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On algebraic group varieties.
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Let G be a linear algebraic group of dimension ». We propose to
study the brational type of G as an algebraic variety, i. e. the structure
of the field R(G) of rational functions on G. In his “ Traité d’analyse ”
(vol. 3, p. 550), E. Picard shows that it is possible to express the co-
ordinates of a point of G as rational functions of » parameters. The
proof depends however on the basic field of the group being that of
complex numbers; moreover, it is not proved that the parametric re-
presentation one obtains is proper (i.e. that a given point of the group
corresponds in general to only one system of values of the parameters).
In other words, the proof shows that R(G) is contained in a purely
transcendental extension of transcendence degree » of the basic field,
but not that it is itself purely transcendental.

In this paper, we shall prove that, for any basic field (of characte-
ristic 0), the field R(G) is contained in some purely transcendental
extension of transcendence degree » of the basic field. We shall also
-establish that, when the basic field is algebraically closed, R(G) is itself
purely transcendental, while, if the basic field is arbitrary, it may
happen that R(G) is not purely transcendental.

In what follows, we denote by G an irreducible algebraic group
of dimension » composed of automorphisms of a finite dimensional
vector space V over a field K of characteristic 0; we denote by g the
Lie algebra of G.

I. A reduction of the problem.

Let n be the largest ideal of g composed of nilpotent endomorphisms
of V ({11 V, th. 3, 2). Then we have a direct sum decomposition
g=n+b+3 of g with the following properties: b is an algebraic abelian
subalgebra of the radical of ¢ whose elements are semi-simple; 8 is a
semi-simple subalgebra of g whose elements commute with those of b
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(1] V, prop. 5, 4). We set a=b+8; a is therefore a reductive algebra
of center 0. Since 8 is semi-simple, it is algebraic ([1], 1V, cor. to
prop. 9, 2); it follows that a is algebraic ([1], II, th. 14, 14). The re-
presentation of g on V induces a semi-simple representation of a ([1],
IV, th. 4, 4).

Since the elements of 1 are nilpotent, u is algebraic ([1], V, prop.
14, 3). Let N and A be the irreducible algebraic groups of automor-
phisms of V whose Lie algebras are n and a respectively. We propose
to prove that any se G may be written in one and only one way in
the form na, with ne N, ac A.

Let (Vi=V,V3,---, V;,,={0}) be a Jordan-Holder sequence for the
representation space V of g; thus, each V; is mapped into itself by the
operations of g, and V;_/V; is the space of a simple representation p;
of g. Since G is irreducible, V; is mapped into itself by the operations
of G ([1] IIL cor. 1 to th. 1); thus, V;_,/V; is the space of a repre-
sentation P; of G; P; is simple and rational, and its differential is p;
([1], III, lemma 3). Let P be the Cartesian product of the representa-
tions P; (1 <{<h); this is a rational representation of G whose differ-
ential is the Cartesian sum p of the representations p;. Let ¥ (resp.:
o) be the representation of G (resp.: g) on the space V (i. e. the identity
mapping of G (resp.: g) into the set of endomorphisms of V). Then
we shall see that p and o induce equivalent representations of a. Since
o induces a semi-simple representation of a, there exists for each 7 a
subspace W; of V;_ ; which is mapped into itself by the operations of
a and which is supplementary to V; in V;_,,(1<i<h). If Xea, let
pi(X) be the restriction of X to W;; then the representation of a in-
duced by p; is obviously equivalent to p;. On the other hand, V'is the
direct sum of the spaces W,,---, W, ; the representation of a induced
by o is therefore equivalent to the Cartesian sum of the representations
p: (1 =<7 =< h), which is itself equivalent to p. More precisely, let J; be
the isomorphism of W; with V;_,/V; induced by the natural mapping
of V;.; onto V;_,/V;; denote by U the product of the spaces V;_,/V;
(1 < i< h)—i. e. the space of the representation p—and by J the isomor-
phism of V with U defined by J(w,+ --+wp)=1 wy, -, Jn-ws)
(w; e W;, 1<i<h). Then, for Xea, we have p(X)=JXJ L. It
follows that, for any ae A, P(a)=JaJ ! The group P(A)=JAJ! is
therefore the irreducible algebraic group of automorphisms of U whose
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Lie algebra is p(a) (it will be observed that, in general, if P’ is a
rational representation of A, P’(A) need not be an algebraic group).
Now, we observe that p(n)={0} (1], V, Th. 3, 2), whence p(g)=p(a).
It follows that P(G) is contained in the irredusible algebraic group
whose Lie algebra is p(a),i.e. in JAJ '=P(A); since A<G, we have
P(G)=P(A).

Now, let N’ be the kernel of the representation P of G. Then N’
is the group of elements se G such that, for any ¢(1<:< %) and
any xe V;.;, s-x=x (mod. V;); this implies that, if I is the identity
mapping, then (s—I):=0. Therefore, the smallest algebraic group con-
taining it is irreducible ([1], II, prop. 5, 14) and N’ is irreducible. More-
over, the elements of the Lie algebra n’ of N’ are nilpotent; since n’
is an ideal, n'<<n. Conversely, n is in the kernel of p, from which it
follows that N is in the kernel of P. This proves that N'=N.

Let s be any element of G. Since P(G)=P(A), there is an ac A
such that P(@)=P(s); then, sa™! belongs to the kernel N of P, which
shows that se NA. In order to prove that the representation of an
se G in the form na, with ne N, ae A, is unique, it will be sufficent
to show that ¥ and A have only the unit element in common. If
ne N, then n—1I is nilpotent; we may write #—I=exp X, where X is
a nilpotent endomorphism of V' which belongs to the Lie algebra of any
algebraic group containing # ([1], II, prop. 5, 14); thus, X e n\a={0},
and n=1.

