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l.–Introduction.–The problem to determine the order $f(n)$ of
the free distributive lattice $FD(n)$ generated by $n$ symbols $\gamma_{1},$ $\cdots,$ $\gamma_{n}$

was first proposed by Dedekind, but very little is known about this
number [1, p. 146]. Only the first six values of $f(n)$ are computed,
and enumerations of further $f(n)$ appear to lie beyond the scope of
any reasonable methods known today. It might, however, be pointed
out that Morgan Ward, who found $f(6)$ by the help of computing
machines, stated [2] an asymptotic relation

$\log_{2}\log_{2}f(n)\sim n$

and that the present author proved in a previous note [3] that

$f(n)\equiv 0(mod 2)$ if $n=0(mod 2)$ .
An inspection of numerical results $f(n),$ $n\leqq 6$ suggests strongly

the following asymptotic equivalence

$(\star)$ $\log_{2}f(n)\sim\sqrt{\frac{2}{\pi}}2^{n}n^{-1}2^{-}$

The author cannot prove or disprove this interesting relation, but he
proves in the present paper that

$\sqrt{\frac{2}{\pi}}n-1-1_{-\log_{2}\sqrt{\frac{n\pi}{2}}(1+O(n^{-I}))}$

(Theorem 2), which in particular implies that for an $arbitr_{/}ary$ positive
constant $\delta$

$2^{\pi}n^{-1}z^{-\delta}<\log_{2}f(n)<2^{n}n^{-1}\tau^{+\delta}$

if $n$ is sufficiently large, and that
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$\log_{2}\log_{2}f(n)=n-\frac{1}{2}\log_{2}n+O(\log_{2}\log_{2}n)$

an improvement of Ward’s result, whereas our conjecture $(*)$ will
take the form

$\log_{2}\log_{2}f(n)=n-\frac{1}{2}\log_{2}n+(\frac{1}{2}-\frac{1}{2}\log_{2}\pi)+o(1)$ .

2.–Although the problem of Dedekind seems exceedingly difficult,
the lattice-theoretical version of the problem was completely solved by
Th. Skolem. (Cf. [1, pp. 145-6].) He has shown that if the greatest
element $I$ and the least element $O$ are adjoined, $FD(n)$ is simply iso-
morphic with $2^{z}$“. We assume in this paper that $I$ and $O$ are $con$.
tained in $F=FD(n)$ .

For the sake of brevity of notations we denote the two lattice
operations in $F$ in the ring.theoretical manner, $i$ . $e.$ , we write join as
a sum and meet as a product.

3.–The $ioin\cdot irreducible$ elements of $F$ are the products

$\sigma_{i}=\gamma_{k_{1}}\cdots\gamma_{k_{i}}$

of distinct generators. A product of $i$ distinct generators will be called
an i-simplex, the $0\cdot simplex$ being defined as $I$, the greatest element.
Now form sums from among these simplexes, then the totality of such
sums will constitute $F$ itself ([1, pp. 145-6]), the empty sum correspond-
ing to $O$ , the least element. We can moreover reduce the number of
summands in each sum to a minimum, by the absorptive law. A
reduced sum will be called a complex. $F$ is again identified with the
totality of complexes, but the correspondence is, this time, biunique.

A reduced sum $\xi_{i}$ tof i.simplexes will be called an i-cochain, the
empty sum being denoted by $O_{i}$ , the null $i\cdot cochain$ . Any complex $is_{-}$

a unique sum of cochains

$\xi=\xi_{0}+\xi_{1}+\cdots+\xi_{n}$ ,

the i.cochain $\xi_{i}$ here being called the i-th component of $\xi$ . If $\xi_{i}$ con-
sists of $a_{i}$ simplexes for $i=0,$ $\cdots,$ $n$ , we say that $\xi$ has the length type
$(a_{0}, \cdots, a_{n})$ . Then least integer $i$ such that $a_{i}>0$ will be called the
co-degree of $\xi$ , and dually the greatest integer $j$ with $a_{j}>0$ will be
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called its degree. The only element defficient of co.degree $or/and$ degree
is $O$ . We further define the i.th $co$ .segment $\xi^{(;)}$ and the i.th segment
$\xi_{(;)}$ of $\xi$ as the sum of the i-th components of $\xi$ such that $j<i$, or
$j>i$, respectively. Obviously $\xi=\xi^{(j)}+\xi_{i}+\xi_{(;)}$ .

