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The problems of variation in the potential theory are of great
interest both in pure and applied mathematics. (Courant and Hilbert
[1], Bergman and Schiffer [2]) As far as the author knows, it is
scarce to construct an invariant theoretical method for variation of
differential form, when the metric of a Riemannian space is changed.
In short, it is a sort of variation problem of elliptic differential
equation, when its coefficients are changed.

The purpose of this paper is to make a beginning for such a
problem stated above, and the results obtained are quite formal as
yet. We shall confine ourselves only to conformal variation of the
metric of a Riemannian space.

Two kinds of variations, 6, and d,, are defined for an infinitesimal
conformal transformation of a domain with boundary. If either 9,
or 3, of a form is zero under the transformation, the norm of the
differential form is constant. In virture of this property, we shall
call 3, and 0, the covariant variations, after the covariant differen-
tiation in Riemannian space. They induce norm preserving trans-
formations in the Hilbert space of differential forms, if their covariant
variations are zero.

Although the local covariant variation §, of a differential form
at a point depends only on the variation of the metric at that point,
the global one d¢ depends on the variation of the metric in the whole
domain. Moreover, contrary to the local covariant variation, the
global one has a special property that if a differential form remains
harmonic (exact, derived) during the transformation, the global covariant
variation of the form is harmonic (exact, derived) also.

Since the domain under consideration has its boundary, the terms,
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harmonic, exact and derived, are understood in relative sense.

The bases of our discussions are the well-known theorems of
harmonic forms (theorems 1,2,3 and 4 in §0). is the
existence theorem of harmonic forms. (de Rham and Bidal [4], [6];
Duff and Sencer [6]) is the decomposition theorem of
forms. (Conner [3]) Theorems 3 and 4 are the characterization of
decomposed parts and it is an immediate consequence of theorems 1
and 2.

The author wishes to express his hearty thanks to Professor J.
Kanitani for his kind advices in this study.

Some unusual notations are used in this paper to denote the
covariant variations with 6, hence we shall compare the notations:

notations in this paper usual notations
A d
A\ —0
] —A

§0. Preliminaries.

This paragraph is devoted to explanations of notations and some
well-known results and theorems due to P. E. Conner [3], which are
somewhat modified for our use.

Let M be an n-dimensional orientable Riemannian space of C~
with the line element ds*=g;dx‘dx/, D be a bounded domain in M
with boundary B, which is the union of a finite number of disjoint
closed manifolds of class C=, i.e., we assume that D is a finite mani-
fold.

Let «, and 4, denote p-form A,-l...ipdxil...dxip and g-form Bil._.iquil

--.dxq defined on the neighbourhood of B-+D. (All functions are
assumed to be of class C= in the following.)
We shall abopt the following notations as usual

(0.1.1) = }1_, Ay 17,y diprienodin,

kl... kp ll o

(0.1.2) ahs=, ! ]’.defl. dxisdire-dxia.

q' kl"'}"p ll"'lq ,'1‘..,'1)]'1...

Now we shall define the multiplication \y of two forms « and g by
the following formula
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0.2) *(@/\B)=*8\/ *a .

Let D; denote the covariant differential operators and let IV, be
the components of the unit tangential covariant vector to B and N'
those of the outwards normal contravariant vector to B.

Put

(0.3.1) D=dx'D,,
(0.3.2) ra=DAa,
(0.3.3) va=xD\/«a,
(0.3.4) v=Ndx,
(0.8.5) La=vAa,
(0.3.6) Ta=x\/a.

Aa and va are usually denoted by da and —é&a respectively.
From (0.1), (0.2) and (0.8) we get the following identities at once

(0.4.1) *»va=(—1)*Arxa, vxa=(—1)txpx,
(0.4.2) *»Ta=(—1)*"1Lxa, Tra=(—1)Px1L«,
(0.4.8) AaA\B)=ra\B+(—1)Pa\AB,

(0.4.4) v(aV g)=va\ g+ (—1)"ra\/ V5,

(0.4.5) a=1Ta+TL1La,

(0.4.6) Lia=TTa=0,

(0.4.7) LT lLa=1«, TLTA=TA.

L Ta and T L« are usually called the normal and tangential parts
of a respectively. The operators L and T have invariant meaning
only on the boundary B. Let « and B be p-forms. It is easy to
prove that if a=p (on B),i.e., a=p for all dx tangential to B, then
La=_1p for all dx, and conversely. Hence 1L a= 17 isequivalent to
a=p4 (on B). Dually Ta=7Tp is equivalent to xa==x4 (on B).