Let K’ be an overfield of K. If M is a vector space, or a Lie
algebra, or an algebraic group over K, we shall denote by MZX the
vector space, the Lie algebra or the algebraic group over K’ which
results from M by extending the basic field to K. Then n¥ is the
largest ideal of ¢X composed of nilpotent elements ([1], V, prop. 10, 2).
The algebra a” is reductive (1] IV, prop. 8, 4), while 8% is semi-
simple ([1], IV, prop. 10, 2). The algebra bX" is abelian and algebraic,
and its elements commute with those of 8%"; since a¥X' =b%" 4+ 8% X jg
the center of a¥’. The elements of bX are semi-simple I, prop. 1
and 4, 8). Thus we see that every element of GX is uniquely repre-
sentable in the form #'a’, with »' ¢ N¥, a’ ¢ AX. We shall apply this
to the following case. Let s be a generic point of G relatively to K,
and K'=K(s); then se GX, and we may write s=na, ne N¥, ae AKX
It follows from this formula that K'=K(s)<K(n, a) (the field obtained



306 C. CHEVALLEY

by adjunction to K of.the coordinates of #, @« with respect to some base
of the space of endomorphisms of V). Since K(n) and K(a) are in K/,
we have K'=K(n,a)- Let p and g be the dimensions of n and a;
since n€ N¥, ae A¥', the transcendence degree p’ (resp.. ¢’) of K(n)
(resp.: K(a)) over K is < p (resp.: << q). The transcendence degree
of K'=K(n, a) is therefore << p'+q’'; but, since s is generic, this trans-
cendence degree is the dimension p+ g of g. It follows that p'=p, ¢’ =q,
and that any transcendence base of K(n) over K is also a transcend-
ence base of K(s) over K(a). In particular, » and @ are generic points
of N and A respectively, from which it follows that K(»z) and K(a) are
respectively isomorphic (as algebras over K) to the fields of rational
functions on N and A. Similarly, K(s) is isomorphic to the field of
rational functions on G. Making use of prop, 14, [1], V, 3, we see that
K(n)/K is a purely transcendental extension. We have therefore proved
the following result:

PROPOSITION 1. Let G be an irreducible algebraic group of auto-
morphisms of a vector space, and let g be its Lie algebra. Let n be the
largest ideal of § composed of nilpotent elements, and let g=n+0+$8
be a direct sum decomposition with the following properties: b is
algebraic and abelian, and its elements arve semi-simple, 8 is semi-
simple and its elements commute with those of b. Set a=0b+48, and let
A be the irreducible algebraic subgroup of G whose Lie algebra is a.
Then the field of rational functions on G is a purely transcendental
extension of a field isomorphic to the field of rational functions on A.

II. Reductive algebras of type (D).

Let now G be an irreducible algebraic group of automorphisms of
V such that the representation of G on V' is semi-simple. Let g be
the Lie algebra of G; g is therefore reductive, and the elements of the
center 3 of g are semi-simple endomorphisms of V ([1], IV, th. 4, 4).
Let § be a Cartan subalgebra of g; then ) contains 3 ([1], VI, prop. 4,
4). The derived algebra 8 of g is semi-simple, and g=3+8; making
use of prop. 20, VI, 4, we see that ) is the direct sum of 3 and
of a Cartan subalgebra 0s of 3. We shall say that g is an algebra of
type (D) if g has a Cartan subalgebra ) with the following property :
for any X e 0, the characteristic polynomial of the endomorphism X of
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V splits into linears factors with coefficient in K. This condition is
obviously satisfied if K is algebraically closed.

THEOREM 1. Let G be an irrveducible algebraic group of automor-
phisms of a finite dimensional vector space V over a field K of chara-
clteristic 0. Assume that the representation of G on V is semi-simple
and that the Lie algebra ¢ of G is of type (D). Then the field of
rational functions on G is purely transcendental over K.

Under our assumption, there exists a base of V composed of vectors
which are eigenvectors for all operations in 0, as follows immediately
from the fact that b is abelian. Let (xy,---, x,) be such a base. The
algebra b is the Lie algebra of a Cartan subgroup H of G, which is
an irreducible algebraic abelian subgroup of G ([1], VI, prop. 5 and
th. 2, 4). Each x; is an eigenvector for all operations in H ([1], III,
cor. 1 to th. 1). If se H, set s-x;=u;(s)x;, 11;(s) e K(1 <7< m); then,
each #; is a rational function on H, and the field R(H) of rational
functions on H is R(H)=K(wuy, -, u,). If Xeb, set X:x;=v(X)x;
(1<i<mn). Let Z» be the product of » times the additive group Z
of integers by itself; let A be the subgroup of Z*» composed of those
elements (e, -, e,) such that 32, ¢,0;(X)=0 for all Xe). Taking into
account the fact that H is irreducible, it follows from prop. 3, [1], II,
13 that T]7.,u% =1 for any (e, --,es)e A and that H is the group of
all automorphisms s of V with the following properties : we have s - x;
=¢x; (1 <i<n) with elements c¢;e K such that [[%;c% =1 for all
(e1 -, en)e A, 1f w=(w,, -, w,) is a sequence of » elements ==0 of a
field and e=(e,, -, ¢,) an element of Z», we shall set we=[]r, ws . It
is clear that Z»/A has no element ==0 of finite order ; Z» is therefore
the direct sum of A and of a subgroup W of Z». The functions of
the form (w4, -, u,)¢ (e ¢ Z*) form a subgroup U of the group of ele-
ments 5=0 in R(H); u,,---, #, belong to this group, as seen by taking
for e an element whose coordinates are all 0 except for one which has
the value 1. It follows that R(H)=K(U). We have (u, -, u,)¢=1 if
ee/l; since Z»=A+ W, U is the set of elements (z,;, -, %#,)” for all
Fe W. Let f(1),---, f(p) be a base of W ; set z,=(uy, -+, %) ® (1 <k D);
then it is clear that R(H)=K{(z;, -, zp). We shall see that z,---,z, are
algebraically independent over K. It will obviously be sufficient to
prove that, if dy, -, d, are any elements ==0 of K, then there exists an
se G such that z,e(s)":d,e (1<Ek<p). Let K* be the multiplicative
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group of elements #=0 in K ; then there is a homomorphism of W
into K* which maps f(k) upon d, (1<k<p). Since Z» is the direct
sum of A and W, this homomorphism may be extended to a homo-
morphism 8 of Z» into K* which maps the elements of A upon 1.
Set ¢;=6 ((0,---,1,---,0)) (1<i<n); then we have (¢, ", cy)¢=1 for all
eec A and (¢, -, ) ®P=d, 1<Ek<p). It follows that there exists an
se G such that u#;(s)=c; (1<i<n) and that z,(s)=d; (1 <k<p), which
proves our assertion. Thus we see that the field W(H) of rational
functions on H is purely transcendental over K. :