4.–Let us define the coboundary operators $\nabla_{i}$ for $i=0,1,$ $\cdots,$ $n-1$

and the boundary operators $\Delta_{i}$ for $i=1,2,$ $\cdots,$ $n$ as follows.
$1^{o}$ . $\nabla_{i}\xi=\xi$ , unless $\xi$ has co.degree $i$.
$2^{0}$ . If $\xi$ is of co.degree $i$ and $\xi=\xi_{i}+\xi_{i+1}+\cdots$ then

$\nabla_{i}\xi=\nabla_{i}\xi_{i}+\xi_{i+1}+\cdots$

where $\nabla_{i}\xi_{i}$ is defined as the reduced sum of those $(i+1)\cdot simplexes$

which are incident with some i-simplex in $\xi_{i}$ . The $\Delta$; will be defined
dually.

LEMMA 1. $\nabla_{i}\xi$ and $\Delta_{i}\xi$ are reduced. This means that the sum
defined in $2^{o}$ . above is reduced already.

PROOF. We have only to consider the former case of $\nabla_{i}\xi$ . By $2^{0}$ .
the reduced property asserted would only be violated by possible inci $\cdot$

dence relations between an $(i+1)$ -simplex $\sigma_{i+1}^{\prime}$ in $\nabla_{i}\xi_{i}$ and some j-
simplex $\sigma_{j}$ in $\xi_{j}$ with $j>i$. The incidence must be $\sigma_{i+1}^{\prime}\geqq\sigma_{j}$ , but on
the other hand there should be an i-simplex $\sigma$; incident with, $i$ . $e$ . con-
taining, $\sigma_{i+1}^{\prime}$ . Then we would have $\sigma_{i}>\sigma_{j}$ , contrary to the reduced
hypothesis on $\xi$ .

LEMMA 2. For $1\leqq i\leqq n,$ $\nabla_{i-1}\cdots\nabla_{1}\nabla_{0}\xi^{(i)}$ contains exactly those
i.simplexes incident with some simplex in $\xi^{(i)}$, or with some simplex in
some component $\xi_{j}$ with $j<i$. Similarly, if $0\leqq i\leqq n-1,$ $\Delta_{i+1}\cdots\Delta_{n-1}\Delta_{n}\xi_{(i)}$

consists exactly of those i-simplexes which are incident with some
simplex in $\xi_{(i)}$ , or with some simplex in some component $\xi_{j}$ with $i>i$.
Moreover the expression

$\nabla_{i-1}\cdots\nabla_{0}\xi^{(i)}+\xi_{i}+\Delta_{i+1}\cdots\Delta_{n}\xi_{(t)}$

is reduced ( $i.e.$ , an i-cochain) for $1\leqq i\leqq n-1$ . Similarly

$\nabla_{n-1}\cdots\nabla_{0}\xi^{(n)}+\xi_{\hslash}$ and $\xi_{0}+\Delta_{1}\cdots\Delta_{n}\xi_{(0)}$

are reduced.
PROOF. The first part follows from the fact that any incidence

relation between an i-simplex $\sigma_{i}^{\prime}$ and a $j\cdot simplex\sigma_{j}$ gives rise to a
connected chain ([1, p. 11]). The second part follows from Lemma 1,
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if we note that $\nabla_{i}$ and $\Delta_{j}$ commute for $j-i>1$ .
5.–We state here, before beginning further investigations, several

numerical notations frequently used in the sequel.
$[x]$ is Gauss’ symbol denoting the least integer $\leqq x$ .
$c_{i}=\left(\begin{array}{llllll} & & & & & n\\ & & & & & i\end{array}\right),$ $d_{i}=c_{i+}\sqrt c_{j}$ . There will be no confusion as to $n$ , since we

use them for a fixed $FD(n)$ .
$A(a_{0}, \cdots, a_{n})$ denotes the number of elements of $F$ with the prescrib $\cdot$

ed length type $(a_{0}, \cdots, a_{n})$ .
$m=[\frac{n+1}{2}]$ . Hence $c_{m}$ is the greatest of the $c_{i}s$ .
$e=0$, or $=1$ , according as $n$ is even or odd. Hence $n=2m+e$ .
LEMMA 3. Suppose that $\xi$ has the length type $(a_{0}, \cdots, a_{n})$ with

