Logarithmic order of free distributive lattice

By Koichi Yamamoto

(Received March 9, 1954)
1.-Introduction.-The problem to determine the order $f(n)$ of the free distributive lattice $F D(n)$ generated by n symbols $\gamma_{1}, \cdots, \gamma_{n}$ was first proposed by Dedekind, but very little is known about this number [1, p. 146]. Only the first six values of $f(n)$ are computed, and enumerations of further $f(n)$ appear to lie beyond the scope of any reasonable methods known today. It might, however, be pointed out that Morgan Ward, who found $f(6)$ by the help of computing machines, stated [2] an asymptotic relation

$$
\log _{2} \log _{2} f(n) \sim n
$$

and that the present author proved in a previous note [3] that

$$
f(n) \equiv 0(\bmod 2) \quad \text { if } \quad n \equiv 0(\bmod 2)
$$

An inspection of numerical results $f(n), n \leqq 6$ suggests strongly the following asymptotic equivalence

$$
\begin{equation*}
\log _{2} f(n) \sim \sqrt{\frac{2}{\pi}} 2^{n} n^{-\frac{1}{2}} \tag{*}
\end{equation*}
$$

The author cannot prove or disprove this interesting relation, but he proves in the present paper that

$$
\sqrt{\frac{2}{\pi}} 2^{n} n^{-\frac{1}{2}}\left(1+O\left(n^{-1}\right)\right)<\log _{2} f(n)<\sqrt{\frac{2}{\pi}} 2^{n} n^{-\frac{1}{2}} \log _{2} \sqrt{\frac{n \pi}{2}}\left(1+O\left(n^{-1}\right)\right)
$$

(Theorem 2), which in particular implies that for an arbitrary positive constant δ

$$
2^{n} n^{-\frac{1}{2}-\delta}<\log _{2} f(n)<2^{n} n^{-\frac{1}{2}+\delta}
$$

if n is sufficiently large, and that

$$
\log _{2} \log _{2} f(n)=n-\frac{1}{2} \log _{2} n+O\left(\log _{2} \log _{2} n\right)
$$

an improvement of Ward's result, whereas our conjecture (*) will take the form

$$
\log _{2} \log _{2} f(n)=n-\frac{1}{2} \log _{2} n+\left(\frac{1}{2}-\frac{1}{2} \log _{2} \pi\right)+o(1) .
$$

2.-Although the problem of Dedekind seems exceedingly difficult, the lattice-theoretical version of the problem was completely solved by Th. Skolem. (Cf. [1, pp. 145-6].) He has shown that if the greatest element I and the least element O are adjoined, $F D(n)$ is simply isomorphic with $2^{2 n}$. We assume in this paper that I and O are contained in $F=F D(n)$.

For the sake of brevity of notations we denote the two lattice operations in F in the ring-theoretical manner, i. e., we write join as a sum and meet as a product.
3.-The join-irreducible elements of F are the products

$$
\sigma_{i}=\gamma_{k_{1}} \cdots \gamma_{k_{i}}
$$

of distinct generators. A product of i distinct generators will be called an i-simplex, the 0 -simplex being defined as I, the greatest element. Now form sums from among these simplexes, then the totality of such sums will constitute F itself ([1, pp. 145-6]), the empty sum corresponding to O, the least element. We can moreover reduce the number of summands in each sum to a minimum, by the absorptive law. A reduced sum will be called a complex. F is again identified with the totality of complexes, but the correspondence is, this time, biunique.

A reduced sum ξ_{i} of i-simplexes will be called an i-cochain, the empty sum being denoted by O_{i}, the null i-cochain. Any complex is a unique sum of cochains

$$
\xi=\xi_{0}+\xi_{1}+\cdots+\xi_{n},
$$

the i-cochain ξ_{i} here being called the i-th component of ξ. If ξ_{i} consists of a_{i} simplexes for $i=0, \cdots, n$, we say that ξ has the length type (a_{0}, \cdots, a_{n}). Then least integer i such that $a_{i}>0$ will be called the co-degree of ξ, and dually the greatest integer j with $a_{j}>0$ will be
called its degree. The only element defficient of co-degree or/and degree is O. We further define the i-th co-segment $\xi^{(i)}$ and the i-th segment $\xi_{(i)}$ of ξ as the sum of the j-th components of ξ such that $j<i$, or $j>i$, respectively. Obviously $\xi=\xi^{(i)}+\xi_{i}+\xi_{(i)}$.
4.-Let us define the coboundary operators ∇_{i} for $i=0,1, \cdots, n-1$ and the boundary operators Δ_{i} for $i=1,2, \cdots, n$ as follows.
1°. $\nabla_{i} \xi=\xi$, unless ξ has co-degree i.
2°. If ξ is of co-degree i and $\xi=\xi_{i}+\xi_{i+1}+\cdots$ then