Let K’ be an algebraically closed overfield of K. Then VX% is the
space of a representation of the semi-simple algebra 3%’. Each one of
the linear functions »; on 0) introduced above extends to a linear func-
tion, still denoted by v;, on H%’. Since l)s is a Cartan subalgebra of
8, hX is a Cartan subalgebra of 8& ([1], VI, prop. 22, 4). The restric-
tions to HX’ of the functions v; are the weights of the representation
of 85 on VX. Let / be the rank of 8, i.e. also of 8% ; this is also
the dimension of 4X’. The representation of )X on V%" being faithful,
there are at least / of the restrictions »; to 0% of the functions v;
which are linearly independent. Now, it is well known that any weight
of any representation of 8% is a linear combination with rational co-
efficients of the roots of 3% with respect to }X’. Since there are / of
the functions »; which are linearly independent, it follows that all roots
of 8% are linear combinations with rational coefficients of these func-
tions. In particular, any root of 3K with respect to hX is the extension
to HX of some linear function on lz. It follows immediately that, for
any such root «, we can find an element X, of 8 which belongs to «,
i.e. such that [X, X,]=a(X)X, for all Xebs (and X,=0). On the
other hand, it is well known that it is possible to define an order rela-
tion on the additive group of all linear combinations with rational co-
efficients of the roots of 3% with the property that this group becomes
an ordered group and that every root =£0 is either > 0 or <0 rela-
tively to this order relation. Let n, (resp.: n.) be the subspace of 3
spanned by the elements which belong to roots > 0 (resp.: < 0). Then
8 is the direct sum n_+09s +n,, and g is the direct sum n_+9H+n,. If
elements X,, X; of 8 belong to roots «, 8, then [X,, X,] is either 0 or
an element belonging to the root a+ 8 ; it follows immediately that 1.
and n. are subalgebras of g. We shall see that every element of n,
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is nilpotent. If X, belongs to a root «, then X, - x; is a linear combi-
nation of the vectors x; for which v;=v;+«. It follows that, if Xe n.,,
then, for any 4, and for any £>0, X%-x; is a linear combination of
the vectors x; with the property that »;—v; is a sum of k roots >>0.
Since there are only a finite number of functions v;, we can find an
integer k2 such that none of the differences v;—v; (147, j<») is ex-
pressible as the sum of k2 roots >0, and we then have X*=0 for all
Xen,. We would see in the same way that all elements in n_ are
nilpotent.

It follows that 1, and n_. are algebraic subalgebras of g ([1] V,
prop. 14, 3). Set ¢=0+mn,; then ¢ is an algebraic subalgebra of g ([1],
II, th. 14, 14). The elements of ) being semi-simple endomorphisms of
V, it is clear that 1, is the largest ideal of ¢ composed of nilpotent
elements. Let N_, N,, C be the irreducible algebraic subgroups of G
whose Lie algebras are n_,n, andc. Making use of prop. 1,1, we See
that the field N(C) of rational functions on C is a purely transcendental
extension of a field isomorphic to W(H), and is therefore purely trans-
cendental over K. The subgroup N.N\C of N_ is irreducible (1], VI,
cor. 1 to prop. 14, 3); its Lie algebra is contained in n_MA\c¢={0}, from
which it follows that N_N\C contains only the neutral element I.

Let 2 be any overfield of K ; then the elements of n? are nilpotent
({1] VI, prop. 10, 2). Therefore, by the argument we have just used,
N2NC? is irreducible, whence N¢N\C?={I}. Now, let ¢ be a generic
point of C, and let n_ be a generic point of NX© with respect to K(c).
Set s=#n_c, and let 2 be an algebraically closed overfield of K(x_,c),
whence K(s)<—£2. We assert that K(»_) and K(c) are contained in K(s)
It will be sufficient to prove that the elements of these fields are left
fixed by any automorphism of £2/K(s). Let & be such an automorphism.
Denote by #7,¢” and s° the automorphisms of V# whose coordinates
(with respect to a base in the space of endomorphisms of V') are the
images of the coordinates of #_, ¢ and s under «. Then we have s=s
since o leaves the elements of K{(s) fixed. Since s=#n_c, we have
n>c=mn_c, whence n-'n? =c(c”)"!. Since n_ belongs to N¥, which may
be defined by a set of equations with coefficients in K, n® likely belongs
to N2; similarly ¢ belong to C2 Thus #zI»n® is in N9, while
c(¢®)teC?. It follows that #_=#" and c=c¢". Since K(n_.) (resp.: K(c))
is generated by the coordinates of z_ (resp.: ¢) with respect to a base
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of the space of endomorphisms of V, we see that o leaves all elements
of either one of the fields K(#n_) or K(c) fixed, which proves our asser-
tion.

It follows that K(s)=K(#n_,c). The transcendence degree of K(»_, c)
with respect to K(c) is equal to the dimension of NX©, j e. also to the
dimension of n_. The transcendence degree of K(c) over K is the
dimension of ¢. Since g is the direct sum n_+¢, we conclude that the
transcendence degree of K(s)=K(n_,c) over K is equal to the dimension
of g i.e. to that of G, and therefore that s is a generic point of G over
K. Therefore, K(s) is isomorphic (as an algebra over K) to the field
R(G) of rational functions of G. The field K(¢) is isomorphic to R(C),
and K(»_,c) is isomorphic (as an algebra over Ki{c)) to the field of
rational functions on N%© But the elements of 1&© are all nilpotent ;
it follows that R(NX®) is purely transcendental over K(c¢) (1] VI,
prop. 14, 2). Therefore, }h(G) is purely transcendental over a field
which is isomorphic to R(C). We know already that R(C) is purely
transcendental over K. It follows that R(G) is purely transcendental
over K, which proves th. 1.

COROLLARY 1. Let G be an irveducible algebraic group of auto-
morphisms of a finite dimensional vector space V over a field K of
characteristic 0, and let § be the Lie algebra of G. Assume that g
has a Cartan subalgebra Y) with the following properly : for any Xeb,
the characteristic polynomial of the endomorphism X of V splits into
linear factors with coefficients in K. Then the field N(G) of rational
Sfunctions on G is purely transcendental over K.

We use the notation of I. The homomorphism p of g onto p(a)
maps ) onto a Cartan subalgebra ba of p(a) ([1], VI, prop. 17, 4). We
know that a is reductive and that p induces a faithful semi-simple re-
presentation of a; the group P(A)=JAJ ! is isomorphic to A as an
algebraic group. If Xeg, then the characteristic polynomial of X is
obviously equal to the product of the characteristic polynomials of the
endomorphisms p;(X) (1<i<{h), i.e. also to the characteristic poly-
nomial of p(X). Thus, it follows from our assumption that the chara-
cteristic polynomials of the elements of Y. split into linear factors
with coefficients in K. Therefore, it follows from th. 1 that the field
R(A) of rational functions on A, which is isomorphic to ?)\‘( P(A)), is
purely transcendental over K, and from prop. 1, 1, that R(G) is purely
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transcendental over K. i

COROLLARY 2. Let G be any irveducible algebraic group over an
algebraically closed field K of characteristic 0. Then the field of rational
Sfunctions on G is purely transcendental over K.

