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Compact homogeneous spaces and the first Betti number.
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1. Introduction. The main purpose of this note is to prove:
THEOREM 1. Let $M$ be an n-dimensional homogeneous space $G/H$ under a

compact connected Lie group G. Then we have

$\dim S(p)+B_{1}=n$ ,

where $s(p)$ is the orbit of an arbitrary point $p$ in $M$ under the maximal (con-

nected) semi-simple subgroup $S$ of $G$ and $B_{1}$ denotes the first Betti number of $M$.
Note that $H$ is not assumed to be connected. In the sequel we shall

preserve these hypotheses and notations.
COROLLARY 1. If $G$ is semi-simple, then $B_{1}=0$ (T. Frankel [3]). The

converse is not true (even if $G$ is effective), but we have
COROLLARY 2. If $B_{1}=0,$ $G$ contains a semi-simple subgroup which is transi-

tive on $ j\psi$ (H. C. Wang [10]).

COROLLARY 3. If $n\leqq B_{1}$ , then $IM$ is homeomorphic to the torus and, further-
more if $G$ is effective, $G$ is an n-dimensional toral group (D. Montgomery and
H. Samelson [6] and A. Borel [1]).

COROLLARY 4. Any finite covering space of $M$ has the same first Betti
number as $M$.

In course of the proof of the above theorem, we shall establish:
THEOREM 2. $M$ admits a $G- inva\gamma iant$ Riemannian metric such that for a

vector field $u$ the following three conditions are equivalent: 1) $u$ is parallel, 2) $u$

is harmonic, and 3) $u$ belongs to the center $C^{L}$ of $G^{L}$ of $G$ and $u$ is orthogonal
to $S(p)$ at $p$ .

COROLLARY 5. A vector field $u(\neq 0)$ on the homogeneous space $M$ is parallel
with respect to some G-invariant Riemannian metric if and only if $u$ belongs to
the centralizer of $G^{L}$ in the Killing algebra of $1\psi$ with some G-invariant Rieman-
nian metric and $u(p)$ is not tangent to $s(p)$ .

COROLLARY 6. Let $h$ be a vector field on $M$ harmonic with respect to a
G-invariant Riemannian metric $g$. Then $h$ is parallel zvith respect to some G-
invariant metric, if and only if $h$ belongs to the Lie algebra $K^{L}$ of a compact
Lie transformation group $K$ of M. If in particular $h$ is Killing with respect to
some metric, $h$ is parallel with respect to some (other) metric.

If a vector field $ t\ell$ satisfies 1) in Theorem 2, clearly there exists, for any
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point in $M$, a hypersurface $N$ containing $p$ such that $u$ is a non-zero normal
vector of $N$ at each point of $N$. Conversely if a vector field $u$ is a Killing
vector field on a compact Riemannian space $M=G/H$ and there exists, for
any point $p$ in $M$, a hypersurface as above, then $u$ satisfies 1), as is seen
from [7].

Another converse of Theorem 2 is also true: if 1) and 2) are equivalent,
then the G-invariant Riemannian metric is necessarily the one characterized
in the proof, $i$ . $e$ . they are equivalent to 3), or, in other words, there exists
a connected abelian group $T$ in the center of $G$ such that the tangent space
of $\tau(p)$ is the orthogonal complement of that of $s(p)$ with respect to the
metric. This fact can be verified by means of Corollary 1 and Theorems 3.3
and 4.4 in Kostant [4] or a theorem in [13]. Therefore it will not be proved
in this paper.

We shall also prove the
THEOREM 3. If $G/H=M$ is a symmetric space, then the following three

conditions are equivalent: 1) a vector field $u$ is parallel, 2) $u$ is harmonic, and
4) $u$ belongs to the center $C^{L}$ of $G^{L}$ .

This theorem generalizes and sharpens a theorem of M. Matsumoto [5].

If $G/H$ is not symmetric, it is possible that the conclusion of Theorem 2 is
false for any G-invariant Riemannian metric.

THEOREM 4. If $G/H=M$ is a symmetric space and if the symmetries belong
to $G$ , then the $(2k+1)$ -th Betti number vanishes for $ k=0,1,2,\cdots$ , and so, further-
more if $M$ is orientable, $\dim M$ is even.