Since if a=0 (on B) then Aa=0 (on B), it follows that

(0.5.1) if 1a=0, then 1Laa=0.
Dually
(0.5.2) if Ta=0, then Tva=0.

Put
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(0.6.1) SDa/\*ﬂ =(x-f),

where « and B are p-forms.
Put

fapep—iag,

where a and B are p-form and (p+1)-form respectively.
We have well-known formulae in our notations

(0.7.1) {as B} =(Lats B)+ (- Vh),

(0.7.2) {Va. f}=(Ava. )+ (Va-vh),

(0.7.8) {ae ABY=(LrAAB)+ (A VAR),

(0.7.4) {Vate By +{B+ra}=(0a+B)+ (L AB)+ (Vv h),
(0.7.5) (Vaea}+{a-pra}=(0a )+ (La Ad) +(Va-va) ,
where

(0.7.6) Da=(AV+vA)X.

D« is usually denoted by —Aa.
If 1a=0 or TB=0, then {«¢-p}=0; and if {«-p}=0 for all 3,
then La=0; and if {«a.p}=0 for all «, then T/2=0 by (0.6.2) and
We shall call
a form a such that Ara=0 (va=0) absolutely exact or closed (co-exact
or co-closed),
a form « such that a=ap (a=vp) abs. derived or homologous to zero
(co-derived or co-homologous to zero),
a form « such that 1L a=0 (Ta=0) relative (co-relative), _
a form « such that La=Ara=0 (Ta=va=0) rel. exact (rel. co-exact),
a form « such that a=Ap, L4=0(ax=vp, TF=0) rel. derived (rel.
co-derived),
From [0.5.1) and [(0.5.2) it follows that if « is rel. derived (co-
derived) then « is rel. (co-rel.).
Let us denote respectively
set of all p-forms by C%,

set of all rel. (co-rel.) p-forms by CQ(E’;),
set of all abs. exact (co-exact) p-forms by Z2(Z¢?),
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set of all abs. derived (co-derived) p-forms by B2(B?),

set of all rel. exact (co-exact) p-forms by Zi;(Zl;),

set of all rel. derived (co-derived) p-forms by B2(B?).
Put

zZinZr=H;, ZinZi=H,
Z'nZv—=Hb, ZinZi—H?.
Evidently H2=H?, H*=H?, and Ht~ H"?~ H»"? as vector spaces.

A p-form « in H?=H? may be called a rel. harmonic or abs.
co-harmonic form, it is characterized by

0.8) Ara=0, 1a=0, va=0.

A p-form « in H2=H? may be called an abs. harmonic or rel. co-
harmonic form, it is characterized by

0.8y va=0, Ta=0, Ara=0,

If the domain D is compact, i.e., the boundary is empty, the
above definitions of harmonic forms coincide with the ordinary defini-
tion of harmonic forms.

By [0.7.5), the equations [(0.8) and [(0.8Y are respeclively equivalent
to the following equations

(0.9) Oa=0, 1a=0, 1va=0;
0.9y da=0, Ta=0, TAa=0.

The following theorems are quite analogous to the theorems
which hold when the domain is compact. The theorems are proved
by P.E. Conner [3].

They may be also proved by the method of parametrics used by
Bidal and de Rham [4], [5] with some modifications under the condi-
tions that the domain D is bounded, i.e., B+ D is compact.

THEOREM 1. The equations

(0.10) nDf=«, 15=0, 1Lvp=0

are consistent, if and only if « is orthogonal to the space H,, i.e.,
(a+7)=0 for all y such that Or= 1r= 1Lvr=0.
The equations

(0.10) Of=a, TA=0, TAL=0
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are consistent, if and only if « is orthogonal to the space H,.

THEOREM 2.
(0.11) C,=B,®H,PB,,
(0.11y C,=B,DH,DB,.

We shall only deal with the decomposition in the following,
since [(0.11Y is dual to [0.11). Let Ha, Ka and La be the orthogonal

projections of « into H, B, and B, in turn. Analogously to the
theorems where the domain is compact, we see that the equations

(0.12.1) 08 =(E—H)a,
(0.12.2) 1L8=1vA=0,
(0.12.8) Hp=0

have the unique solution B for an arbitrarily given a, where E is the
unit operator. pJ is given by

(0.13) B=Ga
or B(x)=(G(x+3) - a())

where G(x-y) is Green’s form.

