (B),[=2

1, =Z6(D)D(B-0) 1=i=/-1

m=g(Dy),

where §(D;)=a,, §(Dy)=0(ADDs(A) and §(D;)=g(As).
c) For the type (C),1=3
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1;=20(C)Da(Cr-s) 1<i<[1/2]
m=a,De(A4;,-),
where o(C)=9(4,) for i=1,2.
d) For the type (D),[=4
1, =Z9(D)DsD;-0) 1=i=[//2]
m=a,Pe(A,-0),
where §(D,) for i=1,2,3, have the same meaning as in b).
e) For the type (E)),[=6,7,8.
m=a,PaDy), s(A)DPs(Ds), a(Dy) respectively for 1=6,7,8.
1y 2=a(A,)Da(A4s), a(ADDS(E,) respectively [=6, 8.

n,=g(A;) for I="T.

= a,Pa(Ey) for I=T.

n, = 6(A,)Pa(Ey) Sfor [=8.
) For the type (F),

1, =g(A)Da(Cy), n,=0(By) .
g) For the type (Gy),

n,=a(A)Ds(A4) -

Proor.
a) For the type (4;): The positive roots of the type (4;) are formed by
the following :

a; 1=i<)) and a;+ai+-ta, A=i<<k=) .20

Among the roots of E; (i>1), (@, -, a;—;) and (@;r,--,a;) form the f.r.s. of
the types (A,_;)) and (A,.;) respectively and these systems are orthogonal
each other. The roots of £, form a system of roots of the type (A4;,_;) with
a f.r.s. (@, a.

b) For the type (B): The positive roots of the type (B,) are formed by
the roots of the type (A;) and the following:

ai+di+1+'” +(Zk_1+2dk+2ak+1+"-—f—20,, 1§i < k§l .21)

The positive roots of the type (D,) are formed by the roots of the type (A,
and the following:

aita gt tata; 1=<i<i-2
di+ai+1+"' 'I‘d]c_l +2¢k+"'+201_2"|‘01_1 +(Zl, 1§Z < k < /—122),
Among the roots of E,, (e, a;,7), where r=a;_;+2a;4+2a;.+-+2a, and

20) Seligmann [12, p. 43].
21) ibid. p. 51.
22) ibid. p. 48.
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(@s41s Aigoy > @) form the f.r.s. of the types (D;) and (B,.;) respectively and
these systems are orthogonal each other.

c) For the type (C;): The positive roots of the type (C,) are formed by
the roots of the type (A, and the following:

Attt ap a4 2a - H-ay, 1=i<k=i-1
2a; 12+ 201 +ay 1=i=/-1.2%

Among the roots of E; G=!-1), (a,, @y, ai-, ¥) Where r=2a;+2a;,. +
+2a;_+a;, and (@;4;, @319y, @;) form the f.r.s. of the types (C;) and (C,-,)
respectively and these systems are orthogonal each other. The roots of E
form a system of roots of the type (A4,_,) with a f.r.s. (a, @3+ 1)

d) For the type (D)),/=4: Among the roots of E; (=[—1), (a,, @y, @;, ¥)
where r=a,_,+2a,+2a;.,+ - +2a;-,+a;, and (a;41, @i40 7, @;) form the f.r.s. of
the types (D;) and (D,_;) respectively and these systems are orthogonal to
each other. The roots of £, form a system of roots of the type (A4,_,) with
a f.r.s. (@, as -, @;—y).

e) For the type (E;): For the form of roots of the types (&), (E;,) and
(E;), we refer to Seligman [12]. (N.B. The numbering of the f.r.s. in
of p. 59 is different from ours.) Among the roots of E,, (a as as, @4 @5), (@,
gy U5y A3y Agy @) and (7, ag, dy, G, A5y A3, A4y dy), Where r=2a,-+3a,+4as+2a,+3a;+
20,+a, form the f.r.s. of the types (D), (D) and (D) respectively for the
types (Ey), (£;) and (Ey), and for the type (E,), » is orthogonal to them.

Among the roots of FE,, (ay, as, a5, ae 1), (@4, a3, G5y dsy ¥, @;) and (@, @s, as, @,
7, a5, a3), where r=a,+2a,+2a;+a,+as, form the f.r.s. of the types (A4;), (Dg)
and (F,) respectively for the types (E;), (£,) and (&), and @, is orthogonal to
them. v

Among the roots of E,, (a,, @y, @, as, @), (@1, @ @3, @5, ag, &7, v) and (@, a,, as,
as, ag, @y, 1, ag), Where r=a,-+2a,+3a;+2a,+2a;5-+a, form the f.r.s. of the types
(Ay), (A,) and (D,) respectively for the types (&), (E;) and (&), and for the
type (&), r is orthogonal to them.