$a_{0}=\ldots=a_{i-1}=0$ and denote by $(a_{\acute{0}}, \cdots, a_{n}^{\prime})$ the length type of $\nabla_{i}\xi$. Then

$a_{0}^{\prime}=\ldots=a_{i-1}^{\prime}=a_{i}^{\prime}=0$ , $a_{k}^{\prime}=a_{k}$ $(k>i+1)$ ,

$a_{i+1}^{\prime}\geqq a_{i+1}+d_{i}a_{i}$ ,

Similarly if $a_{j+1}=\ldots=a_{n}=0$, and if the length type of $\Delta_{j}\xi$ is denoted
by $(m, \cdots, \mathscr{K}_{n^{\prime}})$ , then

$a_{j^{\prime}}^{\prime}=a_{j^{\prime}+1}^{\prime}=\ldots=a_{n}^{\prime\prime}=0$ , $a_{l}^{\prime J}=a_{k}$ $(k<j-1)$ ,

$a_{j^{\prime}-1}^{\prime}\geqq a_{j-1}+\frac{1}{d_{j-1}}a_{j}$ .

PROOF. We need only to prove the first part of the Lemma, and
we may consider only the case when $\xi$ has co-degree $i,$ $i.e.,$ $a_{i}>0$.
Denote by $q$ the number of $(i+1)\cdot simplexes$ in $\nabla_{i}\xi$ . It is the number
of $(i+1)\cdot simplexes$ incident with $\xi_{j}$ , and

(1) $a_{i+1}^{\prime}=a_{i+1}+q$

by Lemma 1. Now each of the $a_{i}$ simplexes in $\xi_{i}$ contains exactly
$n-i(i+1)\cdot simplexes$ in $\nabla_{i}\xi_{i}$ . But no $(i+1)\cdot simplex$ is contained in
more than $i+1$ i.simplexes in $\xi_{i}$ , since any $(i+1)\cdot simplex$ is contained
in exactly $i+1$ i.simplexes in $F$. Comparing numbers of incidences we
have:

$(n-i)a_{i}\leqq(i+1)q$ , $q\geqq\frac{n-i}{i+1}a_{i}=d_{i}a_{j}$ ,
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which together with (1) proves the Lemma.
LEMMA 4. Denote by $(a_{0}, \cdots, a_{n})$ the length type of $\xi$. Then there

are at least
$c_{i}(\frac{a_{0}}{c_{0}}+\cdots+\frac{a_{n}}{c_{n}})$

$i\cdot simplexes$ inctdent with some simplex in $\xi$.
PROOF. Let $1\leqq i\leqq n-1$ and consider the sequence

$\xi^{(\oint)}=\nabla_{-1}\xi^{(i)},$ $\nabla_{0}\xi^{(\oint)},$ $\nabla_{1}\nabla_{0}\xi^{(;)},$
$\cdots,$

$\nabla_{i-1}\cdots\nabla_{0}\xi^{(\oint)}$

of complexes. Then $\nabla_{j-1}\cdots\nabla_{0}\xi^{(\oint)}$ has the length type

$(0, \cdots, 0, a_{j}^{*}, a_{j+J}, \cdots, a_{i-1},0, \cdots, 0)$

for $j<i$, with
$a_{j}^{*}\geqq a_{j}+d_{j-1}a_{j-1}^{*}$ , $a_{0}^{\star}=a_{0}$ ,

and the length type
$(0, \cdots, 0, a_{i^{*}}, 0, \cdots, 0)$

if $j=i$, where
$a_{i}^{*}\geqq d_{i-1}a_{i-1}^{*}$ .