From and we have

(0.14) 1Ga=1vGa=0.

From (0.12), and we have also
(0.15.1) a=AvGa+Ha+vAGa,
(0.15.2) K=xAvG,

(0.15.8) L=v1G,

(0.15.4) E=H+K+L,

(0.15.5) 0G=(E-H).

It is easy to prove that

(0.16.1) AGa=Gra, if 1La=0,
(0.16.2) vGa=Gva,

(0.16.3) DGa=Goa, if La=1va=0.

We also have the following identities by the definitions of the opera-
tors H,K and L:
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(0.17.1) Knra=ara, if 1a=0,
(0.17.2) AKa=0,

(0.17.8) Kva=0,

(0.17.4) Lyva=va,

(0.17.5) vLa=0,

(0.17.6) Lra=0, if 1a=0,
(0.17.7) AHx=0,

(0.17.8) vHa=0,

(0.17.9) Hra=0, if ra=0,
(0.17.10) Hya=0,

(0.17.11) ODHa=0,

(0.17.12) Hoa=0, if 1va=0,
(0.17.13) 1Ka=0,

(0.17.14) LHa=0,

(0.17.15) 1La=1a.

The last is the consequence of

THEOREM 8. La is characterised by the equations

(0.18.1) La=v¢&,
(0.18.2) AVE= A,
(0.18.3) 1vé=_1a.

(That is, for arbitrarily given « there exists a ¢ satisfying [(0.18.2)
and [(0.18.8); v¢ is unique and it is equal to La.)
PrROOF. The equations AVEé= 1vEé=0 have the unique solution

vE=0 by [0.7.2), hence if [0.18.2) and [0.18.3) are consistent, V¢ is

unique. Put é=AGa.
rvE=nrvnaGa
=A0Ga
= A(E —H)a

=AX
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by [0-7.6), [0-15.5) and

1vVE=19vAGa= 1 La= 1L«

by (0.15.8) and [0.17.15)

véE=vAaGa=La.

Hence the theorem is proved.

From [0.18.2), we have at once

COROLLARY
(0.19) ALa=Aa.

We have analogously the following theorem:
THEOREM 4. K« is characterised by the equations

(0.18.1)y Ka=n¢,

(0.18.2y vaE=va,

(0.18.3y 1¢=0,
COROLLARY

(0.19y vKa=va.

§1. Local covariant variation under an infinitesimal con-
formal transformation.

Let
(1.1) vg;;=2ng;;

be an infinitesimal conformal transformation of the metric tensor g;,
where v denotes the variation and x is a function of C~. Tensor or
differential form with certain properties, e.g., harmonic form, may
change under the transformation, and its variation is denoted by wv.
(The variation of dx are zero.)
We have at once

1.2.1) vgii=—2ug",

(1.2.2) oN,=uN;,

(1.2.3) w=uy,

(1.2.4) viod=1va+pula, vTA=T0Xd—uTA,

(1.2.5) VAR, =AVQ,,
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(1.2.6) vxa,=x*[va,+ (n—2p)a,] ,
(1.2.7) VWA, =0, + (n—2p)Vua,—(n—2p+2)uva, .

We shall define an operator 9, by the formula

(1.8) o, =va,+Ma,,
where M is an operator defined by
(1.4) Ma,= (_Z_ —p) Uy

We shall call 6, the local covariant variation of a form «, and we
shall denote 0, by ’/ for simplicity.
Making use of (1.2), we have by direct calculations

(1.5.1) (xa) =xa ,

(1.5.2) (Lay=1a, (Tay=T1Td,

(1.5.8) (ra) =na! + Mra— rMa ,

(1.5.4) (vay =va' —Mva-+vMa,

(1.5.5) v B)=(a+ B)+(a+B),

(1.5.6) if La=0, then 1+ Ma=0,

(1.5.7) if Ta=0, then T Ma=0.

Let us define operators 0,A=x’ and §,v=v' by

(1.6.1) (Gr)ax=nra=(ra) —rd, i.e. (aa)=0a+rd,
(1.6.2) O Vya=v'a=(va)—-va, ie. (va)y=va+va

respectively. We shall call 9,4 and d,v the local covariant variations
of the operators A and v respectively.
It follows that

(1.7.1) Na=Mra—rMa ,
1.7.2) Va=—-Mva+vMa,
by [1.5.3), (1.5.4), and [1.6.2).

