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On algebraic group varieties.
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Let $G$ be a linear algebraic group of dimension $r$. We propose to
study the brational type of $G$ as an algebraic variety, $i$ . $e$ . the structure
of the field $\mathfrak{R}(G)$ of rational functions on $G$ . In his “ Trait\’e d’analyse “

(vol. 3, p. 550), E. Picard shows that it is possible to express the co-
ordinates of a point of $G$ as rational functions of $r$ parameters. The
proof depends however on the basic field of the group being that of
complex numbers; moreover, it is not proved that the parametric re-
presentation one obtains is proper ( $i$ . $e$. that a given point of the group
corresponds in general to only one system of values of the parameters).
In other words, the proof shows that $\mathfrak{R}(G)$ is contained in a purely
transcendental extension of transcendence degree $r$ of the basic field,
but not that it is itself purely transcendental.

In this paper, we shall prove that, for any basic field (of characte.
ristic $0$), the field $\mathfrak{R}(G)$ is contained in some purely transcendental
extension of transcendence degree $r$ of the basic field. We shall also
establish that, when the basic field is algebraically closed, $\mathfrak{R}(G)$ is itself
purely transcendental, while, if the basic field is arbitrary, it may
happen that $\mathfrak{R}(G)$ is not purely transcendental.

In what follows, we denote by $G$ an irreducible algebraic group
of dimension $r$ composed of automorphisms of a finite dimensional
vector space $V$ over a field $K$ of characteristic $0$ ; we denote by $\mathfrak{g}$ the
Lie algebra of $G$ .

I. A reduction of the problem.

Let $\mathfrak{n}$ be the largest ideal of $\mathfrak{g}$ composed of nilpotent endomorphisms
of $V$ ([1], V, th. 3, 2). Then we have a direct sum decomposition
$\mathfrak{g}=\mathfrak{n}+b+6$ of $\mathfrak{g}$ with the following properties: $b$ is an algebraic abelian
subalgebra of the radical of $\mathfrak{g}$ whose elements are semi-simple; @ is a
$semi\cdot simple$ subalgebra of $\mathfrak{g}$ whose elements commute with those of $\mathfrak{b}$
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([1], V, prop. 5, 4). We set a=b+ ’ ; $\mathfrak{a}$ is therefore a reductive algebra
of center $()$ . Since $e$ is semi.simple, it is algebraic ([11, IV, cor. to
prop. 9, 2); it follows that $\mathfrak{a}$ is algebraic ([1], II, th. 14, 14). The re-
presentation of $\mathfrak{g}$ on $V$ induces a semi.simple representation of $\mathfrak{a}$ ([1],
IV, th. 4, 4).

Since the elements of $\iota$ are nilpotent, $\mathfrak{n}$ is algebraic ([1], V, prop.
14, 3). Let $N$ and $A$ be the irreducible algebraic groups of automor.
phisms of $V$ whose Lie algebras are $\mathfrak{n}$ and (1 respectively. We propose
to prove that any $s\in G$ may be written in one and only one way in
the form $na$ , with $n\in N,$ $a\in A$ .

Let $(V_{0}=V, V_{1},\cdots, V_{h}=\{0\})$ be a Jordan-H\"older sequence for the
representation space $V$ of $\mathfrak{g}$ ; thus, each $V_{i}$ is mapped into itself by the
operations of $fi$ , and $V_{i-}\sqrt V_{i}$ is the space of a simple representation $\rho_{i}$

of $\mathfrak{g}$ . Since $G$ is irreducible, $V_{i}$ is mapped into itself by the operations
of $G$ ([1], III, cor. 1 to th. 1); thus, $V_{i-1}/V_{i}$ is the space of a repre-
sentation $P_{i}$ of $G;P_{i}$ is simple and rational, and its differential is $\rho$;
([1], III, lemma 3). Let $p$ be the Cartesian product of the representa-
tions $P_{i}(1\leqq i\leqq h)$ ; this is a rational representation of $G$ whose differ-
ential is the Cartesian sum $\rho$ of the representations $\rho_{i}$ . Let $\Sigma$ (resp. :
$\sigma)$ be the representation of $G$ (resp. : q) on the space $V(i$ . $e$ . the identity
mapping of $G$ (resp. : $\mathfrak{g}$ ) into the set of endomorphisms of $V$). Then
we shall see that $\rho$ and $\sigma$ induce equivalent representations of $()$ . Since
$\sigma$ induces a semi-simple representation of $()$ there exists for each $i$ a
subspace $W_{i}$ of $V_{i- 1}$ which is mapped into itself by the operations of
($1$ and which is supplementary to $V_{i}$ in $V_{i-1}(1\leqq i\leqq h)$ . If $X\in a$ , let
$\rho_{i}^{\prime}(X)$ be the restriction of $X$ to $W_{j}$ ; then the representation of $\mathfrak{a}$ in.
duced by $\rho$; is obviously equivalent to $\rho_{\acute{i}}$ . On the other hand, $V$ is the
direct sum of the spaces $W_{1},\cdots,$ $W_{h}$ ; the representation of $\mathfrak{a}$ induced
by $\sigma$ is therefore equivalent to the Cartesian sum of the representations
$\rho_{i}^{\prime}(1\leqq i\leqq h)$ , which is itself equivalent to $\rho$ . More precisely, let $J$ ; be
the isomorphism of $W_{i}$ with $t_{i-1}^{r}/V_{i}$ induced by the natural mapping
of $V_{i-1}$ onto $V_{i-1}/V_{i}$ : denote by $U$ the product of the spaces $V_{i-1}/V_{i}$

$(1\leqq i\leqq h)-i$ . $e$ . the space of the representation $\rho$–and by $J$ the isomor-
phism of $V$ with $U$ defined by $J(w_{1}+\cdots+w_{h})=(J_{1}\cdot w_{1},\cdots, J_{h}\cdot w_{h})$

$(w_{i}\in W_{i}, 1\leqq i\leqq h)$ . Then, for $X\in a$ , we have $\rho(X)=JXJ^{-1}$ . It
follows that, for any $a\in A$ , $P(a)=JaJ^{-1}$ . The group $P(A)=JAJ^{-1}$ is
therefore the irreducible algebraic group of automorphisms of $U$ whose
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Lie algebra is $\rho(\mathfrak{a})$ (it will be observed that, in general, if $p/$ is a
rational representation of $A,$ $P^{\prime}(A)$ need not be an algebraic group).
Now, we observe that $\rho(\mathfrak{n})=\{0\}$ ([1], V, Th. 3, 2), whence $\rho(\mathfrak{g})=\rho(\mathfrak{a})$ .
It follows that $P(G)$ is contained in the irredusible algebraic group
whose Lie algebra is $\rho(\mathfrak{a}),i$ . $e$ . in $JAJ^{-1}=P(A)$ ; since $A\subset G$ , we have
$P(G)=P(A)$ .