$$
\nabla_{i} \xi=\nabla_{i} \xi_{i}+\xi_{i+1}+\cdots
$$

where $\nabla_{i} \xi_{i}$ is defined as the reduced sum of those $(i+1)$-simplexes which are incident with some i-simplex in ξ_{i}. The Δ_{i} will be defined dually.

Lemma 1. $\nabla_{i} \xi$ and $\Delta_{j} \xi$ are reduced. This means that the sum defined in 2°. above is reduced already.

Proof. We have only to consider the former case of $\nabla_{i} \xi$. By 2°. the reduced property asserted would only be violated by possible incidence relations between an ($i+1$)-simplex σ_{i+1}^{\prime} in $\nabla_{i} \xi_{i}$ and some j simplex σ_{j} in ξ_{j} with $j>i$. The incidence must be $\sigma_{i+1}^{\prime} \geqq \sigma_{j}$, but on the other hand there should be an i-simplex σ_{i} incident with, i. e. containing, σ_{i+1}^{\prime}. Then we would have $\sigma_{i}>\sigma_{j}$, contrary to the reduced hypothesis on ξ.

LEMMA 2. For $1 \leqq i \leqq n, \nabla_{i-1} \cdots \nabla_{1} \nabla_{0} \xi^{(i)}$ contains exactly those i-simplexes incident with some simplex in $\xi^{(i)}$, or with some simplex in some component ξ_{j} with $j<i$. Similarly, if $0 \leqq i \leqq n-1, \Delta_{i+1} \cdots \Delta_{n-1} \Delta_{n} \xi_{(i)}$ consists exactly of those i-simplexes which are incident with some simplex in $\xi_{(i)}$, or with some simplex in some component ξ_{j} with $j>i$. Moreover the expression

$$
\nabla_{i-1} \cdots \nabla_{0} \xi^{(i)}+\xi_{i}+\Delta_{i+1} \cdots \Delta_{n} \xi_{(i)}
$$

is reduced (i. e., an i-cochain) for $1 \leqq i \leqq n-1$. Similarly

$$
\nabla_{n-1} \cdots \nabla_{0} \xi^{(n)}+\xi_{n} \quad \text { and } \quad \xi_{0}+\Delta_{1} \cdots \Delta_{n} \xi(0)
$$

are reduced.
Proof. The first part follows from the fact that any incidence relation between an i-simplex σ_{i}^{\prime} and a j-simplex σ_{j} gives rise to a connected chain ([1, p. 11]). The second part follows from Lemma 1,
if we note that V_{i} and Δ_{j} commute for $j-i>1$.
5.-We state here, before beginning further investigations, several numerical notations frequently used in the sequel.
$[x]$ is Gauss' symbol denoting the least integer $\leqq x$.
$c_{i}=\binom{n}{i}, d_{i}=c_{i+1} / c_{i}$. There will be no confusion as to n, since we use them for a fixed $F D(n)$.
$A\left(a_{0}, \cdots, a_{n}\right)$ denotes the number of elements of F with the prescribed length type (a_{0}, \cdots, a_{n}).
$m=\left[\frac{n+1}{2}\right]$. Hence c_{m} is the greatest of the c_{i} 's.
$\varepsilon=0$, or $=1$, according as n is even or odd. Hence $n=2 m+\varepsilon$.
Lemma 3. Suppose that ξ has the length type $\left(a_{0}, \cdots, a_{n}\right)$ with $a_{0}=\cdots=a_{i-1}=0$ and denote by $\left(a_{0}^{\prime}, \cdots, a_{n}^{\prime}\right)$ the length type of $\nabla_{i} \xi$. Then

$$
\begin{gathered}
a_{0}^{\prime}=\cdots=a_{i-1}^{\prime}=a_{i}^{\prime}=0, \quad a_{k}^{\prime}=a_{k} \quad(k>i+1), \\
a_{i+1}^{\prime} \geqq a_{i+1}+d_{i} a_{i}
\end{gathered}
$$