Following theorem 8 L, is characterized by the equations
(1.8) La=vé,
(1.9) AVE=A,
(1.10) 1VE=_1a.



The local and global covariant variations of differential forms. 29

Operating 5, on we have
NVEF AV E+AVE =Na+nal,
AVE = a—VE)+ () —V'E)
=(MA—rM) (a—E)+ Al —T'E)
=Mn(a—VE)— rAM(a—VE) + Al —'E)
=~ AM(ax—E)+ N (! —V'E);
(1.11) AVE =A[— M(a—vE) + (o' —V'E)],

by virtue of [1.6.1), (1.7.1) and [1.9).
Operating 0, on [(1.10), we have from [1.5.2) and [1.6.2)

AVIEL AVE =1L,
(1.12) L VE =1 (o) —V'E).

Since L (Vé—a)=0 by [(1.10), we have LM(ax—vE)=0 by (1.5.6).
Hence is equal to

(1.18) LVE =1 [—Ma—vE) + (o' —'E)].
and mean that
(1.14) V&' =L[ —M(a—vE)+(a/ —V'E)]

according to the theorem 8.
Let us write

(1.15) 0, Lya=L'a=(La) — Lo/,
then we get

L'oa+ Lo’ =v'é+v¢,

L'a=v'é+ve —La!
=L[—M(a—E)+ (&' —V'E)]+V'é— Lo/
=(E—L)yv'¢ — LM(a—v¢)
=(E—L)(—Mv +vM)é — LM(a—v¢)
= —(E—L)YMv¢ — LM(a—v¢)
= —(E-~L)MLa—LM(x—L«);

(1.16) L'oa=(—ML+2LML —LM)x,
by [(1.14), [1.7.2), [(0.17.4) and [1.8).
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According to theorem 4 Ka is characterized by the equations

(1.18) vAE=va,
(1.19) 1£=0.

Similarly to the above, we get
VIANELVNELINE =T a+-va,
VAE = (a— AE) +v(a! — A'E)
=(—Mv+vM) (a—nE)+v(d —1%€),

(1.20) VAE =V[M(a— AE)+ (! — A'E)],
by (1.6.2) and [1.18);
(1.21) 1&=0

by (1.19) and (1.5.2).
(1.20) and [1.21) mean that

(1.22) N =K[M(a—AE)+ (! — A'E)]
according to the theorem 4.

Put
(1.23) 0, K)x=Ka=(Ka) —-Kda,

and we get

Ko+ Ko'=A'E+ A&

Koa=nE+nE — Ka!
=NE+K[M(ax—AE)+ () — A'E)]— Ko!
=(E—K)(MA—-rM)é+KM(a—NE);

(1.24) Ka=(E—K)(Ma—aM)é+ KM(a—A£) .

Since 1L&=1Mc=0 by (1.5.6), it follows that KAMt=,rMt from
(0.17.1). Hence, from [1.24),

Ka=(E—-K)MKa+KM(ax—Ka),
(1.25) Koa=(MK—-2KMK+KM)x.
Since H+ K+ L=E, we have
(1.26.1) Hoa=—(K'+L)a=ML—-2LML+LM—MK+2KMK—-KM)«
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where
(1.26.2) Ha=Ha) —Ha'.
THEOREM b. The local covariant variations of the operators H, K

and L are given by (1.26), (1.25) and (1.16) respectively.
Making use of the identities

(1.27.1) HH=H, KK=K, LL=L,

(1.27.2) HK=KH=0,

(1.27.3) KL=LK=0,

(1.27.4) LH=HL=0,

(1.27.5) E=H+K+L,

we have

(1.28.1) H' =HH'+H'H,

(1.28.2) K'=KK' - K'K,

(1.28.3) LI'=LL'+L'L,

(1.28.4) HH' -+ KK +LL'=—-(HH+KK+LL),
(1.28.5) HH +KK'+ LL'=(KMH— HMK) + (KML — LMK)

+(HML—LMH),
from [(1.16), and (1.26).

§ 2. Global covariant variation under an infinitesimal con-
formal transformation.

Now let us define the global covariant variation 6, by the formula
0,00 =HoHa+ Ko, Ka+ Lo, Lo .

Its geometrical meaning is obvious: Project « to each of three spaces

H,B, and B,. Project each of local covariant variations of these pro-
jections to corresponding spaces once move. Sum of three projections is
the global covariant variation of «.

