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Let $G$ bc a topological group, $H$ a closed subgroup of $G,$ $p$ the natural
map of $G$ onto the left factor space $G/H$. $e$ will denote the identity of $G$ .
These notations $G,$ $H,$ $p,$ $e$ will keep these meanings throughout the paper.
(We can of course deal with the right factor space just as the left factor
space. So we limit ourselves on the consideration of the left factor space.
The terms like factor space, coset etc. without further qualification will always
mean left factor space, left coset etc. in the following.) A continuous map $f$

defined on a neighborhood $U$ of any point in $G/H$ with values in $G$ such that
$pf(x)=x$ for each $x\in U$, is called a local cross-section of $H$ in $G$ (cf. [7]). It
is known that $H$ has a local cross-section in $G$ , if $H$ is a compact Lie group
[1] or if $G$ is a locally compact finite-dimensional (separable metric) group
[4]. In this paper, we shall prove these facts by actually constructing local
cross-sections. These results will be thus proved by a unified method in a
simpler way than in the literature and we shall obtain another sufficient
condition for the existence of a local cross-section (see Theorem 2 below.).

As an application, we obtain a simple proof of a theorem on the dimensions
of factor spaces (Theorem 3).

1. The fundamental theorem.

We begin with the following lemma.
LEMMA 1. $H$ has a local cross-seclion in $G$ , if there exists a compact subset

$W$ of $G$ containing $e$ such that
1) $WH$ is a neighborhood of $e$ in $G$ ,
2) $W^{-1}W\cap H=\{e\}$ .

The converse is also true if $G$ is locally compact.
PROOF. Suppose that there exists a compact subset $W\ni e$ satisfying 1), 2).

Put $e^{*}=p(e),$ $U=p(W)$ , then $U$ is a neighborhood of $e^{*}$ by 1) and $p^{\prime}=p|W$ is
the one-to-one map of $W$ onto $U$ by 2). Since $W$ is compact, $p^{\prime}$ is topological
and the inverse map $f=p^{\prime-1}$ is a local cross-section. To prove the converse,
we can suppose without loss of generality that a local cross-section $f$ is defined
on a compact neighborhood $U$ of $e^{*}$ such that $f(e^{*})=e$ . Put $W=f(U)$ . $W$ is
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a compact set containing $e$ such that $WH$ is a neighborhood of $e$ . To prove
2), let $w_{1\underline{)}}^{-\iota_{w\in H,\ell v_{1}}}=f(u_{1}),$ $w_{2}=f(u_{2}),$ $u_{1},$ $u_{2}\in U$, then $p(w_{1})=p(w_{2})$ and so $u_{1}=u$ )

$i$ . $e$ . $ u)_{1}=\iota\iota$)
$c\downarrow$ . $e$ . $d$ .

In the following lve shall consider exclusively the case where $G$ is locally
compact. Under this condition, the existence of a local cross-section of $H$ in
$G$ is equivalent with that of $W$ satisfying the conditions of the above lemma.
So we may call $W$ itself a local cross-section of $H$ Then we can formulate
our fundamclltal theorem as follows.

’I’HEOPEM 1. Let $G$ be a locally compact group and $H$ a closed subgroup of
G. Then there exists an open subgroup $K$ of $G$ and a compact invariant sub-
group $Z$ of $K$ such that the factor group $K/Z$ is a Lie group, and if there
exists a compact cross-section of $H\cap Z$ in $Z$ then $H$ has a local cross-section in
$G$ .

PROOF. As $G$ is locally compact, there exists an open compact subgroup
$K^{\prime}$ in the factor group $G/G_{0}$ where $G_{0}$ is the component of $e$ . Let $K$ be the
complete inverse image of $K^{\prime}$ under the natural map $G\rightarrow G/G_{0}$ , then $K$ is an
open subgroup of $G$ . Since the component $K_{0}$ of $e$ in $K$ coincides with $G_{0}$ ,
$K/K_{0}$ is isomorphic to $K^{\prime}$ and hence compact. Consequently there exists an
arbitrarily small compact invariant subgroup $Z$ of $K$ such that $K/Z$ is a Lie
group ([5], p. 175).