Now, let $N^{\prime}$ be the kernel of the representation $p$ of $G$ . Then $N^{\prime}$

is the group of elements $s\in G$ such that, for any $i(1\leqq i\leqq h)$ and
any $x\in V_{i-1},$ $s\cdot x\equiv x(mod. V_{i})$ ; this implies that, if $I$ is the identity
mapping, then $(s-I)^{h}=0$ . Therefore, the smallest algebraic group con-
taining it is irreducible ([1], II, prop. 5, 14) and $N^{\prime}$ is irreducible. More-
over, the elements of the Lie algebra $\mathfrak{n}^{\prime}$ of $N^{\prime}$ are nilpotent; since $\mathfrak{n}^{\prime}$

is an ideal, $\mathfrak{n}^{\prime}\subset \mathfrak{n}$ . Conversely, $\mathfrak{n}$ is in the kernel of $\rho$ , from which it
follows that $N$ is in the kernel of P. This proves that $N^{\prime}=N$.

Let $s$ be any element of $G$ . Since $P(G)=P(A)$ , there is an $a\in A$

such that $P(a)=P(s)$ ; then, $sa^{-1}$ belongs to the kernel $N$ of $P$ , which
shows that $s\in NA$ . In order to prove that the representation of an
$s\in G$ in the form $na$ , with $n\in N,$ $a\in A$ , is unique, it will be sufficent
to show that $N$ and $A$ have only the unit element in common. If
$n\in N$, then $n-I$ is nilpotent; we may write $n-I=\exp X$, where $X$ is
a nilpotent endomorphism of $V$ which belongs to the Lie algebra of any
algebraic group containing $n$ ([1], II, prop. 5, 14); thus, $X\in \mathfrak{n}\cap \mathfrak{a}=\{0\}$ ,
and $n=I$.

Let $K^{\prime}$ be an overfield of $K$. If $M$ is a vector space, or a Lie
algebra, or an algebraic group over $K$, we shall denote by $M^{K^{\prime}}$ the
vector space, the Lie algebra or the algebraic group over $K^{\prime}$ which
results from $M$ by extending the basic field to $K^{\prime}$ . Then $\mathfrak{n}^{K^{\prime}}$ is the
largest ideal of $\mathfrak{g}^{K^{\prime}}$ composed of nilpotent elements ([1], V, prop. 10, 2).
The algebra $\mathfrak{a}^{K^{\prime}}$ is reductive ([1], IV, prop. 8, 4), while $6^{K^{\prime}}$ is semi-
simple ([1], IV, prop. 10, 2). The algebra $b^{K^{\prime}}$ is abelian and algebraic,
and its elements commute with those of $e^{K^{\prime}}$ ; since $\mathfrak{a}^{K^{\prime}}=\mathfrak{b}^{K^{\prime}}+\S^{K^{\prime}},$ $b^{K^{\prime}}$ is
the center of $\mathfrak{a}^{K^{\prime}}$ . The elements of $b^{K^{\prime}}$ are semi-simple ([1], I, prop. 1
and 4, 8). Thus we see that every element of $G^{K^{\prime}}$ is uniquely repre.
sentable in the form $n^{\prime}a^{\prime}$ , with $n^{\prime}\in N^{K^{\prime}},$ $a^{\prime}\in A^{K^{\prime}}$ . We shall apply this
to the following case. Let $s$ be a generic point of $G$ relatively to $K$,
and $K^{\prime}=K(s)$ ; then $s\in G^{K^{\prime}}$ , and we may write $s=na,$ $n\in N^{K^{J}},$ $a\in A^{K^{\prime}}$ .
It follows from this formula that $K^{\prime}=K(s)\subset K(n, a)$ (the field obtained
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by adjunction to $K$ oflthe coordinates of $n,$ $a$ with respect to some base
of the space of endomorphisms of $V$). Since $K(n)$ and $K(a)$ are in $K^{\prime}$ ,
we have $K^{\prime}=K(n, a)$ . Let $p$ and $q$ be the dimensions of $\mathfrak{n}$ and $\mathfrak{a}$ :
since $n\in N^{K^{\prime}},$ $a\in A^{K^{J}}$ , the transcendence degree $p^{r}$ (resp. . $q^{\prime}$ ) of $K(n)$

(resp. : $K(a)$ ) over $K$ is $\leq p$ (resp. $:\leqq q$). The transcendence degree
of $K^{\prime}=K(n, a)$ is therefore $\leqq p^{t}+q^{\prime}$ ; but, since $s$ is generic, this trans-
cendence degree is the dimension $p+q$ of $q$ . I $t$ follows that $p^{\prime}=p,$ $q^{\prime}=q$ ,
and that any transcendence base of $K(n)$ over $K$ is also a transcend-
ence base of $K(s)$ over $K(a)$ . In particular, $n$ and $a$ are generic points
of $N$ and $A$ respectively, from which it follows that $K(n)$ and $K(a)$ are
respectively isomorphic (as algebras over $K$) to the fields of rational
functions on $N$ and $A$ . Similarly, $K(s)$ is isomorphic to the field of
rational functions on $G$ . Making use of prop, 14, [1], V, 3, we see that
$K(n)/K$ is a purely transcendental extension. We have therefore proved
the following result:

PROPOSITION 1. Let $G$ be an irreducible algebraic group of auto-
morphisms of a vector space, and let $f!$ be its Lie algebra. Let it be the
largest ideal of $1$

(] composed of nilpotent elements, and let q=\mbox{\boldmath $\iota$}\mbox{\boldmath $\tau$}+b+
’

be a direct sum decomposition with the following properties: $b$ is
algebraic and abelian, and its elements are semi-simple, @ is semi-
simple and its elements commute with those of $b$ . Set $\mathfrak{a}=\mathfrak{b}+6$ , and let
$A$ be the irreducible algebraic subgroup of $G$ whose Lie algebra is $\mathfrak{a}$ .
Then the field of rational functions on $G$ is a purely transcendental
extension of a field isomorphic to the field of rational functions on $A$ .