By [1.15), (1.28), (1.26) and [1.27.1), we have
2.1) da=0,0+(HH + KK'+LL ).

is equivalent to
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(2.2) d,a=0,a—(H'H+K'K+ L'L)x
by [(1.28.4).

From the definition we get
0,Ha=06(Ha)—(H'H+K'K+L'L)Ha
= (Ha)Y — H'Ha
=H'a+ Ha' — H' Ha
=H'«—HHa+ H[o a0 —(HH + KK’ + LL")a]
=(H'—-H'H-HH")a + Hj
by (1.27), and then from we get finally o, He=Ho,«. Similarly
we get 0, Ka=Ko,a and o La=Ls.
Hence we obtain
THEOREM 6. The operator 8, is commulative with the operations
H K and L.
Let us write d,a=¢&, (3,H)a=Ha=(Ha)—Hé&, ete., for simplicity.

We shall call 6 H the global covariant variation of the operator H,
ete.

In this terminology, theorem 6 is equivalent to

COROLLARY. The global covariant variations of the operators H, K
and L are zero.

THEOREM 7. If a is in C, (i.e., if a remains in C, during ilhe
transformation), then o« 1is in C, loo.

Proor. If « is in C,, it follows that 1 L'a=0 and LLL'a=0
by (0.17.15) and (1.5.6). From (2.1) we have

10,a= 10+ L(HH + KK'+LL"x
=10ua=1a,
since L. Ha= 1. Ka=0 by (0.17.13) and (0.17.14). On the other hand
1a=0 implies 1 a’'=0 by (1.5.2). Hence 10,0=0, and o, is in C,.
THEOREM 8. If « is in H, then é,a is in H,.
If a is in B, then d,a is in B,.
If a is in B, then 5,0 is in B,.
PrOOF. If « is in H,, then Ka=La=0. Hence
8 Ka=Ks,a=0, o, La=Ls,a=0,

by theorem 6. That is d,« isin H,. The others are similarly proved.
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THEOREM 9. v(a-B8)=(&-pB)+ (- f).
ProOF. Making use of (2.1) and (1.28.5), we get
(&-B)=('+B)+((HH'+ KK'+ LL )+ B)
=(a/+ )+ ((KMH—-HMK + KML— LMK+ HML —LMH)a- )
=('+ ) +(MHa- KB) — (MKea - HB) + (MLa - Kp)
—(MKa+ L)+ (MLa+HB)— (MHx - Lg)
= (a'+ §) + (Hat- MKB) — (Kct- MHp) + (L. - MKP)
—(Ka+ MLB) + (La+ MHpB) — (Hoe - MLB) ,
since (Ma-f)=(a» Mp), (Ha-p)=(a-Hp), ete. for arbitrarily given o
and A. Similarly
(s ) =(a+ ')+ (Ka - MHB) — (Hot - MKRB) + (Ko« ML)
—(La- MHB) -+ (Ha - MLB)— (Lo« MHP) .

From (L5.5) it follows that v(a.8)=(&-B)+ (- f).

COROLLARY. If &=[=0, then (a-p) is constant.
Because of the definition (2.2), we have

o (ra)=(ra) —(H'H+K'K+L'L)ra.

If L a=0, we get Harna=Lra=0 and Kara=aa from (0.17.1), (0.17.6)
and (0.17.9). Thus we get

dna=(ra) —K'ra

=ANa+rad —-K'ra.
According to the definition (2.1),

- a@,)=a[a'+(HH'+ KK'+ LL')a]=pa + AL
from [(0.17.7), [(0.17.2) and [0.19). Accordingly, if 1 a=0,
dpa—nd,a=pna—K'ra—nLlla
=(Mpr—2rM)a—(MK—-2KMK + KM) r«
—A(—ML+2LML— LM)«
=(KMnr—rML)x ,

by (L7.1), [1.25), [1.16), (0.17) and [0.19) Writing §(rq)—nd,a=Aa

for simplicity, we have
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(2.8) ra=(KMA—aML)a, if La=0.
Similarly we have