Let $K^{*}$ denote the factor group $K/Z$ and $\pi$ the natural map of $K$ onto
$K^{*}$ . Moreover let $l\psi-H\cap K,$ $1\psi^{r}=\pi(1\psi)$ . $lM^{*}$ is a Lie group as a closed sub-
group of a Lie group $K^{*}$ . In $K^{*}$ choose $m$ one-parameter subgroups $(m=$

$\dim K^{*})$

$x_{1}^{X^{\prime}}\cdot(t),\cdots,$ $x_{n}^{*}(t),$ $x_{n+1}^{*}(t),\cdots,$ $ x_{m}^{*}(t);|t|\leqq\alpha$

which can be used as canonical coordinates of the second kind. We can
suppose here without loss of generality that

$x_{n+1}^{*}(t),\cdots,$ $ x_{m}^{*}(t);|t|\leqq\alpha$

generate a neighborhood of the identity $e^{*}$ in $M^{*}(m-n=\dim M^{*})$ . Then in
$K$ choose one-parameter subgroups $\{x_{i}(t);i=1,2,\cdots, n\}$ such that

$\pi x_{i}(t)=x_{i^{*}}(t);|t|\leqq\alpha,$ $i=1,2,\cdots,$ $n$ ([5], pp. 192).
Let

$V=\{x_{1}^{\aleph^{\prime}}\cdot(t_{1})x_{2}^{*}(t_{2})\cdots x_{m}^{*}(t_{m});|t_{j}|\leqq\alpha, i=1,2,\cdots, m\}$

which is a neighborhood of $e^{*}$ in $K^{*}$ . For every sufficient small positive
number $\beta,$ $W^{*-}$ $W^{*}\subset V$ where

$W^{*}=\{x_{1}^{*}(t_{1})x_{2}^{*}(t_{2})\cdots x_{n}^{*}(t_{n});|t_{i}|\leqq\beta, i=1,2,\cdots, n\}$ .
The set $W^{*}$ is a local cross-section of $M^{*}$ in $K^{*}$ and is covered by the com-
pact set
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$W=\{x_{1}(t_{1})x_{2}(t_{2})\cdots x_{n}(t_{n}) ; |t_{i}|\leqq\beta, i=1,2,\cdots, n\}$ .
Now suppose that the group $Z$ has a compact cross-section of $H\cap Zi$ . $e$ .

there is a compact subset $D$ containing the identity $e$ such that

$Z=D(H(\urcorner Z)$ and $D^{-1}D\cap(H\cap Z)=\{e\}$ .
Let $\tilde{W}=WD$ . Then $\tilde{W}$ is a local cross-section of $M$ in $K$.

In fact, it is obvious that $\tilde{W}$ is a compact set containing $e$ . Next from
the fact

$WMZ=WZM=WD(II\cap Z)M=\tilde{W}M$

it follows that $\tilde{W}Jt$ is a neighborhood of $e$ in $K$. Finally the condition
$\tilde{W}^{-1}\tilde{W}\cap 1\mathfrak{l}^{\prime}I=\{e\}$ is proved as follows.

If $\tilde{w}^{-1}\tilde{w}^{\prime}\in M,\tilde{w}=wd,\tilde{w}^{\prime}=w^{\prime}d^{\prime},$ $w,$ $w^{\prime}\in W,$ $d,d^{\prime}\in D$ , then $\pi(\tilde{w}^{-1}\tilde{w}^{\prime})=(\pi(w))^{-1}\pi(w^{\prime})$

$\in W^{*-1}W^{*}\cap M^{*}$ . And so $\pi(w)=\pi(u)^{\prime})$ . Let
$w=x_{1}(t_{1})x_{2}(l_{2})\cdots x_{n}(t_{n}),$ $ w^{\prime}=x_{1}(t_{1^{\prime}})\chi_{\lrcorner}\rangle$ $(t_{2}^{\prime})\cdots x_{n}(t_{n}^{\prime})$ ,

then
$x_{1}^{k}(t_{1})x_{2}^{*}(t_{2})\cdots x_{n}^{*}(t_{n})=x_{1}^{j\ltimes}(t_{1}^{\prime})x_{2}^{*}(t_{2}^{\prime})\cdots x_{n}^{*}(t_{n}^{\prime})$ .