Similarly if $a_{j+1}=\cdots=a_{n}=0$, and if the length type of $\Delta_{j} \xi$ is denoted by $\left(a_{0}^{\prime \prime}, \cdots, a_{n}^{\prime \prime}\right)$, then

$$
\begin{gathered}
a_{j}^{\prime \prime}=a_{j+1}^{\prime \prime}=\cdots=a_{n}^{\prime \prime}=0, \quad a_{k}^{\prime \prime}=a_{k} \quad(k<j-1), \\
a_{j-1}^{\prime \prime} \geqq a_{j-1}+\frac{1}{d_{j-1}} a_{j}
\end{gathered}
$$

Proof. We need only to prove the first part of the Lemma, and we may consider only the case when ξ has co-degree i, i. e., $a_{i}>0$. Denote by q the number of ($i+1$)-simplexes in $\nabla_{i} \xi$. It is the number of $(i+1)$-simplexes incident with ξ_{i}, and

$$
\begin{equation*}
a_{i+1}^{\prime}=a_{i+1}+q \tag{1}
\end{equation*}
$$

by Lemma 1. Now each of the a_{i} simplexes in ξ_{i} contains exactly $n-i(i+1)$-simplexes in $\nabla_{i} \xi_{i}$. But no ($i+1$)-simplex is contained in more than $i+1 i$-simplexes in ξ_{i}, since any $(i+1)$-simplex is contained in exactly $i+1 i$-simplexes in F. Comparing numbers of incidences we have :

$$
(n-i) a_{i} \leqq(i+1) q, \quad q \geqq \frac{n-i}{i+1} a_{i}=d_{i} a_{i}
$$

which together with (1) proves the Lemma.
Lemma 4. Denote by $\left(a_{0}, \cdots, a_{n}\right)$ the length type of ξ. Then there are at least

$$
c_{i}\left(\frac{a_{0}}{c_{0}}+\cdots+\frac{a_{n}}{c_{n}}\right)
$$

i-simplexes incident with some simplex in ξ.
Proof. Let $1 \leqq i \leqq n-1$ and consider the sequence

$$
\xi^{(i)}=\nabla_{-1} \xi^{(i)}, \nabla_{0} \xi^{(i)}, \nabla_{1} \nabla_{0} \xi^{(i)}, \cdots, \nabla_{i-1} \cdots \nabla_{0} \xi^{(i)}
$$

of complexes. Then $\nabla_{j-1} \cdots \nabla_{0} \xi^{(i)}$ has the length type

$$
\left(0, \cdots, 0, a_{j}^{*}, a_{j+1}, \cdots, a_{i-1}, 0, \cdots, 0\right)
$$

for $j<i$, with

$$
a_{j}^{*} \geqq a_{j}+d_{j-1} a_{j-1}^{*}, \quad a_{0}^{*}=a_{0},
$$

and the length type

$$
\left(0, \cdots, 0, a_{i}^{*}, 0, \cdots, 0\right)
$$

if $j=i$, where

$$
a_{i}^{*} \geqq d_{i-1} a_{i-1}^{*} .
$$

It follows that

$$
\begin{aligned}
a_{i}^{*} & \geqq d_{i-1} a_{i-1}^{*} \geqq d_{i-i}\left(a_{i-1}+d_{i-2} a_{i-2}^{*}\right) \geqq \cdots \\
& \geqq d_{i-1}\left(a_{i-1}+d_{i-2}\left(a_{i-2}+\cdots+d_{1}\left(a_{1}+d_{0} a_{0}\right) \cdots\right)\right) \\
& =d_{i-1} a_{i-1}+d_{i-1} d_{i-2} a_{i-2}+\cdots+d_{i-1} \cdots d_{1} a_{1}+d_{i-1} \cdots d_{1} d_{0} a_{0} \\
& =c_{i}\left(\frac{a_{0}}{c_{0}}+\frac{a_{1}}{c_{1}}+\cdots+\frac{a_{i-1}}{c_{i-1}}\right) .
\end{aligned}
$$

Similarly $\Delta_{i+1} \cdots \Delta_{n} \xi_{(i)}$ has the length type

$$
\left(0, \cdots, 0, a_{i}^{* *}, 0, \cdots, 0\right)
$$

with

$$
\begin{aligned}
a_{i}^{* *} & \geqq \frac{a_{i+1}}{d_{i}}+\frac{a_{i+2}}{d_{i} d_{i+1}}+\cdots+\frac{a_{n}}{d_{i} \cdots d_{n-1}} \\
& =c_{i}\left(\frac{a_{i+1}}{c_{i+1}}+\cdots+\frac{a_{n}}{c_{n}}\right) .
\end{aligned}
$$