Finally, among the roots of Ej, (@, s, @s), (@1, @s+, ag) and (@, s+, @y)
form the f.r.s. of the types (D;), (Es) and (E,) respectively for the types (&),
(E,) and (Fy), and for the type (&%), 2a,+4a,+6a;+3a,+5a;+4a;+3a,+a; is
orthogonal to them.

f) For the type (F): For the form of the roots of the type (F)), we
refer to Seligman [12, p. 57]. Among the roots of E|, (a,, a;, a,) form the
f.r.s. of the type (C,) and the root 2a,+3a,+4a;+2a, is orthogonal to them.
Among the roots of E., (a,, @y, 7, @), where r=a,+2a,, form the f.r.s. of the
type (By).

23) ibid. p. 54.
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g) For the type (Gy): The positive roots of the type (G,) are formed by
a, @y, @, +as, a,+2a,, a,+3a,, 2a,-+3a, .

Among the roots of £, and FE,, a, and 2a,+3a,, a; and a,+2a, are orthogonal
each other and form the f.r.s. of the types (A4,) respectively.

From these facts and we can easily see the Proposition. q.e.d.

Lemma 9. If K is an infinite field whose characteristic is not 2 or 3 and is
not a factor of ord(P/P,), then ad Yx is a Cartan subalgebra of adgg. g is a
Cartan subgroup of Gg.*9

Proor. Since |#(H;)|=3, for any root s there exists a root » such that
LH,, X, 1=s(H)X;, s(H,)#0. Therefore the normalizer of hx in gx is §x itself.
Thus Y, is a Cartan subagebra of gx. Since adgx=gg, ad f)K.is a Cartan
subalgebra of ad gg.

If s&€Gg is in the normalizer of 9, and if we express s as (12), then (32)
holds for all A(x)s9x. Thus x”zrl;[(] x,(z‘r)zf”:g)xr(xl(r)tr) for all y e

Hom(P,, K*). Therefore x/=X"=1 and similarly x=%x=1, i.e. s&€,. Con-
versely, the element of MW, is in the normalizer of $H.. (cf. (11)). Thus the
normalizer of §x in G is W,. The factor group W,/Hx is the finite group
(isomorphic to the weyl group) (cf. §1). Therefore 9; is the connected
component of the identity of ., and $, is a Cartan subgroup of Gg.2» q.e. d.

Tueorem 4. If K is an algebraically closed field whose characteristic is +2,
then the involutions in Gg in the Proposition 6 form a system of complete vepre-
sentatives of the non-conjugate involutions in Gg.

Proor. Since an involution in G is semi-simple, it is contained in a
Cartan subgroup of Ggx. Moreover Cartan subgroups of Gx are conjugate.®
Since i is a Cartan subgroup of Gx from Lemma 9, it is sufficient to con-
sider the involutions in 5. If two involutions in 9, are conjugate each
other, then their normalizers are isomorphic. Thus we have our assertion
except for the types (D,) where [/ is even from Propositions 6 and 7.

For the type (D,) where /=4 and [ is even, the normalizers of 2(/—1) and
h(l) are isomorphic to a,Pg(4,-) and for the type (D,), the normalizers of
(1), 2(3) and A(4) are isomorphic to a,Pg(A;). However the remark of the
proof of d) of Proposition 6, we see that #(/—1) and A(/) for /=6 and Z(1),
h(3) and A(4) for /=4, are non-conjugate each other. (Remark; These involu-
tions are conjugate each other by suitable “outer” automorphisms.) q.e.d.

24) A Cartan subgroup of G is a maximal nilpotent subgroup such that all its
subgroup of finite index is also finite index in its normalizer.

25) Borel [1, p. 75].

26) Borel [1, (20.4) and (20.5)].
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§4. Automorphisms of Gy.

We denote by Gg(x) the group of Chevalley constructed from the simple
Lie algebra of the type (x). Let K be an infinite field, we denote by A(Gx)
the group of birational and biregular automorphisms of Gx and by I(Gx) the
normal subgroup of A(Gx) formed by inner automorphisms of Gg.