Consequently it follows from the properties of canonical coordinates of the
W–second kind that $t_{1}=t_{1}^{\prime},$ $t_{2}=t_{2}^{\prime},\cdots,$ $t_{n}=l_{n}^{\prime}i$ . $e$ . $w=w^{\prime}$ . Therefore $\tilde{w}^{-1}\tilde{w}^{\prime}=d^{-1}d^{\prime}$

$\in D^{-1}D\subset Z$. Now $\tilde{w}^{-1}\tilde{w}^{\prime}\in M$ and so $\tilde{w}^{-1}\tilde{w}^{\prime}\in H\cap Z$. But since $D^{-1}D\cap(H\cap Z)=\{e\}$ ,
it follows that $\tilde{w}^{-1}\tilde{w}^{\prime}=e$ .

Finally (i7 is also a local cross-section of $H$ in $G$ , since $K$ is open in $G$

and $\tilde{W}^{-1}\tilde{W}$ is contained in $K$.

2. Applications.

We are going to make use of the above results to derive some conse-
quences on local cross-sections of subgroups and dimensions of factor spaces.

As the simplest case, suppose $H\cap Z$ is a direct factor of $Z$. Then the
condition of Theorem 1 is satisfied. The trivial case where $H$ is a direct
factor of $G$ , and the case where $H\cap Z=\{e\}$ or $Z$, are contained in this case.
If there are no arbitrarily small non-trivial subgroups in If, there is a $Z$

such that $H\cap Z=\{e\}$ and so $H$ has a local cross-section in $G$ . This gives an
extension of Gleason’s results so far as we are concerned with a locally com-
pact group $G$ . If all arbitrarily small subgroups of $G$ are in $H$, there is a $Z$

such that $H\cap Z=Z$. Moreover, when $Z$ is O-dimensional, the condition of
Theorem 1 is satisfied as will be shown below (although $H\cap Z$ is not always
the direct factor of $Z$ ). This contains the case where $G$ is a locally compact
finite-dimensional group.

In order to make free use of dimension theory it is assumed hereafter
that $G$ is separable metric.
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LEMMA 2. Let $Z$ be $a$ O-dimensional compact group, $X$ a closed subgroup

of Z. Then there is a cross-section of $X$ in $Zi$ . $e$ . there exists a compact set $Y$

containing $lhe$ identity $e$ such that $Z=YX$ and $Y^{-1}Y\cap X=\{e\}$ .
PROOF. $Z$ is the limit group of a countable number of finite groups $Z_{i}$

with the homomorphisms $\pi_{i}$ of $Z_{i+1}$ onto $Z_{i}$ . Let $p_{i}$ be the projection of $Z$ on
$Z_{i}$ . Let $X_{i}=p_{i}(X)$ . We choose now an element from each coset of $X_{1}$ in $Z_{1}$ ;
from $X_{1}$ we choose the identity $e_{1}$ ; and let $Y_{1}$ denote the set of the elements
of $Z_{1}$ thus chosen. It is obvious that $Z_{1}=Y_{1}X_{1},$ $Y_{1}^{-}$ $Y_{1}\cap X_{1}=\{e_{1}\}$ . In each
coset of $X_{2}$ in $Z_{2}$ there is an element which is mapped into $Y_{1}$ by $\pi_{1}$ . Choose
$s$ tlch an element from each coset of $X_{2}$ and from $X_{2}$ the identity $e_{2}$ , and let
$Y_{2}$ denote the set of the chosen elements. Then $Z_{2}=Y_{2}X_{2},$ $Y_{2}^{-1}Y_{2}\cap X_{2}=\{e_{2}\}$

and $\pi_{1}(Y_{2})=Y_{1}$ . Repeating this process we obtain finally a cross-section $\lim Y_{i}$

of X. q. e. $d$ .
Now we suppose that $G$ is a locally compact finite-dimensional group.