II. Reductive algebras of type $(D)$ .

Let now $G$ be an irreducible algebraic group of automorphisms of
$V$ such that the representation of $G$ on $V$ is semi.simple. Let $\mathfrak{g}$ be
the Lie algebra of $G;\mathfrak{g}$ is therefore reductive, and the elements of the
center 3 of $q$ are semi $\cdot$ simple endomorphisms of $V$ ([1], IV, th. 4, 4).

Let $\mathfrak{h}$ be a Cartan subalgebra of $\mathfrak{g}$ ; then $\mathfrak{h}$ contains $\mathfrak{z}([1]$ , VI, prop. 4,
4). The derived algebra @ of $\mathfrak{g}$ is semi-simple, and $\mathfrak{g}=\mathfrak{z}+6$ ; making
use of prop. 20, [1], VJ, 4, we see that $\mathfrak{h}$ is the direct sum of 3 and
of a Cartan subalgebra $\mathfrak{h}_{9}$ of 3. We shall say that fl is an algebra of
type $(D)$ if $\mathfrak{g}$ has a Cartan subalgebra $\mathfrak{h}$ with the following property:
for any $X\in \mathfrak{h}$ , the characteristic polynomial of the endomorphism $X$ of
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$V$ splits into linears factors with coefficient in $K$. This condition is
obviously satisfied if $K$ is algebraically closed.

THEOREM 1. Let $G$ be an irreducible algebraic group of automor $\cdot$

phisms of a finite dimensional vector space $V$ over a field $K$ of chara-
cteristic $0$ . Assume that the representation of $G$ on $V$ is $semi\cdot simple$

and that the Lie algebra $\mathfrak{g}$ of $G$ is of type $(D)$ . Then the field of
rational functions on $G$ is purely transcendental over $K$.

Under our assumption, there exists a base of $V$ composed of vectors
which are eigenvectors for all operations in $\mathfrak{h}$ , as follows immediately
from the fact that $\mathfrak{h}$ is abelian. Let $(x_{1},\cdots, x.)$ be such a base. The
algebra $\mathfrak{h}$ is the Lie algebra of a Cartan subgroup $H$ of $G$ , which is
an irreducible algebraic abelian subgroup of $G$ ([1], VI, prop. 5 and
th. 2, 4). Each $x_{i}$ is an eigenvector for all operations in $H$ ([1], III,
cor. 1 to th. 1). If $s\in H$, set $s\cdot x_{i}=u_{i}(s)x_{i},$ $tl_{i}(s)\in K(1\leqq i\leqq n)$ ; then,
each $u_{i}$ is a rational function on $H$, and the field $\mathfrak{R}(H)$ of rational
functions on $H$ is $\mathfrak{R}(H)=K(u_{1},\cdots, u_{n})$ . If $x_{\in}\mathfrak{h}$ , set $X\cdot x;=v_{i}(X)x_{i}$

$(1\leqq i\leqq n)$ . Let $Z^{n}$ be the product of $n$ times the additive group $Z$

of integers by itself; let $\Lambda$ be the subgroup of $Z^{n}$ composed of those
elements $(e_{1},\cdots, e_{n})$ such that $\sum_{i=1}^{n}e_{i}v_{i}(X)=0$ for all $X\in \mathfrak{h}$ . Taking into
account the fact that $H$ is irreducible, it follows from prop. 3, [1], II,
13 that $\prod_{i=1}^{n}u_{i}^{e};=1$ for any $(e_{1},\cdots, e_{n})\in\Lambda$ and that $H$ is the group of
all automorphisms $s$ of $V$ with the following properties: we have $s\cdot x$;
$=c_{i}x_{i}(1\leqq i\leqq n)$ with elements $c_{i}\in K$ such that $\prod_{i=1}^{n}c_{l}^{e;}=1$ for all
$(e_{1}\cdots, e_{n})\in\Lambda$ . lf $w=(w_{1},\cdots, w_{n})$ is a sequence of $n$ elements $\neq 0$ of a
field and $e=(e_{1},\cdots, e_{n})$ an element of $Z^{n}$ , we shall set $w^{e}=\prod_{i=1}^{n}w_{i}^{e_{j}}$ . It
is clear that $Z^{n}/A$ has no element $\neq 0$ of finite order; $Z^{n}$ is therefore
the direct sum of $\Lambda$ and of a subgroup $W$ of $Z^{n}$ . The functions of
the form $(u_{1},\cdots, u_{n})^{e}(e\in Z^{n})$ form a subgroup $U$ of the group of ele-
ments $\neq 0$ in $\mathfrak{R}(H);u_{1},\cdots,$ $u_{n}$ belong to this group, as seen by taking
for $e$ an element whose coordinates are all $0$ except for one which has
the value 1. It follows that $\mathfrak{R}(H)=K(U)$ . We have $(u_{1},\cdots, u_{n})^{e}=1$ if
$ e\in\Lambda$ ; since $Z^{n}=\Lambda+W,$ $U$ is the set of elements $(u_{1},\cdots, u_{n})^{f}$ for all
$f\in W$. Let $f(1),\cdot\cdot’,$ $f(p)$ be a base of $W$ ; set $z_{k}=(u_{1},\cdots, u_{n})^{f(k)}(1\leqq k\leqq p)$ ;
then it is clear that $\mathfrak{R}(H)=K(z_{1},\cdots, z_{p})$ . We shall see that $z_{1},\cdots,$ $z_{p}$ are
algebraically independent over $K$. It will obviously be sufficient to
prove that, if $d_{1},\cdots,$ $d_{p}$ are any elements $\neq 0$ of $K$, then there exists an
$s\in G$ such that $z_{k}(s)=d_{k}(1\leqq k\leqq p)$ . Let $K^{*}$ be the multiplicative
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group of elements $\neq 0$ in $K$ ; then there is a homomorphism of $W$