(2.4) va=(—LMv+vMK)a.
Since Da=(AvV+va)a, it follows that

Oa=(KMAY + AvMK— LMo —vAML
(2.5)
—2AM +2VMp)e,

if La=1va=0.
Operating 6, on the equations

(2.6.1) 0f=(E—H)a,
(2.6.2) 1A=0,

(2.6.3) 1vVpR=0,

(2.6.4) Hp=0,

we get

(2.7.1) 0f=(E—H)a—08,
(2.7.2) 14=0,

(2.7.8) LVE=—1VE,

since E=H =0, and by theorem 7.
The equations with boundary conditions (2.7) must be

consistent,

since (2.6) are consistent and (2.7) are the variations of (2.6). The

solution 4 is given by

(2.8) f=GUE—H)&—0B)+Gv8,

where G is an operator defined by the formula
G (a(3)- Glx, 9} = Ga(3) A Gz, 3)

On the other hand, by
(2.9) B=Ga.

Put (Ga)—Ga=CGa, it follows that
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(2.10) f=Ga+Gk.
Form and we have
Ga+Ga=G(E—H)a—0p)+Gvp
=Ga—Gop+Gv8,

since GH=0.

We get finally from
(2.11) Ga=—-GoGa+GvGa,
or

G=—-GuG+GvG.
THEOREM 10. The global covariant variation of the operator G is
given by (2.11).

For O-forms [Z.IT) reduces to G=—G0OG. Analogous result for
the ordinary variation of Green’s function is given by S. Bergman
and M. Schiffer [2] (Note that the infinitesimal transformation there
differs from our transformation.)

§ 3. Infinitesimal point transformation.

We shall call an infinitesimal point transformation
(3.1) X =x+&dl
is in domain D, if the contravariant vector & is tangential to the
boundary B at each point. The domain D remains unchanged as a
whole under this transformation in D. And the spaces of forms,
B,, H, and B, remain unchanged too.

Lie derivative Xg;; of the metric tensor g; for the transfor-
mation is given by

Xg,=¢;;+¢;; (Xdx'=0, by definition).

If the transformation is conformal, we have

ng‘j: 218, [7]

and we shall identify Xg;; with vg;; in [1.1), then we get the covariant
variations §(¢§) with respect to the transformation é.

If a form « is in H,, its global covariant variation §,(¢)a is also
in H, by theorem 8, and it is a linear combination of the independent
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generators «, in H, with constant coefficients. Let «; be a set of
independent generators of H, and let
5g(£)aZ:K/{La,u ’

where 4, z=1,---, R (R is the Betti number)

Let ¢i(@a=1,---,7) be the set of independent infinitesimal generators
of a conformal transformation group ¢ in D with structural coef-
fiicients C.,. It is well-known that

(8.2) (6w €1 =626~ 084 5= Cinél s
(3.3) Ca.C,+CLCE,+CLC=0. (a,b,¢c,d,e=1,-.,7)

The group & induces a homomorphic linear transformation group in
H, by the global covariant variation. The homomorphism requires
the condition

(3'4) Eg([fa? 56]) = 6g(£a)5g(6b) - Bg(fb)ag(fa) .
Putting
(3'5) ag(fa)all = K/ly‘aa,u ’

we have the necessary conditions between the constants C and K by

(3.5), and (3.2):

(3'6) KA’LaKuvb - KA'LbKuva = CsbKll‘c i
We shall put
(3'7) R/lvab = KAMaK/A“b - KR“bKuva ’

R is something analogous to the curvature temsor in Riemannian
space.

Let A} be the components of a tensor in H, with respect to the
generators «, and let A’ be the components of a tensor in the para-
meter space of group G at its identity element with respect to the
generators £,. It is easy to define a mixed tensor AS.

Since Betti group H, and the tangential vector space to the
parameter space at its identity element admit only homogeneous linear
transformations, we shall deal with tensors whose components are
constant, and coefficients of a linear connection can be taken for
components of a tensor.

Let us define covariant differentiation of a mixed tensor A%,
formally by the formula
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1 — A o _ o A2 _ (¢ A
Apa;b—“KabA/'za KpbAaa CabA;zc’

where K and C are taken for coefficients of a linear connection. But
if we take K and C for tensor, we have

o
Kl a;bﬁO ’

C —
ab;d—o .

by (8.3) and (8.6). It follows that

RAMab,c =0.

THEOREM 11. Covariant derivalive of the curvalure tensor defined

by (8.7) for a conformal transformalion group is zero.

The dual theorems for the decomposition (0.11Y can be obtained

similarly, since the local covariant varialion is commulalive with * by
(1.5.1). '

(17
£21]

(3]
[4]

5]
6]
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