This follows immediately from cor. 1. '

PROPOSITION 2. Let H be an irreducible abelian group of auto-
morphisms of a finite dimensional vector space over a field K of
characteristic 0 whose elements are semi-simple and whose Lie algebra
b is of type (D) ; let p be the dimension of H. Then the field of rational
Sfunctions on H is generated by p functions z,---, 2, which are rational
representations of H into the group K* of elements =0 in K; H is
isomorphic to (K*)?.

It is clear that § is a Cartan subalgebra of itself. Using the same
notation as in the proof of th. 1, we observe that the functions u,, --,#,
are representations of H in K*; the same is therefore true of z,---, 2,.
We have seen that, if d,,--,d, are in K*, then there is an seH such
that zi(s)=d, (1<k<p); the mapping S—')(Zl(S),"',Zp(S)) is therefore
an isomorphism of H with (K*)?.

III. Functions constant on every Cartan subgroup.

Let s be a generic point of the group G. Denote by I the identity
automorphism of the Lie algebra g&® of GX® and by / the nullity of
I—Ad s (i. e. the multiplicity of 0 as a characteristic root of this endo-
morphism). Since every point s, of G is a specialisation of s, it is
clear that the nullity of I—Ad s, is alway >/, and is actually equal
to ! for some s,eG; i.e. / is the rank of G ([1], VI, déf. 2, 4). The
rank of GX® being equal to that of G (1], VI, prop. 22, 4), we see
that s is regular in GX°, and therefore belongs to a uniquely deter-
mined Cartan subgroup H of GX¥® ([1], VI, th. 2, 4); let §) be the Lie
algebra of H: this is a Cartan subalgebra of g&. We shall introduce
a field L; which is, in the sense of algebraic geometry, the field of de-
finition of the linear variety b.

Let 5, be a Cartan subalgebra of g, and let (Xj,---, X,) be a base
of g which contains a base (Xj,---, X)) of §,. In order for an element
Xeg®® to belong to b, it is necessary and sufficient that (I—Ad s)¥-X
=0 for some £>0 ([1] VI, prop. 8 and cor.1 to th. 1, 4). Since g is
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of dimension 7, it is also necessary and sufficient that (I—Ad s)”- X=0.
Let ( ﬁj(s)) be the matrix which represents (I —Ad s)” with respect to
the base (X, --, X,); each f;; is an everywhere defined rational function
on G. In order for an element 3'7.,#«;X; to belong to b, it is necessary
and sufficient that the #;/s be a solution of the linear system '

(1) >V-1fif(s)u;=0. (1=:i<7)

Let £ be any index between 1 and /; let us adjoin to the system (1)
the equations #,. =0 for 1<Kk </, kK'=;=k. Since ) is of dimension /,
the system (1) is of rank »—/, and the system (1;) we have just des-
cribed has a non trivial solution (v g, v, ). Let H, be the Cartan
subgroup of G whose Lie algebra is b, and let s, be a regular element
of G contained in H, ([1], VI, cor. 1 to th. 1,4). Denote by (1¥) the
system deduced from (1) by replacing the f;;(s) by their values f; (s,)
at s,. Since s, is regular, the solutions (u,, -+, #,) of (1) in K are the
systems of elements (u,, -, #,) such that >7., u; X;eb, i.e. such that
ua=--=u,=0. It follows that the system (1{’) deduced from (1) by
adjoining the equations w; =0 for £ ==k, 1<k’ </, is of rank »—1 and
has a solution (u,, -+, u,) for which #,5=0. This being the case, it is
clear that the system (1) is of rank »—1 and that v, ,30. We may
therefore assume that v, ,=1, and the elements v»;, are then uniquely
determined. We can extract from the matrix of the system (1) a
square matrix with »—1 rows and columns whose determinant is of
the form D(s), D being a rational function on G which is defined and
=0 at s,. It follows immediately that v; ,=gx(s), each g;. being a
rational function on G which is defined at s,, We denote by L the
subfield of R(G) which is generated over K by the functions g, (1=<¢
<7 1<kX/), and by L, the subfield of K(s) generated by the elements
gir(s); Ls is the image of L under the isomorphism f—f(s) of R(G)
with K(s). The field L does not depend on the choice of ), or of the
base (X}, -, Xx). In order to prove this, set Y,=3>7, g:.(s)X;; since
e (8)=8pp if 1=k, K <!, Y1,---, Y, form a base of §). This being said,
let h, be any Cartan subalgebra of g and (Xi,---, X)) any base of g
containing a base (X, --,X}) of h;. Let (Y;,---,Y;) be the base of )
constructed by means of by and (X3, -, X;) in the same way (Y3,---, Y;)
has been constructed in terms of Y, and (X, --,X,). We have Y,
=S ko1 Wiy Y. If we write Y =>7%.1ar; X;, the elements a ; are
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in L;, and the elements wy, for a given k are uniquely determined by
the condition that >% _; wie @ ; should be 0 if j=Fk, 1</ and 1 if
Jj=k. The elements w,,, which constitute the unique solution of a
linear system with coefficients in L., are therefore in L., which shows
that the field L; defined by means of b); and the base (Xi,--, X;) is
contained in L,, We would see in the same way that L, L], whence
L=L;