We know in Lemma 2 that the sum

$$
\nabla_{i-1} \cdots \nabla_{0} \xi^{(i)}+\xi_{i}+\Delta_{i+1} \cdots \Delta_{n} \xi_{(i)}
$$

is reduced and that this i-cochain consists of i-simplexes incident with some simplex in ξ. Hence there are at least

$$
c_{i}\left(\frac{a_{0}}{c_{0}}+\cdots+\frac{a_{i}}{c_{i}}+\cdots+\frac{a_{n}}{c_{n}}\right)
$$

simplexes of that property in all.
The excluded extreme cases $i=n$ and $i=0$ may be treated in quite an analogous way.
6.-An interesting function

$$
P(\xi)=\frac{a_{0}}{c_{0}}+\cdots+\frac{a_{n}}{c_{n}}
$$

of a complex in F was found useful in the course of the proof above. It was also proved by the way, that $P(\xi) \leqq 1$ for all complexes. Making use of this function we restate Lemma 4 as

Lemma 4^{\prime}. If ξ has the length type $\left(a_{0}, \cdots, a_{n}\right)$, then the number of i-simplexes not incident with any simplex in ξ is at most $\left[c_{i}(1-P(\xi))\right]$.
7.-We are now in a position to give a Lemma usefull for evaluation of $f(n)$

Lemma 5. Let $0^{\prime}, 1^{\prime}, \cdots, n^{\prime}$ be a permutation of $0,1, \cdots, n$. Then

$$
A\left(a_{0}, \cdots, a_{n}\right) \leqq\binom{ c_{0^{\prime}}}{a_{0^{\prime}}}\left(\left[\begin{array}{c}
\left.\left.c_{1^{\prime}}\left(1-\frac{a_{0^{\prime}}}{c_{0^{\prime}}}\right)\right]\right) \cdots\left(\left[c_{n^{\prime}}\left(1-\frac{a_{0^{\prime}}}{c_{0^{\prime}}} \cdots \frac{a_{(n-)^{\prime}}}{c_{1^{\prime}}}\right)\right]\right) \\
a_{\left.n^{\prime}-1\right)^{\prime}}
\end{array}\right]\right)
$$

Proof. We dispose to select first $a_{3}, 0^{\prime}$-simplexes, then $a_{1}, 1^{\prime}$ simplexes, and so on, so as to obtain a complex of the length type $\left(a_{0}, \cdots, a_{n}\right)$. There are obviously $\binom{c_{0^{\prime}}}{a_{0^{\prime}}}$ ways of choosing $a_{0^{\prime}} 0^{\prime}$-simplexes. Suppose we have selected a 0^{\prime}-cochain ξ_{0}, containing $a_{0}, 0^{\prime}$-simplexes. We are to select $a_{1}, 1^{\prime}$-simplexes not incident with $\xi_{0^{\prime}}$. Since by Lemma 4^{\prime} there are at most $\left[c_{1^{\prime}}\left(1-P\left(\xi_{0^{\prime}}\right)\right)\right]=\left[c_{1}\left(1-a_{0^{\prime}} / c_{0^{\prime}}\right)\right]$ such simplexes in all, the number of choices of ξ_{1}, containing $a_{1^{\prime}} 1^{\prime}$-simplexes not incident with $\xi_{0^{\prime}}$ is at most

$$
\binom{\left[c_{1^{\prime}}\left(1-a_{0^{\prime}} / c_{0^{\prime}}\right)\right]}{a_{1^{\prime}}}
$$

Now suppose we have selected $\xi_{0^{\prime}}$ and $\xi_{1^{\prime}}$ already. Then we are to select a $\xi_{2^{\prime}}$ containing $a_{2^{\prime}} 2^{\prime}$-simplexes not incident with $\xi_{0}+\xi_{1}$. Since
for any choice of $\xi_{0^{\prime}}, \xi_{1^{\prime}}$,

$$
P\left(\xi_{0^{\prime}}+\xi_{1^{\prime}}\right)=\frac{a_{0^{\prime}}}{c_{0^{\prime}}}+\frac{a_{1^{\prime}}}{c_{1^{\prime}}}
$$

this stage of choosing $\xi_{2^{\prime}}$ is quite similar as that of $\xi_{1^{\prime}}$ above. The same procedure is feasible at each stage of choosing $\xi_{i^{\prime}}$, and hence the number of choices of a complex of length type (a_{0}, \cdots, a_{n}) does not exceed the right-hand member of Lemma 5.