Then we can choose a O-dimensional group as $Z$ in Theorem 1, by the struc-
ture theorem on finite-dimensional compact groups ([6], p. 213). Therefore
the condition of Theorem 1 is satisfied. This gives us another proof of a
theorem first proved by Mostert [4].

Thus we obtain the following theorem as a corollary of Theorem 1.
THEOREM 2. Let $G$ be a locally compact group and $H$ a closed subgroup of

G. There is a local cross-section of $H$ in $G$ in each of the following cases:
1) $G$ is finite-dimensional,
2) there are no arbitrarily small non-trivial subgroups in $H$,
3) all arbitrarily small subgroups of $G$ are in $H$

As another application of Theorem 1, we give a simple proof of the fol-
lowing theorem which was first proved by Yamanoshita [8].

THEOREM 3. Let $G$ be a locally compact group, $H$ a closed subgroup of $G$ .
Then

$\dim G=\dim H+\dim G/H$ .
PROOF. If $G$ is infinite-dimensional, we can suppose without loss of gener-

ality that $G/H$ is finite-dimensional. Then the natural map $p$ of $G$ onto $G/H$

is a closed mapping on a compact neighborhood of any point in $G$ . So, if $H$

were finite-dimensional, then $G$ would be finite-dimensional ([3], pp. 92, 93).

Therefore $H$ is infinite-dimensional and the theorem holds.
If $G$ is finite-dimensional, we can choose a O-dimensional group as $Z$ and

there is a local cross-section $\tilde{W}$ of $H$ in $G$–here we use the same notation as
in the proof of Theorem 1. The image of $\tilde{W}=WD$ under $p$ is a compact
neighborhood in $G/H$ Let $U$ denote it. Since $p^{-1}(U)$ is homeomorphic to the
product space $H\times U$ ([7]), we have

$\dim G=\dim p^{-1}(U)=\dim(H\times U)=\dim(V\times WD)$ ,
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where $V$ is any compact neighborhood of any point in $H$ Now as a one-to-
one continuous image of a compact set, the euclidian cube $W^{*}$ is homeo-
morphic to $W$ and $WD$ is homeomorphic to $W\times D$ . On the other hand the
logarithmic law:

$\dim(A\times B)=\dim A+\dim B$

holds if $B$ is O-dimensional or if $A$ is compact and $B$ is l-dimensional ([2]).

Therefore
$\dim(V\times WD)=\dim(V\times W\times D)=\dim V+\dim(W\times D)$

$i$ . $e$ .
$\dim G=\dim V+\dim WD=\dim H-\vdash\dim(G/H)$ .

3. Groups without local cross-sections.

We see from Theorems 1 and 2 that, if there are no local cross-sections
of $H$ in a locally compact group $G$ , there must be arbitrarily small infinite-
dimensional compact subgroups $Z_{\nu}$ each having infinitely many points both in
$H$ and outside $H$ Moreover such $Z_{\nu}$ has no cross-sections of $H\cap Z_{\nu}$ .

After [7] (p. 33) there is an unpublished example of Hanner which pro-
vides a compact abelian group of infinite-dimension and a closed O-dimensional
subgroup without a local cross-section. The following is another example of
the same kind of groups.

EXAMPLE. Let $K$ be the direct product of infinitely many circle groups
$\{K_{\mu}\}$ . Let $D$ be a closed subgroup of $K$ such that the projection of $D$ under
the natural map $K\rightarrow K_{\mu}$ is a non-trivial finite group for infinitely many $\mu$ .
(Here we can give $D$ any dimension as we please.) Then $K$ is not locally
homeomorphic to the product space of $K/D$ and $D$ . Hence a local cross-
section of $D$ does not exist in $K$ (cf. [7]).

Gifu University.
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