We shall now see that L, is purely transcendental over K. We
may assume without loss of generality that X, is a regular element of
g. It follows immediately from the fact that the functions g;, are de-
fined at s, that (s, Yi,---, Y,)—(s,, X3,-+, X;) is a specialisation over K ;
in.particular, X, is a specialisation of Y,. Since X; is regular, it fol-
lows immediately that Y;is regular. Thus, }) is the set of elements of
g% which are mapped upon 0 by some power of ad Y, i. e. also which
are mapped upon 0 by (ad Y,)” (1], VI, prop. 16, 4). It follows that,
for 1<k, Y} is the unique element 37, #;X; of g¥* which satisfies
the following conditions: we have (ad Y, - (571 u; X;)=0 and u;=3§;;
if 1<7/</] These conditions give a system of linear equations in
uy, -, uy With coefficients in the field K(Y;). It follows that the ele-
ments g;(s) (1<:<!) all belong to the field K(Y)), i.e. to K(g7.1,:(s), -,
Z-.1(s)). This shows that the transcendence degree of L/K is <r—..
On the other hand, since ) has a base in gfs. we may write hH=hEs,
where 1, is a subalgebra of gfs, which is a Cartan subalgebra of gls
({11, VI, prop. 22, 4). Let H; be the Cartan subgroup of GIs with ¥,
as its Lie algebra, whence H=H{®. This group is of dimension /
Since s is a generalized point of H;, the transcendence degree of K{(s)
=L4s) over L, is </. The transcendence degree of K(s) over K being
7, we conclude on the one hand that s is a generic point of H; over
L., on the other hand that the transcendence degree of- L, over K is
r—1I. Since L, may be obtained by adjunction of »—/ elements to K,
we see that L, is purely transcendental over K.

If K’ is any overfield of K and E a subset of GX’, we shall say
that a rational function f on G is constant on E if it has the same
value at all points of E at which it is defined. We shall see that the
functions of the field L are those rational functions f on G which are
constant on H,. Let first f be in L, whence f(s)eL,. Let s’ be any
point of H; at which f is defined ; then s—s’ is a specialisation over
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L, and, since f(s)eL,;, we have f(s’)=f(s), which shows that f is con-
stant on H,. Let conversely f be constant on H,. Since f is defined
at s, which is a generalized point of H,, it is defined at least one point
sieH;; it is clear that f(s;))eL,. We assert that f(s)=f(s;). Were this
not the case, there would exist at least one specialisation s; of s over
L. such that f, and therefore f—f(s;), is defined at s; and ( f—f(sl))
(sp=0; but s; would then be in H; and we would have f(s)3=f(s)),
which is impossible. It follows that f(s)=f(s;)eL,; since hA—h(s) is an
isomorphism of R(G) with K(s), it follows that fe L.

We shall now prove that the functions of L are constant on every
Cartan subgroup H, of G. We use the same notation as above. The
functions g;. are defined at s;, and we have gi(s)=8i (117,
1<k</). Let v be the subring of L, generated by K and the elements
gix(s); then there exists a homomorphism 6 of v into K such that
H(g,-k(s))=8,-k. Introduce 7/ letters T),---,7;; then 6 may be extended to
a homomorphism of o[[Ty,---, T,]] (the ring of formal power series with
coefficients in o) into K[[T3,---, 7;]] which maps any power Sseries upon
the power series obtained by applying 8 to its coefficients. Set ¢=(exp
T.Y,)---(exp T,Y,); then ¢ is a generic point of H; ([1], II, th. 8, 12).
The coordinates of ¢ (with respect to a base of the space of endomor-
phisms of V, and therefore also of the space of endomorphisms of V¥,
for any overfield K’ of K) are in o[[Ty,--, Ty1]; set #=6(¢) (4 is the
endomorphism of VETwTp whose coordinates are the images of those
of ¢ under 8). Since 8(Y)=X(1<k<1), it is clear that #,=(exp T1X))
---(exp T, X;); t,is therefore a generic point of H,. Let f be a function
in L which is defined at least one point of H, (were this not the case,
f would be trivially constant on H,). Then f is defined at , and may be
written in the form f,/f,, where f,, f, are polynomial functions on G and
fot)==0, whence f,(¢)==0. The elements f,(¢) and /,(¢) are in o[[T},---, T]].
Since s and ¢ are generic points of Hj, there is an isomorphism of L(s)
with L (?) which leaves the elements of L, fixed and maps /%(s) upon
h(t) for any rational function % on G. Since fe L, we have f(s)eL,,
whence f(t)eL,. On the other hand, f(¢)=fi(¢)/fo(t). Thus the coeffici-
ents of the power series fit) in T3,---, T, are proportional to those of
the power series fi(¢), the proportionality ratio being f(¢)eL,. But one
at least of the coefficients of the power series f(#) is not mapped upon
0 by 6, since fi(t;)=F0. It follows that we may write f(¢)=a/b, where



On algebraic group varieties. 315

a and b are elements of o such that 6(6)==0. It follows immediately
that f(t,))=6(a)/6(b) is an element of K. Now, let 4, be any element of
H, at which f is defined; then # is a specialisation of # over K. and
f(t) is a specialisation of f(#,). Since f(t,)e K, we have f(#)=f(#). which
proves that f is constant on H,.

Let conversely f be a rational function on G which is constant on
every Cartan subgroup of G. Write f=f,/f,, where fi, f. are polynomial
functions, and f,5=0. Then we have f,(¢)5=0. If the formal power
series fy(¢), fo(t) with coefficients in o are proportional to each other,
then f(t)e L;, whence f(s)=f(¢)eL, and fel. We shall assume for a
moment that this is not the case, and we shall derive a contradiction
from this assumption. We therefore assume that there exist two co-
efficients @, b of the formal power series f; such that, a’ and & being
the corresponding coefficients of f,, we have ab'—ba’'3=0. Assuming,
as we did before, that X; is regular, we have seen that Y, is regular.
The coefficient D of T'! in the characteristic polynomial of ad Y, (T
being the variable with which we write this polynomial) is therefore an
element ==0 of o. Thus, D(ab’—ba’) is an element =0 of o. The field
of quotients L, of o is purely transcendental over K; expressing the
elements g;.(s), D(ab’—ba’) as rational fractions in the elements of Some
transcendence base of L,/K, we see easily that there exists a homo-
morphism 8’ of ointo K such that ¢ (D(ab’ —ba'))==0. We extend as
above 6’ to a homomorphism of o[[Ty, -, T;]] into KI[[T: -, T:1],
and we set X}, =6 (Y;) 1=<k=<)), =06 (t), whence t'=(exp T1 X1) -
(exp T;Xj). It is clear that #'(D)==0 is the coefficient of 7% in the
characteristic polynomial of ad X, and therefore that X is regular in
g. From the relations (ad Y,)Y;=0 (1 <k<1), it follows immediately
that (ed X7)". X, =0, and therefore that X7, --, X; belong to the Cartan
subalgebra 9, of g which contains X;. We have Y,=37-; gz (s) X;,
whence X =317, 6’(g,-k(s))X,~; since g;x(s)=§;: if i</, we have also
¢' (g:(s)) =8 if i<!, which shows that X, -, X are linearly indepen-
dent and constitute a base of Y);. Thus, ¢/ is a generic point of the
Cartan subgroup Hj of G whose Lie algebra is 9; Since 6’(ab’—ba’)==0,
0'(a’) and 6'(d’) are not both 0, from which it follows that the power
series 0’( fz(t)) =f,(#) is #=0 and that f is defined at #. We have
fE)=£A{E)/f(t'), and, since 6'(ab’—ba')==0, the power series fy(t'), fot')
are not -proportional to each other, which shows that f(#’) is not in K.
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Since f(t')3=0, f is defined at least one point # of H,; set c=f(¢).
Then f(#')—c==0; the restriction to H, of f—¢ being a rational function
=0, therg is at least one point #; of H; at which f—c is defined and
takes a value §=0. Then f is defined at ¢#; and # and f(¢;)=Ff(f;), in
contradiction to the assumption that f is constant on Hj.