Lemma 10. If K is infinite field, every birational and biregular automorphism
of Gg(A,) is inner.

Proor. We shall identify Gg(A,) to PSL,K) by the homomorphism ¢,
(cf. §1). Any automorphism of PSL,(K) is induced by an automorphism of
SL,(K).2" Moreover any automorphism of SL,(K) have the following form:

A— PA°P, AeSLy(K),

where P is a non-singular matrix and ¢ an automorphism of SL.(X) induced
by an automorphism of K.?®» If such an automorphism is rational over K,
then o is an identity automorphism. Thus any birational and biregular
automorphism of SL.(K) is

A— PAP™!, where P is a non-singular matrix.
Since the non-singular matrix P is a product of the matrices of the types

(:{ (1) , (é f), and ((1) 2), if we identify the automorphisms of PSL«(K) to

Gx(A)), the automorphisms induced by these matrices are, for Gk, the inner
automorphisms induced by x_,(%), x.(¢) and #(y) where x(#*)=a? and » is a root,
respectively. Therefore we have our assertion. q.e.d.

Prorosition 8. If ¢ is a simple Lie algebra not of the type (D,) and K is
an algebraically closed field whose characteristic is not 2, then A(Gg)=I(Gg).

Proor. We shall prove the proposition by induction with respect to the
rank of g. From Lemma 10, the Proposition holds for the rank 1.

i) For the type (4,), we assume that the proposition holds for the group
Gg(An),m<I{. Let ¢ be an automorphism of the group G(4;) and we shall
show that ¢ is the identity automorphism except for an inner automorphism.
Since Cartan subgroups §, and $;° are conjugate each other, we may suppose
that $r=9x°. Moreover since the normalizers of 4(1) and A(1)° are isomor-
phic, from Propositions 6 and 7, A(1) and A(1)° are conjugate each other.
Thus we may suppose also that A(1)=#A(1)°. Then ;=N and (R,)o=0)".
Denote by G, the irreducible subgroup of %R, generated by $, (:=2) and

27) J. Dieudooné [4], Supplemented note by L.K. Hua, p. 109.
28) L.K. Hua [6, Appendix].
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X,,reFE,, which is isomorphic to Gg(4;-,). The Lie algebra of G, which is
an ideal of n, isomorphic to gx(A4,;_;) is generated by ad H;* (i=2) and ad X,,
rekE, (cf. Proof of Propositions 3 and 4). Denote by N the irreducible sub-
group of N, generated by §,. The Lie algebra of A is generated by ad H,*.
We may easily see that G, and A are normal in N,, and N, is the direct
product of G, and . Since dimA=1, and dim G,=3,G,NG,” is not {1}.
Since G,Y and G, are normal in N,,G;NG,° is a non-trivial normal subgroup
of G,. Therefore we have that G,=G,°. Since A<Hx, we have also that
A=A°. By induction hypothesis, we may suppose that o fixes the elements
of G,. Then since 4(2)eG,, R,°=N,. If we denote by G, the subgroup of M,
generated by 9, X,, and X_,,, then G, is a normal subgroup of N, isomorphic
to Gk(A)), and G,°=G,; follows from G,’NG;29,. From Lemma 10, ¢ induces
an inner automorphism. Since o fixes the irreducible subgroup $, of G, 0
might be an inner automorphism induced by the element A(¥)=G, (cf. (9) of
§1). Thus we may suppose that o fixes the elements of G, and G, at the
same time. Since Gg is generated by G, and G,2?» we have our assertion.

ii) For the type (B), (C) and (F,), we may prove the Proposition by the
same way as in 1).

iii) For the type (D)), /=5, since the proposition is true for the type
(A,), if we replace R, and N, in the proof of i) by N, and N,;, we may prove
for the type (D;). Thus we have our assertion by induction with respect to
the rank, similarly to 1i).

iv) For the type (£)),!=6,7 and 8, Since the Proposition is true for the
type (D)), [=5, we have our assertion by induction similarly to i).

v) For the type (G,), in this case 9, is isomorphic to G,xXG, where
G; (i=1,2) is isomorphic to Gg(A,). If the automorphism induced in R, trans-
forms G; into G; (i#}j,i,j=1,2), then if we adjoin the inner automorphism
induced by a suitable w(w), we have G;°=G; (i=1,2). Therefore we may
suppose ¢ fixes the elements of both G, and G,, and we have our assertion.

q.e.d.