Lemma 6. Let $0^{\prime}, 1^{\prime}, \cdots, n^{\prime}$ be a permutation of $0,1, \cdots, n$ and put $c_{i^{\prime}}=c_{i}^{\prime}(i=0,1, \cdots, n)$. Then $f(n)$ does not exceed

$$
\left.\left(\left(\cdots\left(\left(1^{1 / c_{n}^{\prime}}+1\right)^{c_{n}^{\prime} / c_{n-1}^{\prime}}+1\right)^{c_{n-1}^{\prime}}+1\right)^{c_{n-1}^{\prime} / c_{n-2}^{\prime}} \cdots+1\right)^{c_{1}^{\prime} / c_{0}^{\prime}}+1\right)^{c_{0}^{\prime}}
$$

Proof. Lemma 5 shows that $f(n)$ does not exceed the sum of the right-hand side of that Lemma, extended over all non-negative solution of

$$
\begin{equation*}
a_{0} / c_{0}+\cdots+a_{n} / c_{n} \leqq 1 \tag{2}
\end{equation*}
$$

(Cf. §6). Let us evaluate this sum. The summation is made first on $a_{n^{\prime}}=a_{n}^{\prime}$, then on $a_{(n-1)^{\prime}}=a_{n-1}^{\prime}$ and so on. Fixing $a_{0^{\prime}}=a_{0}^{\prime}, \cdots, a_{n-1}^{\prime}$, the sum of the last factor of our summand, extended over a_{n}^{\prime} is

$$
\begin{equation*}
2^{\left[c_{n}^{\prime}\left(1-a_{0}^{\prime} / c_{0}^{\prime}-\cdots-a_{n_{-1}}^{\prime} / c_{n-1}^{\prime}\right)\right]} \tag{3}
\end{equation*}
$$

which does not exceed

$$
\begin{equation*}
2^{c_{n}^{\prime}\left(1-a_{0}^{\prime} / c_{0}^{\prime}-\cdots-a_{n-1}^{\prime} / c_{n-1}^{\prime}\right)} \tag{4}
\end{equation*}
$$

The next summation on a_{n-1}^{\prime} of the next-to-the-last factor of our summand, multiplied by (4), yields, after eliminating Gauss' symbol, as was done on (3) to get (4),

$$
\begin{aligned}
2^{c_{n}^{\prime}\left(1-a_{0}^{\prime} / c_{0}^{\prime}-\cdots-a_{n-1}^{\prime} / c_{n-2}^{\prime}\right)}\left(1+2^{-c_{n}^{\prime} / c_{n-1}^{\prime}}\right)^{c_{n-1}^{\prime}\left(1-a_{0}^{\prime} / c_{0}^{\prime}-\cdots-a_{n-2}^{\prime} / c_{n-2}^{\prime}\right)} \\
=\left(2^{c_{n}^{\prime} / c_{n-1}^{\prime}}+1\right)^{c_{n-1}^{\prime}\left(1-a_{0}^{\prime} / c_{0}^{\prime}-\cdots-a_{n-2}^{\prime} / c_{n-2}^{\prime}\right)}
\end{aligned}
$$

Continuing this process we find that $f(n)$ is majorated by the number given in Lemma 6.
8.-It is convenient to make use of the following function

$$
F_{u}(x)=\left(x^{1 / u}+1\right)^{u}, \quad u>0, x>0
$$

to express the number obtained above.
Lemma $6^{\prime} . \quad f(n)<F_{c_{0}^{\prime}} F_{c_{1}^{\prime}} \cdots F_{c_{n}^{\prime}}(1)$
for any permutation $0^{\prime}, 1^{\prime}, \cdots, n^{\prime}$ of $0,1, \cdots, n$.
Note that this function is monotone increasing in x, and that

$$
\begin{equation*}
F_{u}^{2}(x)=F_{u} F_{u}(x)=\left(x^{1 / u}+2\right)^{u} . \tag{5}
\end{equation*}
$$

It is interesting to find a permutation minimizing the function given in Lemma 6.