Thus, the functions in L are characterized by the property of being
constant on every Cartan subgroup of G, which shows that the field
L does not depend on the choice of the generic point s.

Now, let K’ be any overfield of K, and choose for s a generic point
of G¥'(and therefore, @ fortiori, of G). Then the Cartan subgroup of
G¥ which contains s is clearly HX®, and its Lie algebra is )%, The
elements Y, -, Y, form a base of )X®. Therefore, the arguments used
above show that the field of rational functions on GX’ which are con-
stant on every Cartan subgroup of G¥ is obtained by adjunction to
K’ of the elements g;.: this field is L%, Thus we have proved the
following redults :

PROPOSITION 3. The wational functions on G which are constant
on every Cartan subgroup of G form a subfield L of the field of rational
functions on G. If G is of dimension v and rank I, then L/K is a
purely transcendental extension of transcendence degree v—I1. If s is
a generic point of G, and H the Cartan subgroup of GXS which con-
tains s, then we may write H=HFS, where H, is a Cartan subgroup
of G's, L, being the image of L under the isomorphism f—f(S) of N(G)
with K(s). The point s is a generic point of H,; the functions f of L
are characterized by cither one of the following properties : a) f(s)eLs;
b) f is constant on H, If K’ is an overfield of K, the rational func-
tions on GX' which are constant on cvery Cartan subgroup are exactly
those of LX.

Consider now the field extension R(G)/L. The isomorphism f—f(s)
of M(G) with K(s) maps L onto L, and we have K(s)=Ls). Since s is
a generic point of H,, K(s) is isomorphic to the field of rational func-
tions on H,. Thus, we see that W is isomorphic, as an algebra over
L, to the field of rational functions on some Cartan subgroup of G~

If g is a nilpotent Lie algebra and n the largest ideal of g composed
of nilpotent elements, then g is direct sum of n and of an algebraic
subalgebra a of the center of g whose elements are semi-simple V,
prop. 22, 3). Taking prop. 1 into account, we see that the field of
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rational functions on the irreducible algebraic group whose Lie algebra
is g is a purely transcendental extension of a field isomorphic to the
field of rational functions on the irreducible group A whose Lie algebra
is a. Thus we have the following result:

PrROPOSITION 4. Let G be an irreducible algebraic group and N(G)
the field of rational functions on G. Then R(G) has a subfield M with
the following properties : M is purely transcendental over the basic
Jfield of G, and N(G) is isomorphic (as an algebra over M) to the field
of rational functions on some irreducible abelian algebraic subgroup of
GM whose elements are semi-simple.

IV. Abelian groups.

We shall now assume that the group G is abelian and that its
elements are semi-simple. The Lie algebra g of G is then abelian and
its elements are semi-simple; for, the enveloping associative algebra of
g is the same as that of G ([1], VI,cor. 2 to th. 8, 12) and the elements
of this algebra are all semi-simple (1], I, prop. 4, 8). We can find a
finite galoisian extension L/K of K such that the characteristic poly-
nomials of the elements of a base of g split into linear factors with
coefficients in L. It is then clear that g~ is abelian of type (D). It
follows that the field R(GF) of rational functions on G- may be repre-
sented in the form L(z, -, z,), where z,---, 2, are algebraically indepen-
dent over L and are rational representations of GT in the multiplicative
group L* of elements =0 in L; the mapping s'—»(zl(s),---,z,(s)) is an
isomorphism of G* with (L*).

Let & be the Galois group of L/K. Then we may make the ele-
ments of & operate on VZ and on the space of endomorphisms of VI,
The elements (resp.: the endomorphisms) of V are the elements (resp.:
endomorphisms) of V% which are invariant by the operations of &. In
particular, G is the set of elements of G invariant by all automor-
phisms of &. Moreover, since G- is defined by a system of equations
with coefficients in K, the elements of GF are permuted among them-
selves by the operations of ®. Now, since G is abelian, it is clear
that, for any seG*, the element [l..s s” is in G; we shall denote this
element by N(s). The mapping s—N(s) is a homamorphism of G* into
G.



318 C. CHEVALLEY

We propose now to determine the form of the expressions of the
elements z;(s”) (se GL, e ®) in terms of z(s), -, z(s). We shall first
prove that any rational representation z of GF into L* is in the group
generated by z,,---,2,. We may write z=R(z,--,2,), where R is a
rational fraction defined at all points of Lr whose coordinates are all
=%0. If M is any overfield of L, the rational function on G which
extends z is a rational representation of G into the multiplicative
group M™* of elements 3=0 in M ; R is therefore defined at every point
of M7” whose coordinates are all 0. Let M=L(u, -, un,), where
u,,---, u, are algebraically independent over L. Then the rational frac-
tion R(U, u,,---, u,)=R'(U) is defined at every element #==0 of M, and
we have R'(uu')=pR'(u)R'(4'), pe M, whenever u, ' are elements &0
of M. Write R'(U)=P(U)/Q(U) where P, are polynomials with co-
efficients in M, relatively prime to each other. Then, for #==0 in M,
we have

P(uU)/Q(uU)=pR(u)P(U)/QU) .