Acknowledgements. The author wishes to express his hearty thanks to
Professor Kentaro Yano for his instruction and encouragements. He also
appreciates valuable suggestions given by my friend M. Ise.

2. Two lemmas. We have only to prove the propositions in the intro-
duction for the case where $G$ is effective. Clearly there exists a connected
abelian subgroup $T$ (compact or not) in the center of $G$ , such that S. $T$ is
transitive on $M$ and we have $\dim S(p)+\dim T=n$ as well as $\dim T=\dim T(p)^{1})$

Let $\alpha$ and $\beta$ be the distributions which maps a point $p$ in $M$ to the tangent
space at $p$ of $S(p)$ and that of $\tau(p)$ respectively. $\alpha$ and $\beta$ are invariant under
$G$ , for $S$ and $T$ are normal subgroups of $G$ . Hence there exists a G-invariant
Riemannian metric with respect to which $\alpha(p)$ is the orthocomplement of $\beta(p)$

1) We denote by $\mathfrak{g},$ $S,$ $\mathfrak{h}$ and $c$ the Lie algebras of $G,$ $S,$ $H$ and the center of $G$ re-
spectively. The Lie algebra $t$ of $T$ is defined by the condition that $c$ is the direct
sum of $f$ and c\cap (@+y). We have $\dim i+\dim$ (@+h)/h=dim $\mathfrak{g}/\mathfrak{h}$ . Hence an orbit under
the subgroup S. $T$ contains a neighborhood. Since $G$ is compact, $G$ (therefore $S\cdot T$ )
can be assumed to be an isometry group. An open orbit under an isometry group is
closed because it is complete. Thus $S\cdot T$ is transitive on $G/H$
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in the tangent space of $M$ at any point $p$ . We fix this metric throughout in
this section and the next.

(2.1) Any vector field $u$ in the Lie algebra $T^{L}$ is parallel.
The Killing vector fields which are in $G^{L}$ and orthogonal to $u$ at a point

$p,$ $u(p)$ being assumed to be different from zero, form a vector subspace $U^{L}$

of $G^{L}$ ; $\dim U^{L}=\dim G^{L}-1$ . Since $U^{L}$ contains $S^{L},$ $U^{L}$ is an ideal in $G^{L}$ .
Therefore $u$ is orthogonal to each vector field in $U^{L}$ at any point;

$u_{\alpha}w^{\alpha}=0$ for any $w$ in $U^{L}$ ,

whence, taking account of Killing’s equations satisfied by $u$ and $w[11]$ , we
find

$0=g^{\lambda\beta}\nabla_{\theta}(u_{a}w^{\alpha})=-(\nabla_{a}u^{\lambda})w^{a}-u^{\alpha}\nabla_{a}w^{\lambda}$ ,

where $g_{\lambda\mu}$ is the metric tensor and $\nabla$ is the covariant differentiation. On the
other hand, $u$ belonging to the center of $G^{L}$ , we have [11]:

$0=S_{w}u^{\lambda}=w^{\alpha}\nabla_{\alpha}u^{\lambda}-u^{\ell l}\nabla_{a}w^{\lambda}$ for any $w$ in $U^{L}$ .
From these two equations, we deduce

$w^{\alpha}\nabla_{\alpha}u^{\lambda}=0$ for any $w$ in $U^{L}$ .
Further the length of $u$ , an element of the center of $G^{L}$ , is constant on $M$,

and so, from Killing’s equation, follows
$u^{a}\nabla_{\alpha}u=0$ .

The last two equations allow us to conclude that $u$ is parallel, which com-
pletes the proof of (2.1).

(2.2) Any harmonic vector field $h$ belongs to $T^{L}$ .
A vector field $h$ on $M$ is said harmonic, if $h$ satisfies two equations:

$\nabla_{\lambda}h_{\mu}=\nabla_{\rho}h_{\lambda}$ and $g^{\alpha_{\beta}}\nabla_{\alpha}h_{\beta}=0$ .