It follows that
$ a_{i}^{*}\geqq d_{i-1}a_{i-1}^{\star}\geqq d_{i-i}(a_{i-1}+d_{i-2}a_{i-2}^{*})\geqq\cdots$

$\geqq d_{i-1}(a_{i-1}+d_{i-2}(a_{i-2}+\cdots+d_{1}(a_{1}+h\emptyset)\cdots ))$

$=d_{i-1}a_{i-1}+d_{i-1}d_{i-2}a_{i-2}+\cdots+d_{i-1}\cdots d_{1}a_{1}+d_{i-1}\cdots d_{1} $

$=c_{i}(\frac{a_{0}}{c_{0}}+\frac{a_{1}}{c_{1}}+\cdots+\frac{a_{i-1}}{c_{i-1}})$ .
Similarly $\Delta_{i+1}\cdots\Delta_{n}\xi_{(t)}$ has the length type

$(0, \cdots, 0, a_{i}^{**}, 0, \cdots, 0)$

with
$a_{i}^{**}\geqq\frac{a_{i+1}}{d_{i}}+\frac{a_{i+2}}{d_{i}d_{i+1}}+\cdots+\frac{a_{l}}{d_{i}\cdots d_{r-1}}$

$=c_{i}(\frac{a_{i+1}}{c_{i+1}}+\cdots+\frac{a_{n}}{c_{\hslash}})$ .
We know in Lemma 2 that the sum

$\nabla_{i-1}\cdots r_{0}\xi^{(;)}+\xi_{i}+\Delta_{i+1}\cdots\Delta_{n}\xi_{(t)}$
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is reduced and that this i.cochain consists of i.simplexes incident with
some simplex in $\xi$ . Hence there are at least

$c_{i}(\frac{a_{0}}{c_{0}}+\cdots+\frac{a_{i}}{c_{i}}+\cdots+\frac{a_{l}}{c_{n}})$

simplexes of that property in all.
The excluded extreme cases $i=n$ and $i=0$ may be treated in quite

an analogous way.

6.–An interesting function

$fl\xi)=\frac{a_{0}}{Q\}}+\cdots+\frac{a_{n}}{c_{\hslash}}$

of a complex in $F$ was found useful in the course of the proof above.
It was also proved by the way, that $P(\xi)\leqq 1$ for all complexes. Mak-
ing use of this function we restate Lemma 4 as

LEMMA 4’. If $\xi$ has the length type $(a_{0}, \cdots, a_{n})$ , then the number of
i-simplexes not incident with any simplex in $\xi$ is at most $[c_{i}(1-fl\xi))]$ .

7.–We are now in a position to give a Lemma usefull for evalua.
tion of $f(n)$

LEMMA 5. Let $0^{t},$ $1^{\prime},$

$\cdots,$
$n^{\prime}$ be a permutation of $0,1,$ $\cdots$ , $n$ . Then

$A(a_{0}, \cdots, a_{n})\leqq\left(\begin{array}{l}q)\prime\\ a_{0},\end{array}\right)([c_{1^{\prime}}(1-\frac{a_{0^{\prime}}}{c_{0^{\prime}}})]a_{1^{\prime}})\cdots([c_{n\prime}(1-\frac{a_{0^{\prime}}}{c_{0^{\prime}}}\cdots\frac{a_{(\sim-1)J}}{c_{(n-1)}})]a_{n\prime})$

PROOF. We dispose to select first $a_{J}$, 0’.simplexes, then $a_{1},1^{r_{-}}$

simplexes, and so on, so as to obtain a complex of the length type
$(a_{0}, \cdots, a_{u})$ . There are $obviously\left(\begin{array}{l}c_{0^{\prime}}\\a_{0},\end{array}\right)$ ways of choosing $a_{0^{\prime}}0^{\prime}\cdot simplexes$ .
Suppose we have selected a 0’.cochain $\xi_{0},$ , containing $a_{0^{\prime}}$ O’-simplexes.
We are to select $a_{1^{\prime}}$ l’-simplexes not incident with $\xi_{0^{J}}$ . Since by Lemma
4’ there are at most $[c_{1^{J}}(1-P(\xi_{0^{\prime}}))]=[c_{1^{\prime}}(1-a_{0},/c_{0^{\prime}})]$ such simplexes in
all, the number of choices of $\xi_{1^{\prime}}$ , containing $a_{1^{\prime}}1^{\prime}$ -simplexes not incident
with $\xi_{0^{\prime}}$ is at most

