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On Skolem’s theorem.

By Gaisi TAKEUTI

(Received Nov. 10, 1956)

In 1922, Th. Skolem proved the following famous theorem: If
there exists a model of any cardinal number for a system of axioms
(satisfying certain conditions), then there exists also a countable model
for the system. The aim of the present paper is to formulate and
prove a corresponding theorem from the finite stand point. Our
theorem reads as follows:

MAIN THEOREM. If A, B,C,D,E in Godel are consistent, then
A,B,C,D,E and the following axioms are consistent.

Vx3y(y S o\ f(y)=%)
VxVy(x:y""fo(x) =fo(y)) ’

where f, is a function, which is not contained in axioms A—FE, and
o has the same meaning as in Godel [2]

Our proof depends on results of our former paper [6], which,
in turn, is based on [8] In[8], we have generalized LK (Logistischer
klassischer Kalkiil) of Gentzen to GLC (Generalized logic calculus).
Especially we shall make use of the ¢restriction theory” (§7) of
In [6] we have treated in detail G'LC, a specialization of GLC, and
established the theorem: The fundamental conjecture holds for normal
proof-figure. (Both terms: ¢ fundamental conjecture” and ¢ normal

proof-figure ” are defined in [6]) We shall now call LK, a logical
system obtained from G'LC by restricting it as follows:
In every Y left on f-variable of the form

_ F(H), T4
YoF(p), '—4

F(a) is not allowed to have any Y on f-variable. And the beginning
sequence of LK is not allowed to have any logical symbol. We see

that every proof-figure of LK is normal (in the sense defined in [6).
Now we introduce two definitions in the system LK of Gentzen.
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DEFINITION 1. A formula in LK is called normal, if and only if
it is of the form Vx,.--Vx,F(x,,+-, x,), where F(x,---,x;) contains neither
Y nor 3.

DEFINITION 2. Let I', be a system of axioms in LK. We say
that I', satisfies the equality axioms (with regard to=), if and only if
the following condition is satisfied:

Let A(a) be an arbitrary formula in LK and any function or
any predicate contained in A(a) be also contained in I'. Then the
following sequences are probable

I'i—a=a
and
r,a=b—A(a)—A®).

Now, we have the following theorem.

THEOREM 1. Let I', be normal consistent axioms and salisfy the
equality axioms. Moreover, let the following axioms be provable under
r,.

11 VaVyle(x) \e(y)—x<<yVa=y\y<x)

L2 VaVyVae) \e(y) \e(@) Na<<y \y<z—x<2)
1.3 VaVy(e(x)—7 (x=y \x<y))
14 VaVylex) \e(y) \x<<y—x' <y\Vx'=Y)

1.5 YV x(e(x)—x<<x')

1.6 Vx(e(x)—0<<x\/0=x)

1.7 e(0)

1.8 Yx(e(x)—e(x'))

19 Vavy(e) )\e(y)—e(x+9))

1.10 Va(e(x)—x+0=x)

111 VaVyex) \e(y)—x+y =(x+y))

1.12 VaVylex) \e(y)—x+y=y+x)

113 VavyVz(e(x) \e(y) /\e@)—(x+y) +2=%+(¥+2))
1.14 YaVy(e®) Ae(y)—(x<<y— 3z(e(2) NO<<z\x+2=Y)))
115 VYxVy(e(x) Ae(y)—e(x-3))

1.16 Y x(e(x)—x+0' =x)

1.17 VxVyVze(x) \e(y) \Ne@)—(X+Y)+2=%+2+Y+2)
118 VaVy(e(x) \e(y)—x-y=y-x)

119  VavyVz(e(x) \e(y) \e(2)—(%-y)-2=%+(y+2))
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1.20  Vx(e(x)—e(g,(x) A e(g,(x)))

121 Vx(e(x)—j(&.(%), £,(*)) =%)

1.22° Yavy(e(x) N\e(y)—& (% 3) =%\ &(i(% ¥))=Y)
1.23 Vx(e(x)—g,(x) <<x)

1.24 Y@\ <x—g (x) <x)

1.25  VaVyle(x) Ne(») Ny <x—j(%,y)=%-%+Y)
126  Vavye®) Ne(WN*=y—j%y)=y-y+y+X)

Then, T', and the following axioms are consistent.

Vxg3x(e(y) Nfo(y)=x)
VaVy(x=y —fo(x)=Ffy(¥)) s

where f, is not contained in I,
Proor. By [7], we have only to prove that I', and the following
axioms are consistent.