Lemma 7. If $u>v>0, x>0$ then

$$
F_{u} F_{v}(x)>F_{v} F_{u}(x)
$$

It follows that

$$
F_{c_{0}^{\prime}} F_{c_{1}^{\prime}} \cdots F_{c_{n}^{\prime}}(1)
$$

is minimum if

$$
c_{0^{\prime}} \leqq c_{1^{\prime}} \leqq \cdots \leqq c_{n^{\prime}}
$$

ex. gr., if $0^{\prime}, 1^{\prime}, \cdots, n^{\prime}$ is the permutation

$$
m, m+1, m-1, m+2, m-2, \cdots, n-1,1, n, 0
$$

where $m=\left[\frac{n+1}{2}\right]$.
Proof. We prove the first part only. From the identities

$$
F_{u t}(x)=\left(F_{t}\left(x^{1 / u}\right)\right)^{u}, \quad F_{u t}\left(x^{u}\right)=\left(F_{t}(x)\right)^{u}
$$

follows that

$$
\begin{aligned}
& \left.F_{u} F_{v}(x)=F_{u}\left(F_{v / v}\left(x^{1 / u}\right)^{u}\right)=F_{1} F_{v / u}\left(x^{1 / u}\right)\right)^{u}, \\
& F_{v} F_{u}(x)=F_{v}\left(F_{1}\left(x^{1 / u}\right)^{u}\right)=\left(F_{v / u} F_{1}\left(x^{1 / u}\right)\right)^{u}
\end{aligned}
$$

Thus our assertion is equivalent to

$$
F_{t} F_{1}(x)<F_{1} F_{t}(x) \quad \text { for } \quad 1>t>0, x>0
$$

a special case of the Lemma for $u=1$. This is again equivalent to

$$
F_{t}(x+1)<F_{t}(x)+1
$$

or

$$
\left((x+1)^{1 / t}+1\right)^{t}<\left(x^{1 / t}+1\right)^{t}+1
$$

The last one is nothing but the well-known Minkowski's Inequality (dimension 2, metric $l_{1 / t}$). Thus the Lemma was proved.

The minimum found above is

$$
F_{c_{0}}^{2} F_{c_{1}}^{2} \cdots F_{c_{m-1}}^{2} F_{c_{m}}(1)
$$

or

$$
F_{c_{0}}^{2} F_{c_{1}}^{2} \cdots F_{c_{m-1}}^{2} F_{c_{m}}^{2}(1)
$$

according as n is even or odd. By using ε of $\S 5$ and by (5) we have
Theorem 1. The order $f(n)$ of $F D(n)$ does not exceed

$$
\left(\cdots\left((\varepsilon+2)^{d_{m}-2}+2\right)^{d_{m}-3}+\cdots+2\right)^{d_{0}}+2
$$

where $m=\left[\frac{n+1}{2}\right], n=2 m+\varepsilon$, and $d_{i}=c_{i+1} / c_{i}$.
9.-We now proceed to study asymptotic behaviour of the number presented in Theorem 1. It lies between

$$
\left(b^{\prime} \sqrt{n}\right)^{c_{m}} \quad \text { and } \quad(b \sqrt{n})^{c_{m}}
$$

with some absolute constants b^{\prime} and b. We will, however, prove only the majorating inequality (Theorem 2 below).

Let us write for the moment

$$
\begin{equation*}
G_{u}(x)=x^{u}+2 \quad(x>1, u>1) \tag{6}
\end{equation*}
$$

Then the number in Theorem 1 is written as

$$
\begin{equation*}
G_{d_{\bullet}} G_{d_{1}} \cdots G_{d_{m-2}}(\varepsilon+2) \tag{7}
\end{equation*}
$$

Note that all appearing d 's are >1. Now it is obvious that

$$
G_{u}(x)<(x+2 / u)^{u} \quad \text { for } \quad x>1, u>1
$$

Thus (7) is majorated by

$$
\begin{aligned}
& \left(\varepsilon+2+2 / d_{m-2}+2 / d_{m-2} d_{m-3}+\cdots+2 / d_{m-2} \cdots d_{0}\right)^{d_{m-2} \cdots d_{0}} \\
= & \left(\varepsilon+2+2 c_{m-2} / c_{m-1}+2 c_{m-3} / c_{m-1}+\cdots+2 c_{0} / c_{m-1}\right)^{c_{m-1}}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\varepsilon+\frac{2}{c_{m-1}} \sum_{i=0}^{m-1} c_{i}\right) c_{m-1} \\
& <\left(\frac{2}{c_{m-1}} \sum_{i=0}^{m-1} c_{i}+\frac{1}{2}(\varepsilon+1) c_{m}\right)^{c_{m-1}}=\left(2^{n} / c_{m-1}\right)^{c_{m-1}}
\end{aligned}
$$