Lemma 11. If K is an infinite field (not necessarily algebraically closed)
and if § is of the type (D), there is an element of A(Gg) of order 3 which is not
inner.

Proor. From the proof of Theorem 3, G¢'/ (Gx2xGx''2Gx’) is isomorphic
to POF(K,f), f being a quadratic form of maximal index. Since Gy’ is
dense in Gg (in the sense of Zariski topology), the rational automorphism of
PO (K,f) induces a rational automorphism of Gg.3» On the other hand, J.
Dieudonné has noted that there is an automorphism of PO} (K,f) which is

29) Chevalley [3, Lemma 4, p. 38].
30) See for example Borel [1, Proposition 5.2].
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not induced by any automorphism of OF (K, f).*» We may see that this
automorphism is rational. Moreover, since the inner automorphisms of
PO{(K,f) are induced by the inner automorphisms of OF(K,f), it is not in-
ner. Thus we have our assertion. q.e.d.

ProposiTion 9. If g is of the type (D) and K is the algebraically closed
field of characteristic +2, then A(Ggr)/I(Gg) is the cyclic group of order 3.

Proor. Let o be an automorphism of Gg, which is a representative of a
co-set of A(Gr)/I(Gx). We may suppose that H.7=9,, and A1)’=Aa(1), (3) or
h4). If A()’=h(1), then N,°=N,. Denote by G, (resp. N) the normal subgroup
of R, generated by 9; (¢(>1) and X, r=E, (resp. 9,), then we may suppose
that G, and N are transformed into itself by ¢. Since the automorphisms of
the group of the type (A;) are all inner, ¢ might be inner by the same
consequence of the Proposition 8. If each 4(1), #(3) and A(4) are not fixed by
o, then ¢ induces a cyclic permutation of A(1), 2(3) and 4(4). When two such
automorphisms o, and ¢, induce the same permutation of (4(1), A(3), 4#(4)), 0,05
is inner from above consequence, so the number of co-sets of A(Gg/[(Gyg) is
at most 3. On the other hand, from Lemma 11 there is an outer automor-
phism of order 3. Therefore we have A(Gg)/I(Gx) is the cyclic group of
order 3. q.e.d.

Tueorem 5. If g is simple and K is an infinite field whose characteristic is
not 2, then

AGr=I(Gg) except for the type (D,),
A(GR)/(Gg) is the cyclic group of ovder 3 for the type (D).

Proor. Let ¢ be an element of A(Gg). If L is an algebraically closed
extension field of K, then G.=(Gx)**®» and ¢ induces one and only one auto-
morphism ¢* of G.*¥. From Proposition 8, if g is not of the type (D,), o* is
an inner automorphism induced by an element s of G,. We shall show
seGg, and it follows that ¢ is an inner automorphism of Gg. Let doZ be
the differential of o%, then

dot: ad X—s(ad X)s™'=ad(sX), Xeg, .
Since (do):=do* *», we have
do: ad X—ad(sX), Xegg.

Therefore sXeg, for all Xeqg, and s must be in GL(n, K). From Theorem
1 Of [8], SEGLHGL(W, K):GK'

31) Dieudonné [4, p. 60].

32) Ono [8, Theorem 2].

33) Chevalley [8, Proposition 9, p. 1097

34) Chevalley [8, Definition 1 and its note, p. 138].
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If g is of the type (D,), the mapping o—o? is an isomorphism of A(Gg)
into A(G;). From above consequence, we have that ¢ is inner if and only if
o” is inner. Therefore from the order of A(Gx)/I(Gx) is at
most 3. From [Lemma 11, we have that A(Gg)/I(Gg) is the cyclic group of
order 3. q.e.d.

Remark. If we prove the Theorem 3 for the group over complex number
field, then by the theory of reduction mod p of linear algebraic groups (cf.
Ono [8], [9])), we have the Theorem for general case. As for the
if K is the complex number field, A(Gx)/I(Gg) can be identified to the sub-
group of A(g)/I(g), which is the cyclic group of order 2 for the type (4)),
[=2,(D),[=5, and (F;), the symmetric group of degree 3 for the type (D)),
and has a unit element only for all other types. Therefore, in the case
where A(g)/1(g)={1}, we have A(Gx)=I(Gx) immediately. It is also desirable
that we would have the Theorem for general case by the theory of reduction
mod. p, after it is proved only for the case where K is the complex number
field.

Fukushima Medical College.
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