If (2.2) is proved under the assumption of orientability of $M,$ $(2.2)$ is valid
also for the general case, as one finds by inducing the geometric objects in
question to the double covering of $M$ (which will be orientable). Hence we
suppose that $M$ is orientable. By (2.1), there is a harmonic vector field $\hat{h}$

which coincides with $hmod T^{L}$ and is orthogonal to $\tau(p)$ at a point $p$. As-
sume $\hat{h}$ not equal to zero. The vector fields in $S^{L}$ which are orthogonal to $\hat{h}$

at $p$ form a vector subspace $V^{L}$ of $S^{L}$ ; $\dim V^{L}=\dim S^{L}-1$ . Since the inner
product of a harmonic vector field and a Killing one is constant on $M[2],$ $h$

is orthogonal to any element in $V^{L}$ at every point of $M$ ;

$h_{a}v^{\alpha}=0$ for any $v$ in $V^{L}$ .
From the fact that a harmonic form is invariant by any Killing vector field
[12], follows
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$0=S_{w}(h_{a}v^{\alpha})=h_{a}S_{w}v^{a\}}$

for any $w$ in $S^{L}$, which means that $V^{L}$ is an ideal in $S^{L}$ . But $\dim V^{L}=\dim$

$S^{L}-1$ , and $S^{L}$ must contain a one-dimensional ideal, contrary to the semi-
simpleness of $S^{L}$ . Thus we have $h(p)=0$ , hence $h=0$ on $M$ and (2.2) is proved.

We have just proved Theorem 2.

3. The proof of Theorem 1.
(3.1) A G-invariant exact l-form is zero.
Let $df$ be the l-form where $f$ is a differentiable function on $M$. Since $M$

is compact, $M$ admits a critical point of $f$, at which $df$ vanishes. Being
invariant by $G,$ $df$ is therefore a zero-valued form.

By (2.1) and (2.2) and the famous theorem of Hodge ([8, Corollaire 4, $p$ .
159]), we see $\dim T^{L}=B_{1}$ and so $\dim S(p)+B_{1}=n$ , provided that $M$ is orientable.
If $M$ is not orientable, $B_{1}$ does not exceed the first Betti number of the double
covering space of $M$ ([9, Proposition 2 in the appendix]). Therefore we
find $\dim S(p)+B_{1}\leqq n$ . On the other hand, for any $u\in T^{L}$ , the dual l-form of
$u$ is closed due to (2.1). By (3.1) it is not exact unless it equals zero. Thus
we deduce $\dim T^{L}\leqq B_{1}$ from de Rham’s theorem ([8, Th\’eor\‘eme 17’, p. 114]).
Combining this with the other inequality above, we conclude Theorem 1.

THE PROOF OF COROLLARY 3. If $n\leqq B_{1}$ , we have $\dim S(p)=0,$ $i$ . $e$ . the effec-
tive group $G_{e}$ homomorphic to $G$ is abelian, because of Theorem 1. $G_{e}$ is
simply transitive, for an effective and transitive transformation group does
not contain a non-trivial normal subgroup in its isotropy subgroup. Hence
$M$ is homeomorphic to $G_{e}$ , which is an n-dimensional toral group.

THE PROOF OF COROLLARY 5. If $u$ is parallel, it is Killing and harmonic.
Hence $u$ is invariant by G. $u$ being parallel, the dual l-form $u^{\prime}$ is closed.
If $u$ is tangent to $s(p),$ $u^{\prime}$ naturally induces a closed S-invariant l-form $u^{\prime\prime}$

on $S(p)$ , which must vanish by Corollary 1 and (3.1). Conversely assume that
$u$ belongs to the centralizer of $G^{L}$ in the Killing algebra with respect to a
G-invariant Riemannian metric and $u(p)$ is not tangent to $S(p)$ . Then there
exists a compact connected transitive group whose maximal semi-simple sub-
group is $S$ and whose Lie algebra contains $u$ and $G^{L}$. We shall denote it by
$G^{\prime}$ . We can define $T$ in 2 so that its Lie algebra contains $u$ and obtain a
$G^{\prime}$ -invariant metric as in 2. It follows from (2.1) that $u$ is parallel.