$\left(\begin{array}{ll}[c_{1^{\prime}}(1- & a_{0^{\prime}}/c_{0^{\prime}})]\\a_{1}, & \end{array}\right)$ .
Now suppose we have selected $\xi_{0^{\prime}}$ and $\xi_{1^{J}}$ already. Then we are to
select a $\xi_{2^{\prime}}$ containing $a_{2^{\prime}}2^{\prime}\cdot simplexes$ not incident with $\xi_{0^{J}}+\xi_{1^{J}}$ . Since
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for any choice of $\xi_{0^{\prime}},$ $\xi_{1^{\prime}}$ ,

$P(\xi_{0^{\prime}}+\xi_{1^{\prime}})=\frac{a_{0^{\prime}}}{c_{0}}+\frac{a_{1^{\prime}}}{c_{1}}$

this stage of choosing $\xi_{2^{\prime}}$ is quite similar as that of $\xi_{1^{\prime}}$ above. The
same procedure is feasible at each stage of choosing $\xi_{i^{\prime}}$ , and hence the
number of choices of a complex of length type $(a_{0}, \cdots, a_{n})$ does not
exceed the right-hand member of Lemma 5.

LEMMA 6. Let $0^{\prime},$ $1^{\prime},$

$\cdots,$
$n^{\prime}$ be a permutation of $0,1,$ $\cdots,$ $n$ and put

$c_{i},=c_{i}^{\prime}(i=0,1, \cdots, n)$ . Then $f(n)$ does not exceed

$((\cdots((1^{1!n}+1)^{\acute{u}/c_{n-1}^{\prime}}+1)^{\iota_{\#-1}^{\prime}}+1)^{c_{n-1}^{\prime}\gamma c_{\acute{n}-2}}’\cdots+1)^{c_{1}^{\prime}/c_{0}^{\prime}}+1)^{c_{0}^{\prime}}$ .
PROOF. Lemma 5 shows that $f(n)$ does not exceed the sum of

the right.hand side of that Lemma, extended over all non $\cdot$ negalive
solution of
(2) $a_{0}/c_{0}+\cdots+a_{n}/c_{n}\leqq 1$

(Cf. \S 6). Let us evaluate this sum. The summation is made first on
$a_{n^{\prime}}=a_{r}^{\prime}$ , then on $a_{(n-1)^{\prime}}=a_{n-1}^{\prime}$ and so on. Fixing $a_{0^{\prime}}=a_{0}^{t},$

$\cdots,$
$a_{n-1}^{\prime}$, the

sum of the last factor of our summand, extended over $a_{n}^{\prime}$ is

(3)
$2^{[c_{n}^{\prime}(1-a_{0}^{\prime}/c_{0}^{\prime}-}$

$-a_{n-1}^{\prime}[c_{n-1}^{\prime})]$

which does not exceed

(4)
$2^{c_{n}^{\prime}(1-a_{0}^{\prime}/c_{0}^{\prime}-\cdots-a_{n-1}^{J}/c_{n-1}^{\prime})}$ .

The next summation on $a_{\alpha-1}^{\prime}$ of the $next- to- the\cdot last$ factor of our sum.
mand, multiplied by (4), yields, after eliminating Gauss’ symbol, as
was done on (3) to get (4),

$2^{c_{n}^{\prime}(1-a_{0}^{\prime}[c_{0}^{\prime}-\cdots-a_{\alpha-1}^{\prime}/\iota_{n-2}^{\prime})}(1+2^{-c_{n}^{\prime}[c_{n-\iota}^{\prime}})^{c_{n-\iota}^{\prime}(1\gamma[c_{n-2}^{\prime})}-a_{0}^{\prime}c_{0}^{\prime}-\cdots-a_{n-2}^{\prime}$