21 Vx3y(e(y) \abz(x, y)

2.2 VxVyVz(abz(x, 2) \abz(y, 2)—x=y)

2.3 VaVyVz(abz(x, y) \y=z+—abz(x, 2))

24 VxVyVz(abz(y, x) \y=2z+—abz(z, %)),

where abz is not contained in I, (“abz” is taken from ¢“abzihlen”.

abz(x, y) will mean substantially, that ¢« y-th element is x”).
Now the above cited result of [6] assures that I'; is consistent in

LK. By the restriction theory of [8], we see, moreover that I'; and
VoVaVy(x=y+—(¢[x]—¢[y])) are consistent. Iy and VeVaxVy(x=y+—
- (p[x]—¢[y])) are shortly denoted by fo and we use the abbreviated

notation I'—4 for I'y, I'—4, and n(a) for Ye([0] A Yx(g[x]—e[¥'])—elal).
We have easily

— 7(0)
n(a) — n(a’)
n(a) — e(a)
e(@), a < b, n(b) — n(a)
n(a), n(b) — n(a+b)
n(a), n(b) — n(a-b)
n(a), n(b) — n(j(a, b)) .
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Let us now assume first that I') consists of a finite number of
axioms. Let- all the special variables and all the functions in I'; be
Sy sm’fJ(*n“” >ié1‘1)""afn(%n“': 9{éin); and let & be maX(in"':in)- In
utilizing g, g,,7, we can now construct easily the functions g\(a), -,

(@), ﬁao, @, -, a,) satisfying
e(a) — e(g,(@) \ .-+ )\ e(g:(@))
e(@y)s > e(@;) = e(j(@y > @)
e(a) — J(Z,(@)y -+ Bi(@) =@
e(@,), > €(@) = B H (@ @) =@, (r =0y, k)
e(a) > ga)=a)\g(a)<a)\--\g(a)<a
ea),V <a—gla)<a
(@), 1@) = n(3(@yy++ @) -
Let D(«, b) be defined to be
Vaex) \o<b+—
(2,(%) =0 =V y(a[x, y]— y=s5)))
N @) =1—Vy(a[x, y]—y=5,))

N (&%) =m — Y y(a[x, y]—y=5,,))
N (Z(x) =m+1—Vy(a[x, y]—
32, 32, (a2, (%), 2]\ -+ A lZ (%), 2, I Ny =F (2055 2))
N (&%) =m+n—Y y(a[r, y]—
2, 32, (QLZ®), 2\ -+ A LBy (00, 20, 1IN =FoZre1 20,))))
N (%) >m+n—Yy(afx, y]— y=S))) .
We see easily
D(a, b), D(8, ¢), n(b), n(c), d<b, d< ¢, e(d)
— Vy(ald, y]=5ld, ¥1)
D(«a, b), n(b), d< b, e(d)
— Jy(ald, y]) \YyVz(ald, y] \ald, 2]—y=2) .
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Moreover, we have easily
n(b) — JeD(¢, b) .

abz(c, b) is now defined to be #=(d) A Jo(D(e, b)) \¢[b, c]), and cl(c)
to be Jxabz(c,x). We see then

abz(c, b) — n(b)
abz(c, b) — e(b)
abz(c, b), abz(d, b) — c=d
n(b) — Jx abz(x, b)

— cl(s))

—cl(s,,)
abz(a,; b,),--+, abz(a; ,b; ) — abz(f (@, a; ), (7, byyeeey b)) .
Hence, we have
cl@,), -~ cla; ) — cl(f(ay @) (r=1,-,n)
Since %’ is f,(¥ -+ *fr) for suitable »(1,---,#), we see easily
n(a) — cl(a) .
Moreover, we have

Va(el(x)— 3y(e(y) \cl(y) )\ abz(x, ¥)))
VxVyVz(abz(y, x) \ abz(z, x)— y=2)
VxVyVz(x=y /\ abz(x, z)—abz(y, 2))
VaxVyVz(x=y )\ abz(z, x)—abz(z, y)) .

Therefore, by the restriction theory of [8], we have the desired result.

In case I’y contains an infinite number of axioms, suppose that
I', and 21—2.4 are not consistent. Then there exists a finite sub-
system I'y of I, such that I'! and 2.1—2.4 are not consistent, in con-
tradiction to what was proved.

By Hilbert-Bernays or Maehara and by theorem 1, we
have the following theorem.

THEOREM 2. Let I'y be consistent axioms salisfying the equalily

axioms under which 1.1—1.26 are provable. Then, I', and the following
axioms are consistent
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VYx3y(e(y) Afo(y)=x)
YaVy(x=y— f(2)=Ff(»),

where f, is not contained in I,

[13
L2]

L3]
[4]

L5]
6]
L7]

81

Our Main Theorvem is obviously a special case of this theorem.
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