into $K^{*}$ which maps $f(k)$ upon $d_{k}(1\leqq k\leqq p)$ . Since $Z^{n}$ is the direct
sum of $\Lambda$ and $W$, this homomorphism may be extended to a homo-
morphism $\theta$ of $Z^{n}$ into $K^{*}$ which maps the elements of $\Lambda$ upon 1.
Set $c_{i}=\theta((0,\cdots, 1,\cdots, 0))(1\leqq i\leqq n)$ ; then we have $(c_{1},\cdots, c_{n})^{\epsilon}=1$ for all
$ ee\Lambda$ and $(c_{1},\cdots, c_{n})^{f(k)}=d_{k}(1\leqq k\leqq p)$ . It follows that there exists an
$seG$ such that $u_{i}(s)=c_{i}(1\leqq i\leqq n)$ and that $z_{k}(s)=d_{k}(1\leqq k_{--=}<p)$ , which
proves our assertion. Thus we see that the field $\backslash $)} $(H)$ of rational
functions on $H$ is purely transcendental over $K$.

Let $K^{\prime}$ be an algebraically closed overfield of $K$. Then $V^{K^{J}}$ is the
space of a representation of the semi.simple algebra $s^{K^{\prime}}$ . Each one of
the linear functions $v_{i}$ on $\mathfrak{h}$ introduced above extends to a linear func-
tion, still denoted by $v_{i}$ , on $\mathfrak{h}^{K^{\prime}}$ . Since $\mathfrak{h}s$ is a Cartan subalgebra of
@, $\mathfrak{h}_{\mathcal{B}}^{K^{\prime}}$ is a Cartan subalgebra of $B_{\mathfrak{g}}^{K^{\prime}}$

’ ([1], VI, prop. 22, 4). The restric-
tions to $\mathfrak{h}_{6}^{K^{J}}$ of the functions $v_{i}$ are the weights of the representation
of $e^{K^{\prime}}$ on $V^{K^{\prime}}$ . Let 1 be the rank of -, i. e. also of $^{K^{\prime}}$

’ ; this is also
the dimension of $\mathfrak{h}_{\mathcal{B}}^{K\prime}$ . The representation of $\mathfrak{h}_{\mathfrak{s}}^{K^{\prime}}$ on $V^{K^{J}}$ being faithful,
there are at least $l$ of the restrictions $v_{\acute{i}}$ to $\mathfrak{h}_{\mathfrak{g}}^{K^{\prime}}$ of the functions $v_{i}$

which are linearly independent. Now, it is well known that any weight
of any representation of $@^{K^{\prime}}$ is a linear combination with rational co-
efficients of the roots of $@^{K^{\prime}}$ with respect to $\mathfrak{h}_{9}^{K\prime}$ . Since there are $l$ of
the functions $v_{\acute{i}}$ which are linearly independent, it follows that all roots
of $@^{K^{\prime}}$ are linear combinations with rational coefficients of these func-
tions. In particular, any root of $^{K^{\prime}}$

’ with respect to $\mathfrak{h}_{\mathfrak{g}}^{K^{\prime}}$ is the extension
to $\mathfrak{h}_{\mathfrak{g}}^{K^{\prime}}$ of some linear function on $\mathfrak{h}_{6}$ . It follows immediately that, for
any such root $\alpha$ , we can find an element $X_{\alpha}$ of 3 which belongs to $\alpha$ ,
i.e. such that $[X, X_{\alpha}]=\alpha(X)X_{\alpha}$ for all $X\in \mathfrak{h}_{!3}$ (and $X_{\alpha}\neq 0$ ). On the
other hand, it is well known that it is possible to define an order rela-
tion on the additive group of all linear combinations with rational co-
efficients of the roots of $\mathfrak{X}^{\prime}$ with the property that this group becomes
an ordered group and that every root $\neq 0$ is either $>0$ or $<0$ rela.
tively to this order relation. Let $\mathfrak{n}_{+}$ (resp. : $\iota_{-}$ ) be the subspace of 6
spanned by the elements which belong to roots $>0$ (resp. $:<0$). Then
6 is the direct sum $\iota_{-}+\mathfrak{h}s+n_{+}$ , and $\mathfrak{g}$ is the direct sum $\iota_{-}+\mathfrak{h}+\mathfrak{n}_{+}$ . If
elements $X_{\alpha},$ $X_{\beta}$ of to belong to roots $\alpha,$ $\beta$, then $[X_{\alpha}, X_{\beta}]$ is either $0$ or
an element belonging to the root $\alpha+\beta$ ; it follows immediately that $\iota_{+}$

and $\mathfrak{n}$ -are subalgebras of $q_{1}$ . We shall see that every element of $\mathfrak{n}_{+}$
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is nilpotent. If $X_{\alpha}$ belongs to a root $\alpha$ , then X. $\cdot x_{i}$ is a linear combi-
nation of the vectors $x_{j}$ for which $ v_{\acute{j}}=v_{i}^{\prime}+\alpha$ . It follows that, if $X\in \mathfrak{n}_{+}$ ,
then, for any $i$ , and for any $k>0,$ $X^{k}\cdot x_{i}$ is a linear combination of
the vectors $x_{j}$ with the property that $v_{\acute{j}}-v_{\acute{i}}$ is a sum of $k$ roots $>0$ .
Since there are only a finite number of functions $v_{\acute{i}}$ , we can find an
integer $k$ such that none of the differences $v_{\acute{j}}-v_{i^{\prime}}(1\leqq i, j\leqq n)$ is $ex$ .
pressible as the sum of $k$ roots $>0$ , and we then have $X^{k}=0$ for all
$X\in \mathfrak{n}_{+}$ . We would see in the same way that all ele ments in $\mathfrak{n}_{-}$ are
nilpotent.