We have thus obtained a very simple
Lemma 8.

$$
f(n)<\left(\frac{2^{n}}{c_{m-1}}\right)^{c_{m-1}}
$$

10.-By Stirling's formula we have

$$
\begin{equation*}
c_{m-1}=\sqrt{\frac{2}{\pi}} 2^{n} n^{-\frac{1}{2}}\left(1+O\left(n^{-1}\right)\right), \tag{8}
\end{equation*}
$$

and we obtain by Lemma 8

$$
f(n)<\left(\sqrt{\frac{\pi}{2}} n^{\frac{1}{2}}\left(1+O\left(n^{-1}\right)\right)^{c_{m-1}}\right.
$$

This again together with (7) implies that

$$
\log _{2} f(n)<\sqrt{\frac{\pi}{2}} 2^{n} n^{-\frac{1}{2}} \log _{2} \sqrt{\frac{n \pi}{2}}\left(1+O\left(n^{-1}\right)\right)
$$

On the other hand it is almost trivial that

$$
\begin{equation*}
2^{c_{m-1}} \leqq f(n) \tag{9}
\end{equation*}
$$

In fact $2^{c_{m-1}}-1$ is the number of non-void ($m-1$)-cochains, and the n-cochain σ_{n} is never counted in it. Now (9) together with (7) yields

$$
\log _{2} f(n) \geq c_{m-1}=\sqrt{\frac{2}{\pi}} 2^{n} n^{-\frac{1}{2}}\left(1+O\left(n^{-1}\right)\right)
$$

It might hereby be pointed out that Ward's asymptotic relation

$$
\log _{2} \log _{2} f(n) \sim n
$$

follows from (9) and a more trivial inequality

$$
f(n) \leqq 2^{2^{n}}
$$

Thus we have finally proved

Theorem 2.

$\sqrt{\frac{2}{\pi}} 2^{n} n^{-\frac{1}{2}}\left(1+O\left(n^{-1}\right)\right)<\log _{2} f(n)<\sqrt{\frac{2}{\pi}} 2^{n} n^{-\frac{1}{2}} \log _{2} \sqrt{\frac{n \pi}{2}}\left(1+O\left(n^{-1}\right)\right)$.
Corollary 1. Let $\delta>0$ be an arbitrary constant. Then

$$
2^{n} n^{-\frac{1}{2}-\delta}<\log _{2} f(n)<2^{n} n^{-\frac{1}{2}+\delta}
$$

if n is sufficiently large.
Corollary 2. $\quad \log _{2} \log _{2} f(n)=n-\frac{1}{2} \log _{2} n+O\left(\log _{2} \log _{2} n\right)$.
11.-Concluding Remark.-As was observed at the beginning of $\S 9$, we cannot drop the term $O\left(\log _{2} \log _{2} n\right)$ in the last formula, if we start from Theorem 1. It is desirable to find a more accurate evaluations for $A\left(a_{0}, \cdots, a_{n}\right)$ and $f(n)$. It seems likely that only those $A\left(a_{0}, \cdots, a_{n}\right)$ with

$$
\frac{a_{0}}{c_{0}}+\cdots+\frac{a_{n}}{c_{n}} \quad \text { very near to } \frac{1}{2}
$$

make significant contributions to $f(n)$, as is suggested by the Central Limit Theorem in the theory of probability.

Kyushu University

References

[1] Garrett Birkhoff : Lattice Theory, 1949 New York.
[2] Morgan Ward: Abstract 52-5-135, Bull. Amer. Math. Soc., 52 (1946), 423.
[3] Koichi Yamamoto: Note on the order of free distributive lattices, Sci. Rep. Kanazawa Univ., 2 (1953), 5-6.

ERRATA

Symmetrization and univalent functions in an annulus.
This Journal Vol. 6, no. 1, pp. 55-67
By Tadao Kubo
p.60, 1.12 from bottom: for "R.E. Goodman", read "A. W. Goodman"
p. 66, 1. 4 from bottom: for " Goodman, R.E.", read " Goodman, A. W."