THE PROOF OF COROLLARY 6. Assume that $h$ belongs to $K^{L}$ . Since $h$ is
invariant by $G$ , the closure $W$ of the one-parameter group generated by $h$ is
a toral group whose each element commutes with each element of $G$ . Thus
$G\cdot W$ is a compact Lie transformation group transitive on M $M$ admits a
$G$ . W-invariant Riemannian metric. On the other hand $h(\neq 0)$ is not tangent
to $S(p)$ , for otherwise $h$ induces on $s(p)$ a closed l-form invariant by $S$, which
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is not exact by (3.1), contrary to Corollary 1. Applying Corollary 5, we con-
clude that $h$ is parallel with respect to some G-invariant metric. The other
parts of Corollary 6 are now obvious.

4. The symmetric space. Assume that $M=G/H$ is symmetric. We re-
move the metric considered in the preceding sections.

(4.1) If a vector field $u$ on $M$ is invariant by $G,$ $u(p)$ is orthogonal to $S(p)$

at each point $p$ in $M$

Let $v(p)$ denote the oithogonal projection of $u(p)$ to the tangent space of
$i^{\tau})(p)$ . Then the vector field $v$ which assigns $v(p)$ to each point $p$ is invariant
by $G$ . On $S(p),$ $v$ is an S-invariant vector field. Since the involutive auto-
morphism of $G$ leaves $S$ invariant, we find that $s(p)=S/S\cap H$ is also a sym-
metric space. By Cartan’s theorem [2] the dual l-form of $v$ is closed. It
vanishes at any point on $S(p)$ by Corollary 1 and (3.1). Hence $v$ is zero on
$M$, which proves (4.1).

THE PROOF OF THEOREM 3. In the notation of the paragraph 2, $\tau(p)$ is
orthogonal to $S(p)$ , owing to (4.1). Hence the conclusions in Theorem 2 hold
for our space $M$. Further by (4.1), the condition 3) in Theorem 2 is equivalent
to 4) in Theorem 3.

THE PROOF OF THEOREM 4. We have only to consider the case where $M$

is orientable, as one sees from the remarks in 2 and 3. Any harmonic form
of degree $(2k+1)$ is invariant under $G[12]$ , and so by the symmetry with
respect to any point $p$ in $M$ It induces the linear transformation $\lambda:X\rightarrow-X$

on the tangent space of $M$ at $p$ . Any $(2k+1)$ -form invariant by $\lambda$ is obviously
zero. Theorem 4 follows now from Hodge’s theorem.

Remark on the proof of Theorem 1.

Y. Matsushima informed the author an algebraic proof of Theorem 1,
whose outline we shall give here. By a well known theorem [2], he needs no
orientable covering. Let $L$ be the totality of linear forms $\alpha$ on $G^{L}$ satisfying
the conditions; 1) $\alpha([G^{L}, G^{L}])=\alpha(S^{L})=0$, 2) $\alpha(adh\cdot X)=\alpha(X)$ for any $h\in H$

and $X\in G^{L}$ , and 3) $\alpha(H^{L})=0$ . By Cartan’s theorem we have $\dim L=B_{1}$ . Let
$M^{L}$ be the orthocomplement of $H^{L}$ in $G^{L}$ with respect to a positive definite
bilinear form $\phi$ on $G^{L}$ invariant under $ad(G)$ , the adjoint group of $G$ . Let
$\rho$ denote the mapping of $L$ into $G^{L}$ having the properties: $\alpha(X)=\phi(\rho(\alpha), X)$

for each $X\in G^{L}$ . We have $\rho(L)=C^{L}\cap M^{L}$ where $C$ is the center of $G$ . It
follows that $\rho(L)$ is the orthocomplement of $H^{L}+S^{L}$. Denoting by $N^{L}$ the
orthocomplement of $H^{L}$ in $S^{L}+H^{L}$ , we obtain $G^{L}=N^{L}+H^{L}+\rho(L)$ (direct sum),

which implies $\dim M=\dim G^{L}-\dim H^{L}=\dim N^{L}+\dim\rho(L)=\dim N^{L}+B_{1}$ . On
the other hand $\dim N^{L}=\dim(S^{L}+H^{L}/H^{L})=\dim(S/S\cap H)=\dim S(p)(p\in M)$ . Thus
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the proof of Theorem 1 is completed.

University of Tokyo.
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