It follows that $\iota_{+}$ and $\mathfrak{n}_{-}$ are algebraic subalgebras of $f!$ ([1], V,
prop. 14, 3). Set $c=\mathfrak{h}+\mathfrak{n}_{+};$ then $c$ is an algebraic subalgebra of $q$ ([1],
II, th. 14, 14). The elements of $\mathfrak{h}$ being semi.simple endomorphisms of
$V$, it is clear that $n_{\vdash}$ is the largest ideal of $c$ composed of nilpotent
elements. Let $N_{-},$ $N_{+},$ $C$ be the irreducible algebraic subgroups of $G$

whose Lie algebras are $\uparrow-,$ $\mathfrak{n}_{+}$ and $c$ . Making use of prop. 1, 1, we see
that the field $\backslash J_{\grave{t}}(C)$ of rational functions on $C$ is a purely transcendental
extension of a field isomorphic to $\backslash J\grave{\iota}(H)$, and is therefore purely trans-
cendental over $K$. The subgroup $N_{-}\cap C$ of $N_{-}$ is irreducible ([1], VI,
cor. 1 to prop. 14, 3); its Lie algebra is contained in $\mathfrak{n}_{-}\cap c=\{0\}$ , from
which it follows that $N_{-}\cap C$ contains only the neutral element $I$.

Let $\Omega$ be any overfield of $K$ ; then the elements of $\mathfrak{n}^{\underline{a}}$ are nilpotent
([1], VI, prop. 10, 2). Therefore, by the argument we have just used,
$ N^{\underline{9}}\cap\alpha$ is irreducible, whence $N_{-}^{\Omega}\cap C^{\rho}=\{I\}$ . Now, let $c$ be a generic
point of $C$, and let $n_{-}$ be a generic point of $N_{-}^{K(c)}$ with respect to $K(c)$ .
Set $s=n_{-}c$, and let $\Omega$ be an algebraically closed overfield of $K(n_{-}, c)$ ,
whence $ K(s)\subset\Omega$ . We assert that $K(n_{-})$ and $K(c)$ are contained in $K(s)$

It will be sufficient to prove that the elements of these fields are left
fixed by any automorphism of $\Omega/K(s)$ . Let $\sigma$ be such an automorphism.
Denote by $n_{-}^{\sigma},$

$c^{\sigma}$ and $s^{\sigma}$ the automorphisms of $V^{\Omega}$ whose coordinates
(with respect to a base in the space of endomorphisms of $V$ ) are the
images of the coordinates of $n_{-},$ $c$ and $s$ under $\sigma$. Then we have $s=s^{\sigma}$

since $\sigma$ leaves the elements of $K(s)$ fixed. Since $s=n_{-}c$, we have
$n^{\sigma_{-}}c^{\sigma}=n_{-}c$, whence $n_{-}^{-1}n_{-}^{\sigma}=c(c^{\sigma})^{-1}$ . Since n-belongs to $N_{\sim}^{\Omega}$ , which may
be defined by a set of equations with coefficients in $K,$ $n^{\sigma}$-likely belongs
to $Ng$ ; similarly $c^{\sigma}$ belong to $C^{\Omega}$ . Thus $n_{-}^{-1}n_{-}^{\sigma}$ is in $N^{9}$ , while
$c(c^{\sigma})^{-1}\in C^{\emptyset}$. It follows that $n_{-}=n^{\sigma}$-and $c=c^{\sigma}$ . Since $K(n_{-})$ (resp. : $K(c)$ )
is generated by the coordinates of $n_{-}$ (resp. : c) with respect to a base
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of the space of endomorphisms of $V$, we see that $\sigma$ leaves all elements
of either one of the fields $K(n_{-})$ or $K(c)$ fixed, which proves our asser-
tion.

It follows that $K(s)=K(n_{-}, c)$ . The transcendence degree of $K(n_{-}, c)$

with respect to $K(c)$ is equal to the dimension of $N_{-}^{K(c)},$ $i$ . $e$ . also to the
dimension of $\mathfrak{n}_{-}$ . The transcendence degree of $K(c)$ over $K$ is the
dimension of $c$ . Since $\mathfrak{g}$ is the direct sum $\mathfrak{n}_{-}+c$ , we conclude that the
transcendence degree of $K(s)=K(n_{-}, c)$ over $K$ is equal to the dimension
of $\mathfrak{g}i.e$ . to that of $G$ , and therefore that $s$ is a generic point of $G$ over
$K$. Therefore, $K(s)$ is isomorphic (as an algebra over $K$ ) to the field
$\mathfrak{R}(G)$ of rational functions of $G$ . The field $K(c)$ is isomorphic to $\backslash $]} $(C)$ ,
and $K(n_{-}, c)$ is isomorphic (as an algebra over $K(c)$ ) to the field of
rational functions on $fl\Gamma_{-}^{K(c)}$ . But the elements of $\iota_{-}^{K(c)}$ are all nilpotent;
it follows that $\mathfrak{R}(N_{-}^{K(c)})$ is purely transcendental over $K(c)$ ([1], VI,
prop. 14, 2). Therefore, $\mathfrak{R}(G)$ is purely transcendental over a field
which is isomorphic to $\mathfrak{R}(C)$ . We know already that $\mathfrak{R}(C)$ is purely
transcendental over $K$. It follows that $\mathfrak{R}(G)$ is purely transcendental
over $K$, which proves th. 1.

COROLLARY 1. Let $G$ be an irreducible algebraic group of auto-
morphisms of a finite dimensional vector space $V$ over a field $K$ of
characteristic $0$ , and let $f!$ be the Lie algebra of G. Assume that $\mathfrak{g}$

has a Cartan subalgebra $\mathfrak{h}$ with the following properly: for any $X\in \mathfrak{h}$ ,
the characteristic polynomial of the endomorphism $X$ of $V$ splits into
linear factors with coeffcients in K. Then the field $\mathfrak{R}(G)$ of rational
functions on $G$ is purely transcendental over $K$.