Since P(uU) (resp.: Q(uU)) is of the same degree as P (resp.: @), we
have P(uU)=c(u)P(U), Q(uU)=c(u)Q(U), where c(u), c'(u)e M. This
implies that P(U)=aU?, Q(U)=bU4, a,b in M, whence R'(U)=fUs,
with feM, e being an integer. In other words, we have R(z, -, z,)
=2{R(2,"-, 2,), R; being a rational fraction in »—1 variables. We
would see in the same way that, for any z, R(z,---,2,) is the product
of a power z¢? of z; by an element which is a rational fraction in the
z;/s for j=Fi. It follows that R(zy,---, z,)=c ;-1 22®, with ceL, and it
is clear that ¢=1, which shows that z belongs to the group generated
by z,---,2,. This being said, if we denote by w(s), -, w,(s) the co-
ordinates of s with respect to a base of the space of endomorphisms
of V (and therefore also of V'Z), we have wy(s”)=0c - w,(s). Expressing
the z;(s) as rational fractions in w(s), -, w,,(s), we see immediately that.
the mappings s—»a‘l(z,-(s")) (1<i<7) are rational representations of
Gt into L*. Thus we have

2;(s7)=q * [ [} 25i

where the ¢; (o) are integers. It is clear that the mapping a——»(e,- ,-(a))
" is a representation of & by matrices of degree » with integral coeffici-
ents.
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Now, we shall see that the image N(GF) of G* under the homo-
morphism s—N(s) is dense in G in the sense of the Zariski topology.
Let P be a polynomial function on G which is zero on N(G). We may
extend P to a polynomial function on G%, still denoted by P ; we have
P=R(z,--,2,), R being a rational fraction in » variables Z, -, Z,.
Introduce dr letters Z;, (1<i<7, cec®) (where d=[L:K]) and let
R'(---,Z; ,,---) be the rational fraction obtained from R by the substitu-
tion

Zi—> loes 1151 2557

Then it follows from the assumption that P vanishes on N(G%) that,
for any elements &,---, ¢, all &=0 of L, the result of the substitution
Z, .o+ ¢ in R is 0. Making use of Lemma 2, II, 13, we conclude
that R'=0. Now, if o, is the unit element of G then e;;(c7)=8;;, and
it follows that R(Z,---, Z,) is the rational fraction which results from
R’ by the substitution Z; ,,—Z;, 1<i<7»), Z; ,—1 for o=0;. We con-
clude that R=0, whence P=0. This proves that N(GF) is dense in G.

Let (o, -, wz) be a base of L/K. Let L(w) be a field obtained
from L by adjunction of »d elements w;,(1<i<7», 1<k<d) which
are algebraically independent over L. Then L(w) is galoisian of degree
d over K(w), and the Galois group of L(w)/K(w) may be identified to
®. Let s, be the element of GEX® such that z;(s,)=>%; w;r wr. Pro-
ceeding as above, we see that (& operates in a natural manner on
GE™  and that the set of elements of G-’ which are left fixed by the
operations of & is GEX®, We set ?,=N(s,)=1l.es s3. Then £, is an
element of G and it is clear that every element of N(GF) is a
specialisation of ¢, over K. It follows that {, is a generic point of G.
If feR(G), then f(¢,)e K(w), and the mapping f—f(f,) is an isomorphism
of N(G) with a subfield of K(w), which is purely transcendental over
K ; this isomorphism leaves the elements of K fixed.

Now, we shall prove the following lemma :

LEMMA 2. Let K be an infinite field, and K(w,, -, w,) a purely
transcendental extension of transcendence degree p of K. Let R be a
subfield of K(w)=K(w,,-,w,) containing K and of transcendence
degree v over K. Then there is a purely transcendental extension
M/K of transcendence degree v of K such that R isisomorphic (as an
algebra over K) to a subfield of M.
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The following proof of this lemma has been communicated to me
by Mr. Shimura.

Proceeding by induction on p, it is obviously sufficient to prove
the following result: let K be an infinite field, L a finitely generated
overfield of K of transcendence degree », L(w) an overfield of L obtained
by adjunction to L of an element w which is transcendental over L
and R a subfield of L(w) containing K and whose transcendence degree
over K is <7; then there exists a K-isomorphism of R with a subfield
of L.

By adjoining to R some elements of a transcendence base of
L(w)/K, we may obviously reduce the problem to the case where R is
of transcendence degree » over K. Assume that this is the case. We
may further assume that w is transcendental over R. For, if this is
not the case, then L must contain some element @ which is trans-
cendental over R (since L(w) is not algebraic over R); if we set
w=w+a, we have L(w')=L(w), and w’ is transcendental over both L
and R. Represent L in the form K(x, -, x,), with x;eL (1<i<n).
Since the extension L(w)/K is finitely generated, it is well known that
the same is true of R/K; let ¥,,,--,v, be elements of R which generate
R over K. We may write y;=Y(w) (1<i<m), where each Y; is a
rational fraction in one letter with coefficients in L. On the other
hand, it follows from our assumptions that R(w) is of transcendence
degree r+1 over K. Each x is therefore algebraic over R(w), and we
have relations of the form

th(fo) Xjk(yl;"'tym) w) xz(k)—j"_"o

where each X,; is a polynomial in m+1 letters with coefficients in
K and Xo(y1, -, Vm, w)=F0. We may write

XOk(yl!"'aymv w)ZX;;(M))

where X, is a rational fraction =0 with coefficients in L. Since K
is infinite, there exists an element w,e K such that the rational frac-
tions Yi(1<i<m), X, (1<k<m) are all defined at w, and Xi(w,) =0
(1<k<n). Let o be the subring of L(w) composed of all elements of
the form A(w), where A is any rational fraction with coefficients in L
which is defined at w,. There exists a homomorphism @ of o into L
which coincides with the identity on L and which maps w upon w,.
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The elements y;, w belong to o, whence K[ ¥, ", ¥m, w]<0; set yi=@(¥;)
and

éjk=¢(Xjk(y1""9ym, W)) :Xjk(yiy”',y/m» wO) .

Then we have 3¢% &, x§#~7=0; moreover, En=p(X ,;(w)) =X (w,) 0.
It follows that x,,---,x, are algebraic over the subfield R'=K(¥1,**, ¥m)
of L, and therefore that R’ is of transcendence degree » over K. The
mapping @ induces a homomorphism ¢; of K[y, -, ¥,.] onto K[y, ", ¥l
Since both K(yi, -, y,)=R and K(y},---,%,,)=R’ are of transcendence
degree 7» over K, it is well known that ¢, is an isomorphism and
therefore extends to an isomorphism of R with R'. is there-
by proved.

This proves that the field R(G) of rational functions on an irreduci-
ble algebraic group G which is abelian and whose elements are semi-
simple is isomorphic to a subfield of a purely transcendental extension
of transcendence degree » of the basic field of G, » being the dimension
of G.