$=(2^{c_{n}^{\prime}[c_{n-\iota}^{\prime}}+1)^{c_{n-\iota}^{\prime}(1-a_{0}^{\prime}[c_{0}^{\prime}-\cdots-a_{n-2}^{\prime}/c_{n-2}^{\prime})}$ .
Continuing this process we find that $f(n)$ is majorated by the number
given in Lemma 6.
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8.–It is convenient to make use of the following function

$F_{u}(x)=(x^{1/u}+1)^{u}$ , $u>0,$ $x>0$

to express the number obtained above.
LEMMA 6’. $f(n)<F_{c_{0}^{\prime}}F_{c_{1}^{\prime}}\cdots F_{c_{n}^{\prime}}(1)$

for any permutation $0^{\prime},$ $1^{\prime},$

$\cdots,$
$n^{\prime}$ of $0,1,$ $\cdots,$ $n$ .

Note that this function is monotone increasing in $x$, and that

(5) $F_{u}^{2}(x)=F_{u}F_{u}(x)=(x^{1J_{lt}}+2)^{i}$ .
It is interesting to find a permutation minimizing the function given
in Lemma 6’.

LEMMA 7. If $u>v>0,$ $x>0$ then

$F_{u}F_{v}(x)>F_{v}F_{u}(x)$ .
It follows that

$F_{c_{0}^{\prime}}F_{c_{1}^{\prime}}\cdots F_{c_{n}^{\prime}}(1)$

is minimum if
$c_{0^{\prime}}\leqq c_{1^{J}}\leqq\cdots\leqq c_{n\prime}$ ,

ex. gr., $\iota f0^{\prime},$ $1^{\prime},$

$\cdots,$

$n^{\prime}$ is the permutation

$m,$ $m+1,$ $m-1,$ $m+2,$ $m-2,$ $\cdots,$ $n-1,1,$ $n,$ $0$

where $m=[\frac{n+1}{2}]$ .
PROOF. We prove the first part only. From the identities

$F_{ut}(x)=(F_{t}(x^{1/u}))^{u}$ , $F_{ut}(x^{u})=(F_{t}(x))$“

follows that
$F_{u}F_{v}(x)=F_{u}(F_{v/v}(x^{1/u})^{u})=F_{1}F_{v\gamma u}(x^{1/u}))^{u}$ ,

$F_{v}F_{u}(x)=F_{v}(F_{1}(x^{1/u})^{u})=(F_{v/u}F_{1}(x^{1/u}))$“.

Thus our assertion is equivalent to

$F_{t}F_{1}(x)<F_{1}F_{t}(x)$ for $1>t>0,$ $x>0$ ,

a special case of the Lemma for $u=1$ . This is again equivalent to

$F_{t}(x+1)<F_{t}(x)+1$ ,
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or
$((x+1)^{1/t}+1)^{t}<(x^{1\int t}+1)^{t}+1$ .

The last one is nothing but the well-known Minkowski’s Inequality
(dimension 2, metric $l_{1\gamma t}$ ). Thus the Lemma was proved.

The minimum found above is

$F_{c_{0}}^{2}F_{c}^{2_{1}}\cdots F_{c_{m-1}}^{2}F_{c_{m}}(1)$

or
$F_{c}^{2_{0}}F_{c}^{2_{1}}\cdots F_{c}^{2_{m-1}}F_{c^{2_{n}}}(1)$

according as $n$ is even or odd. By using $e$ of \S 5 and by (5) we have
THEOREM 1. The order $f(n)$ of $FD(n)$ does not exceed

$(\cdots((e+2)^{d_{m}-2}+2)^{d_{m- 3}}+\cdots+2)^{do}+2$ ,

where $m=[\frac{n+1}{2}],$ $n=2m+e$ , and $d_{i}=c_{i+1}/c_{i}$ .

9.–We now proceed to study asymptotic behaviour of the number
presented in Theorem 1.. It lies between

$(b^{\prime}\sqrt{n})^{c_{m}}$ and $(b\sqrt{n})^{Cm}$

with some absolute $cons^{\backslash }tantsb$‘ and $b$ . We will, however, prove only
the majorating inequality (Theorem 2 below).