We use the notation of I. The homomorphism $\rho$ of $f!$ onto $\rho(\mathfrak{a})$

maps $\mathfrak{h}$ onto a Cartan subalgebra $\mathfrak{h}_{\alpha}$ of $\rho(\mathfrak{a})$ ([1], VI, prop. 17, 4). We
know that $\mathfrak{a}$ is reductive and that $\rho$ induces a faithful semi-simple re-
presentation of $\mathfrak{a}$ ; the group $P(A)=JAJ^{-1}$ is isomorphic to $A$ as an
algebraic group. If $Xe\mathfrak{g}$ , then the characteristic polynomial of $X$ is
obviously equal to the product of the characteristic polynomials of the
endomorphisms $\rho_{i}(X)(1\leqq i\leqq h),$ $i$ . $e$ . also to the characteristic poly-
nomial of $\rho(X)$ . Thus, it follows from our assumption that the chara-
cteristic polynomials of the elements of $\mathfrak{h}_{(\iota}$ split into linear factors
with coefficients in $K$. Therefore, it follows from th. 1 that the field
$\mathfrak{R}(A)$ of rational functions on $A$ , which is isomorphic to $\mathfrak{R}(P(A))$ , is
purely transcendental over $K$, and from prop. 1, 1, that $\backslash J\grave{\backslash }(G)$ is purely
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transcendental over $K$.
COROLLARY 2. Let $G$ be any irreducible algebraic group over an

algebmically closed field $K$ of characteristic $0$ . Then the field of rational
functions on $G$ is purely transcendental over $K$

This follows immediately from cor. 1.
PROPOSITION 2. Let $H$ be an irreducible abelian group of auto-

morphisms of a finite dimensional vector spaoe over a field $K$ of
characteristic $0$ whose elements are semi-simple and whose Lie algebra

$\mathfrak{h}$ is of type $(D)$ ; let $p$ be the dimension of H. Then the field of rational
functions on $H$ is generated by $p$ functions $z_{1},\cdots,$ $z_{p}$ which are rational
representations of $H$ into the group $K^{*}$ of elements $\neq 0$ in $K;H$ is
isomorphic to $(K^{*})^{p}$ .

It is clear that $\mathfrak{h}$ is a Cartan subalgebra of itself. Using the same
notation as in the proof of th. 1, we observe that the functions $u_{1},\cdots,u_{n}$

are representations of $H$ in $K^{*};$ the same is therefore true of $z_{1},\cdots,$ $z_{p}$ .
We have seen that, if $d_{1},\cdots,$ $d_{p}$ are in $K^{*}$ , then there is an $seH$ such
that $z_{k}(s)=d_{k}(1\leqq k\leqq p)$ ; the mapping $s\rightarrow(z_{1}(s),\cdots,$ $z_{p}(s))$ is therefore
an isomorphism of $H$ with $(K^{*})^{p}$ .

III. Functions constant on every Cartan subgroup.

Let $s$ be a generic point of the group $G$ . Denote by 1 the identity
automorphism of the Lie algebra $\mathfrak{g}^{K(s)}$ of $G^{K(s)}$ and by $l$ the nullity of
I-Ad $s(i$ . $e$ . the multiplicity of $0$ as a characteristic root of this endo.
morphism). Since every point $s_{0}$ of $G$ is a specialisation of $s$ , it is
clear that the nullity of I-Ad $s_{0}$ is alway $\geqq l$, and is actually equal
to $l$ for some $s_{0}\in G;i$ . $e$ . $l$ is the rank of $G$ ([1], VI, d\’ef. 2, 4). The
rank of $G^{K(s)}$ being equal to that of $G$ ([1], VI, prop. 22, 4), we see
that $s$ is regular in $G^{K(s}$) and therefore belongs to a uniquely deter-
mined Cartan subgroup $H$ of $G^{K(s)}$ ([1], VI, th. 2, 4); let $\mathfrak{h}$ be the Lie
algebra of $H$ : this is a Cartan subalgebra of $\mathfrak{g}^{K(s)}$. We shall introduce
a field $L_{s}$ which is, in the sense of algebraic geometry, the field of de-
finition of the linear variety $\mathfrak{h}$ .

Let $\mathfrak{h}_{0}$ be a Cartan subalgebra of $\mathfrak{g}$ , and let $(X_{1},\cdots, X_{r})$ be a base
of $\mathfrak{g}$ which contains a base $(X_{1},\cdots, X_{l})$ of $\mathfrak{h}_{0}$. In order for an element
$X\in \mathfrak{g}^{K(S)}$ to belong to $\mathfrak{h}$ , it is necessary and sufficient that $($I–Ad $s)^{k}\cdot X$

$=0$ for some $k>0$ ([1], VI, prop. 8 and cor. 1 to th. 1, 4). Since $\mathfrak{g}$ is
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of dimension $r$, it is also necessary and sufficient that $($I-Ad $s)^{\gamma}\cdot X=0$.
Let $(f_{ij}(s))$ be the matrix which represents $(I-- Ads)^{r}$ with respect to
the base $(X_{1},\cdots, X_{r})$ ; each $f_{ij}$ is an everywhere defined rational function
on $G$ . In order for an element $=^{\urcorner}5_{i=1}ru_{i}X_{i}$ to belong to $\mathfrak{h}$ , it is necessary
and sufficient that the $u_{j^{)}}s$ be a solution of the linear system

(1) $\sum_{j=1}^{\prime}f_{ij}(s)u_{j}=0$ . $(1\leqq i\leqq r)$

Let $k$ be any index between 1 and 1; let us adjoin to the system (1)
the equations $u_{k^{\prime}}=()$ for $1\leqq k^{\prime}\leqq l,$ $k^{\prime}\neq k$. Since $\mathfrak{h}$ is of dimension $l$,
the system (1) is of rank $r-l$, and the system $(1_{k})$ we have just des-
cribed has a non trivial solution $(v_{1.k},\cdots, v_{r.k})$ . Let $H_{0}$ be the Cartan
subgroup of $G$ whose Lie algebra is $\mathfrak{h}_{0}$, and let $s_{0}$ be a regular element
of $G$ contained in $H_{0}$ ([1], VI, cor. 1 to th. 1, 4). Denote by $(1^{(0)})$ the
system deduced from (1) by replacing the $f_{ij}(s)$ by their values $f_{ij}(s_{0})$