Taking prop. 4, III into account, we obtain the following result :

THEOREM 2. Let G be an irreducible algebraic group of dimension
v over a field K of characteristic 0. Then the field of rational func-
tions on G is isomorphic (as an algebra over K) to a subfield of a
purely transcendental extension of transcendence degree v of K.

Returning to the notation used above, it is of interest to charac-
terize the subfield R(G) of R(GL)=L(z;, -, 2,). It is clear that a rational
function fe N(GF) belongs to R(G) if and only if it satisfies the follow-
ing condition : for any se Gt and o e & such that f is defined at s and
s’, we have f(s")=o - f(s). Now, we may let the group & operate in
two different manners on the field R(GF)=L(z, -, 2,). Let o be an
element of &. Denote by y,(s) the automorphism of L(z,---, z,) which
transforms any aee L into o - @ and which leaves z, -, z, fixed; then
Y, is an isomorphism of & with a group &; of automorphisms of
L(z,---, 2,), and the elements which are left fixed by the operations of
&, are those of K(z;,--',z,). On the other hand, the matrix (e;j(a))
being of determinant +1, there is an automorphism v,(¢) of L(zy, -, 2,)
which leaves the elements of L fixed and which transforms each z;
into 152%™, It is clear that Yy is a homomorphism of & into the
group of automorphisms of L(z,-:-, z,). Let s be an element of G* and
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f an element of R(G*) which is defined at s and s°. Set f=F(z, -, z,),
where F is a rational fraction with coefficients in L, and set ¢;=2z(s),
¢i=2zi(s”); then we have ¢;=o - 115, £%i. It follows easily that f(s”)
=0 (Yia™)) - ¥la™)) - f(s); thus, f will belong to R(G) if and only if
it is invariant by every automorphism of the form v (o) -v¥.(o) of
N(GF). These automorphisms form a group isomorphic to &. The field
R(G) admits a subfield composed of the elements of K(z, -+, z,) which
are invariant under the automorphisms of this field induced by the
operaions of Y(®). This subfield is of interest in the case where G
is a Cartan subgroup of a semi-simple linear group; we hope to come
back to this question some time in the future.

V. A counter-example.

We wish to prove that there exists an irreducible algebraic group
G over a field of characteristic 0 such that the field of rational func-
tions on G is not purely transcendental over K.

We take K to be the field of p-adic numbers, p being any prime
number. It is easily seen that there exists a finite algebraic extension
L/K of K which is abelian but not cyclic: we may for instance take
L to be the composite field of the unramified extension of degree p—1
of K and of the field obtained by adjunction to K of the p-th roots of
unity. We consider L as a vector space over K and every element of
L as operating on this vector space by means of the multiplication in
L. Take G to be the group of elements of L of norm 1 with- respect
to K. If (w;, -, ws) is a base of L/K, and u,, -, u, ¢ K, then we may
write

NL/K(”I o+ Uy 0r)=F(2y Tty un)

where F is a polynomial with coefficients in K ; in order for 377, u; w;
to be in G, it is necessary and sufficient that F(u,;,---, #,)=1, which
shows that G is algebraic. On the other hand, F, considered as a
polynomial with coefficients in L, splits into .the product of # linear
forms, which shows that G is irreducible.

From now on, we denote by #;,, -, #, the polynomial functions on
G such that x=3>"7; u;(x) w; for every xe G; the field R(G) of rational
functions on G is therefore K(u,, -, u,). We shall assume that this
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field is purely transcendental over K, and we shall derive a contradic-
tion from this assumption. It is clear that G is of dimension z—1.
Our assumption then means that K(uy, -, u,)=K(, -, t,_;), where
ty, -, t,-1 are n—1 suitable elements of R(G). Write u;=A,;/D(1 <i<n),
where A, -, As, D are in K[t]=K[t,,t,-1]. Let & be the Galois
group of L/K; we then have

D”'—‘—‘[L,-e @(Al (0'{—*‘ +An co‘,’,).
It is clear that we may write
Ao+ +Arwp=alli-i H

where H,,--, H, are prime elements of the ring L[t ---,¢,-;] such that,
for ig=7, H; is relatively prime to all conjugates of H;, while each f;
is an element of the group ring of & over the ring of rational
integers and ae L. Each H; divides prime element G; of K[¢, - ,¢,-1],
which we may assume to be the product of the distinct conjugates of
H;. Let S be the sum of the elements of & (in the group ring), and
write f;=>,.6 @lo)o, s;=> .. @(oc). Then we have f; S=s; S and

D*=Np,xa. 11li.iH;iS.

On the other hand, if the group of elements oe® such that H; =H7
is of order 4;, we have H?=G’:; if d; is the exponent with which H;
enters into the decomposition of D into prime elements in K[#, -+, ¢,-1],
then nd;=h;s;. Set G;=H}i, where ¢ is in the group ring of O.
Then the sum of the coefficients of ¢;, when expressed as a linear
comcination of the elements of &, is n/h;. We have D=d 1., H% %,
where d is an element of K. The sum of the coefficients of f;—gq;d;
is 0 in virtue of the relation nd;=#h;s;. It follows immediately that
D, #, A; w; may be expressed in the form
a. Ilees RE°

where each R, is an element of L(4, -, ¢,-;) and & an element of L.
Let x be an element of G which satisfies the following conditions: a)
the rational functions ¢, --,7,-; are all defined at x; let =;=£ (x)
(1<i<n—1); b) the rational fractions R, are all defined and =0 for
the values =,-*, 7,-; of their argument and D(+, -, 7,-1)=F0. Then, if
we set y,=R, (v1,,Ts-1), the y, 's are in L, and we have
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x:a, ¢ I_-Ia'e @yaha .

Let I’ be the subgroup of G generated by all elements of the form
177, where y runs over all elements==0 of L and o over all elements
of &; then x belongs to the coset @'/’ of G modulo I'. It is clear
that the set of elements x € G which satisfy our conditions is thick in
G(i. e. its complementary set is contained in an algebraic subset of
dimension < #—1 of G). Now, it has been proved by Matsuhima
(@3] that I"4=G. Leta” I"be a coset §=a’ I’ of G modulo I". Then a”
I'=(d"a’"') (&' I'), and, since &' I" is thick, the same is clearly true of
a”’ I"’. But this is impossible, since any two thick subsets of G have
at least one common point (since G is irreducible), while two distinct
cosets of G modulo I" are disjoint from each other.
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