Let us write for the moment

(6) $G_{u}(x)=x^{u}+2$ $(x>1, u>1)$ .
Then the number in Theorem 1 is written as
(7) $G_{d_{0}}G_{d_{1}}\cdots G_{d_{m-2}}(e+2)$ .
Note that all appearing $d’ s$ are $>1$ . Now it is obvious that

$G_{u}(x)<(x+2/u)^{u}$ for $x>1,$ $u>1$ .
Thus (7) is majorated by

$(e+2+2/d_{m-2}+2/d_{m-2}d_{m-3}+\cdots+2/d_{m-2}\cdots d_{0})^{d_{m^{-}2}\cdot\cdot do}$

$=(e+2+2c_{m-2}/c_{m-1}+2c_{m-3}/c_{m-1}+\cdots+2c_{\mathfrak{a}}/c_{m-1})^{c_{m}-1}$
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$=(e+\frac{2}{c_{m- 1}}\sum_{i-0}^{\prime n-1}\urcorner c_{i})c_{m-1}$

$<(\frac{2}{c_{m-1}}\sum_{i-0}^{m-1}c_{i}+\frac{1}{2}(e+1)c_{m})^{c_{Jn-1}}=(2^{n}/c_{m-1})^{c_{m-1}}$ .

We have thus obtained a very simple

LEMMA 8. $f(n)<(\frac{2^{\hslash}}{c_{m-1}})^{c_{m-1}}$ .

10.–By Stirling’s formula we have

(8) $c_{n-1}=\sqrt{\frac{2}{\pi}}2n^{-1}(1+O(n^{-1}))$ ,

and we obtain by Lemma 8

$f(n)<(\sqrt{\frac{\pi}{2}}^{1}n^{F}(1+O(n^{-1}))^{c,n-1}$ .
This again together with (7) implies that

$\log_{2}f(n)<\sqrt{\frac{\pi}{2}}2^{nl}n^{-1}\log_{2}\sqrt{\frac{n\pi}{2}}(1+O(n^{-1}))$ .

On the other hand it is almost trivial that

(9) $2^{c_{m-1}}\leqq f(n)$ .
In fact $2^{\iota_{n-1}}’-1$ is the number of non $\cdot$void (m-l).cochains, and the
n-cochain $\sigma_{n}$ is never counted in it. Now (9) together with (7) yields

$\log_{2}f(n)\geqq c_{m-1}=\sqrt{\frac{2}{\pi}}2^{nF}n^{-1}(1+O(n^{-1}))$ .

It might hereby be pointed out that Ward’s asymptotic relation
$\log_{2}\log_{2}f(n)\sim n$

follows from (9) and a more trivial inequality

$f(n)\leqq 2^{2^{\hslash}}$

Thus we have finally proved
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THEOREM 2.

$\sqrt{\frac{2}{\pi}}2^{n^{-1}}n^{2}(1+O(n^{-1}))<\log_{2}f(n)<\sqrt{\frac{2}{\pi}}\Sigma$ .

COROLLARY 1. Let $\delta>0$ be an arbitrary constant. Then
$2^{n}n^{-*-8}<\log_{2}f(n)<2^{n}n^{-*+\delta}$ ,

if $n$ is sufficiently large.

COROLLARY 2. $\log_{2}\log_{2}f(n)=n-\frac{1}{2}\log_{2}n+O(\log_{2}\log_{2}n)$ .
11.–Concluding Remark.–As was observed at the beginning

of \S 9, we cannot drop the term $O(\log_{2}\log_{2}n)$ in the last formula, if
we start from Theorem 1. It is desirable to find a more accurate
evaluations for $A(a_{0}, \cdots, a_{n})$ and $f(n)$ . It seems likely that only those
$A(a_{0}, \cdots, a_{n})$ with

$\frac{a_{0}}{c_{0}}+\cdots+\frac{a_{n}}{c_{n}}$ very near to $\frac{1}{2}$

make significant contributions to $f(n)$ , as is suggested by the Central
Limit Theorem in the theory of probability.
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