at $s_{0}$ . Since $s_{0}$ is regular, the solutions $(u_{1},\cdots, u_{r})$ of $(1^{(0)})$ in $K$ are the
systems of elements $(u_{1},\cdots, u_{r})$ such that $\sum_{i-1}^{r}u_{i}X_{i}\in \mathfrak{h}_{c},$ $i$ . $e$ . such that
$u_{l+1}=\cdots=u_{r}=0$. It follows that the system $(1_{k}^{(0)})$ deduced from $(1^{(0)})$ by
adjoining the equations $u_{k^{\prime}}=0$ for $k^{\prime}\neq k,$ $1\leqq k^{\prime}\leqq l$, is of rank $r-1$ and
has a solution $(u_{1},\cdots, u_{r})$ for which $u_{k}\neq 0$ . This being the case, it is
clear that the system $(1_{k})$ is of rank $r-1$ and that $v_{k.k}\neq 0$ . We may
therefore assume that $v_{k,k}=1$ , and the elements $v_{ik}$ are then uniquely
determined. We can extract from the matrix of the system $(1_{k})$ a
square matrix with $r-1$ rows and columns whose determinant is of
the form $D(s),$ $D$ being a rational function on $G$ which is defined and
$\neq 0$ at $s_{0}$ . It follows immediately that $v_{i.k}=g_{ik}(s)$ , each $g_{ik}$ being a
rational function on $G$ which is defined at $s_{0}$. We denote by $L$ the
subfield of $\mathfrak{R}(G)$ which is generated over $K$ by the functions $g_{ik}(1\leqq i$

$\leqq r,$ $1\leqq k\leqq l$), and by $L_{s}$ the subfield of $K(s)$ generated by the elements
$g_{ik}(s);L_{s}$ is the image of $L$ under the isomorphism $f\rightarrow f(s)$ of $\mathfrak{R}(G)$

with $K(s)$ . The field $L$ does not depcnd on the choice of $\mathfrak{h}_{0}$ or of the
base $(X_{1},\cdots, X_{n})$ . In order to prove this, set $Y_{k}=\sum_{i}^{r_{=1}}g_{ik}(s)X_{j}$ ; since
$g_{kk^{\prime}}(s)=\delta_{kk}$ , if $1\leqq k,$ $k^{\prime}\leq 1,$ $Y_{1},\cdots,$ $Y_{i}$ form a base of $\mathfrak{h}$ . This being said,
let $\mathfrak{h}_{0}^{\prime}$ be any Cartan subalgebra of $\mathfrak{g}$ and $(X_{1}^{\prime},\cdots, X_{r}^{\prime})$ any base of $\zeta$}

containing a base $(X_{1}^{\prime},\cdots, X_{l}^{\prime})$ of $\mathfrak{h}_{0}^{\prime}$ . Let $(Y_{1}^{\prime},\cdots, Y_{l}^{\prime})$ be the base of $\mathfrak{h}$

constructed by means of $\mathfrak{h}_{0}^{\prime}$ and $(X_{1}^{\prime},\cdots, X_{r}^{\prime})$ in the same way $(Y_{1},\cdots, Y_{l})$

has been constructed in terms of $\mathfrak{h}_{0}$ and $(X_{1},\cdots, X_{r})$ . We have $Y_{h}^{\prime}$

$=\sum^{l_{k\Leftrightarrow 1}},w_{kk}Y_{k^{\prime}}$ . If we write $Y_{k^{\prime}}=\sum_{j\rightarrow 1}^{r}a_{k^{\prime}j}X_{j}^{\prime}$ , the elements $a_{k^{\prime}j}$ are
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in $L_{s}$ , and the elements $w_{kk^{J}}$ for a given $k$ are uniquely determined by
the condition that $\sum_{k^{\prime}=1}^{l}w_{kk^{\prime}}a_{k^{\prime}j}$ should be $0$ if $j\neq k,$ $1=<j\leqq l$ and 1 if
$j=k$ . The elements $w_{kk}$ , which constitute the unique solution of a
linear system with coefficients in $L_{s}$ , are therefore in $L_{s}$ , which shows
that the field $L_{s}^{\prime}$ defined by means of $\mathfrak{h}_{0}^{\prime}$ and the base $(X_{1}^{\prime},\cdots, X_{r}^{\prime})$ is
contained in $L_{s}$ . We would see in the same way that $L_{s}\subset L_{s}^{\prime}$, whence
$L_{s}=L_{s}^{\prime}$ .

We shall now see that $L_{s}$ is purely transcendental over $K$. We
may assume without loss of generality that $X_{1}$ is a regular element of
$\mathfrak{g}$ . It follows immediately from the fact that the functions $g_{ik}$ are de.
fined at $s_{0}$ that $(s, Y_{1},\cdots, Y_{l})\rightarrow(s_{0}, X_{1},\cdots, X_{l})$ is a specialisation over $K$ ;
in particular, $X_{1}$ is a specialisation of $Y_{1}$ . Since $X_{1}$ is regular, it fol-
lows immediately that $Y_{1}$ is regular. Thus, $\mathfrak{h}$ is the set of elements of
$\mathfrak{g}^{K(s)}$ which are mapped upon $0$ by some power of $adY_{1},$ $i$ . $e$. also which
are mapped upon $0$ by $(adY_{1})^{r}$ ([1], VI, prop. 16, 4). It follows that,
for $1\leqq k\leqq l,$ $Y_{k}$ is the unique element $\sum_{i-1}^{r}u_{i}X_{i}$ of $\mathfrak{g}^{K(s)}$ which satisfies
the following conditions: we have $($ad $Y_{1})^{r}\cdot(\sum_{i=1}^{r}u_{i}X_{i})=0$ and $u_{i}=\delta_{ik}$

if $1\leqq i\leqq l$. These conditions give a system of linear equations in
$u_{1},\cdots,$ $u_{n}$ with coefficients in the field $K(Y_{1})$ . It follows that the ele-
ments $g_{ik}(s)(1\leqq i\leqq l)$ all belong to the field $K(Y_{1}),$ $i$ . $e$ . to $ K(g_{l+1.1}(s),\cdots$ ,
$g_{r.1}(s))$ . This shows that the transcendence degree of $L_{s}/K$ is $\leqq r-l$.
On the other hand, since $\mathfrak{h}$ has a base in $\mathfrak{g}^{Ls}$ . we may write $\mathfrak{h}=\mathfrak{h}_{1}^{Kts}$ ‘,
where $\mathfrak{h}_{1}$ is a subalgebra of $\mathfrak{g}^{Ls}$ , which is a Cartan subalgebra of $\mathfrak{g}^{L_{S}}$

([1], VI, prop. 22, 4). Let $H_{1}$ be the Cartan subgroup of $G^{L_{S}}$ with $\mathfrak{h}_{1}$

as its Lie algebra, whence $H=H_{1}^{K(s)}$ . This group is of dimension $l$.
Since $s$ is a generalized point of $H_{1}$ , the transcendence degree of $K(s)$

$=L_{s}(s)$ over $L_{s}$ is $\leqq l$. The transcendence degree of $K(s)$ over $K$ being
$r$, we conclude on the one hand that $s$ is a generic point of $H_{1}$ over
$L_{s}$, on the other hand that the transcendence degree of $L_{s}$ over $K$ is
$r-l$. Since $L_{s}$ may be obtained by adjunction of $r-l$ elements to $K$,
we see that $L_{s}$ is purely transcendental over $K$.

If $K^{\prime}$ is any overfield of $K$ and $E$ a subset of $G^{K^{\prime}}$ , we shall say
that a rational function $f$ on $G$ is constant on $E$ if it has the same
value at all points of $E$ at which it is defined. We shall see that the
functions of the field $L$ are those rational functions $f$ on $G$ which are
constant on $H_{1}$ . Let first $f$ be in $L$ , whence $f(s)\in L_{s}$ . Let $s^{\prime}$ be any
point of $H_{1}$ at which $f$ is defined; then $s\rightarrow s^{\prime}$ is a specialisation over
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$L_{s}$ , and, since $f(s)\in L_{s}$ , we have $f(s^{\prime})=f(s)$ , which shows that $f$ is con-
stant on $H_{1}$ . Let conversely $f$ be constant on $H_{1}$ . Since $f$ is defined
at $s$ , which is a generalized point of $H_{1}$ , it is defined at least one point
$s_{1}eH_{1}$ ; it is clear that $f(s_{1})\in L_{s}$ . We assert that $f(s)=f(s_{1})$ . Were this
not the case, there would exist at least one specialisation $s_{1}^{\prime}$ of $s$ over
$L_{s}$ such that $f$, and therefore $f-fls_{1}$ ), is defined at $s_{1}^{\prime}$ and $(f-f(s_{1}))$

$(s_{1}^{\prime})\neq 0$ ; but $s_{1}^{\prime}$ would then be in $H_{1}$ and we would have $f(s_{1}^{\prime})\neq f(s_{1})$ ,
which is impossible. It follows that $ f(s)=f(s_{1})_{\in}L_{s},\cdot$ since $h\rightarrow h(s)$ is an
isomorphism of $\backslash $}} $(G)$ with $K(s)$ , it follows that $feL$.

We shall now prove that the functions of $L$ are constant on every
Cartan subgroup $H_{0}$ of $G$. We use the same notation as above. The
functions $g_{ik}$ are defined at $s_{0}$ , and we have $g_{ik}(s_{0})=\delta_{ik}(1\leqq i\leqq r$,
$1\leqq k\leqq l)$ . Let $0$ be the subring of $L_{s}$ generated by $K$ and the elements
$g_{ik}(s)$ ; then there exists a homomorphism $\theta$ of $\mathfrak{o}$ into $K$ such that
$\theta(g_{ik}(s))=\delta_{jk}$ . Introduce $l$ letters $T_{1},\cdots,T_{l}$ ; then $\theta$ may be extended to
a homomorphism of $0[[T_{1}\ldots., T_{l}]]$ (the ring of formal power series with
coefficients in o) into $K[[T_{1},\cdots, T_{l}]]$ which maps any power series upon
the power series obtained by applying $\theta$ to its coefficients. Set $ t=(\exp$

$T_{1}Y_{1})\cdots(\exp T_{l}Y_{l})$ ; then $t$ is a generic point of $H_{1}$ ( $[1]$ , II, th. 8, 12).
The coordinates of $t$ (with respect to a base of the space of endomor-
phisms of $V$, and therefore also of the space of endomorphisms of $V^{K^{\prime}}$ ,
for any overfield $K^{\prime}$ of $K$ ) are in $\mathfrak{o}[[T_{1},\cdots, T_{l}]]$ ; set $t_{0}=\theta(t)(t_{0}$ is the
endomorphism of $V^{K((T_{1}\ldots..T_{l}))}$ whose coordinates are the images of those
of $t$ under $\theta$ ). Since $\theta(Y_{k})=X_{k}(1\leqq k\leqq l)$ , it is clear that $t_{0}=(\exp T_{1}X_{1})$

$(\exp T_{l}X_{l});t_{0}$ is therefore a generic point of $H_{0}$ . Let $f$ be a function
in $L$ which is defined at least one point of $H_{0}$ (were this not the case,
$f$ would be trivially constant on $H_{0}$). Then $f$ is defined at $t_{0}$ and may be
written in the form $f_{1}/f_{2}$ , where $f_{1},f_{2}$ are polynomial functions on $G$ and
$f_{2}(t_{0})\neq 0$ , whence $f_{2}(t)\neq 0$ . The elements $f_{1}(t)$ and $f_{2}(t)$ are in $0[[T_{1},\cdots, T_{l}]]$ .
Since $s$ and $t$ are generic points of $H_{1}$ , there is an isomorphism of $L_{s}(s)$

with $L_{s}(t)$ which leaves the elements of $L_{s}$ fixed and maps $h(s)$ upon
$h(t)$ for any rational function $h$ on $G$ . Since $f\in L$ , we have $f(s)eL_{s}$ ,
whence $f(t)\in L_{s}$ . On the other hand, $f(t)=f_{1}(t)/f_{2}(t)$ . Thus the coeffici-
ents of the power series $f_{2}(t)$ in $T_{1},\cdots,$ $T_{l}$ are proportional to those of
the power series $f_{1}(t)$ , the proportionality ratio being $f(t)eL_{s}$ . But one
at least of the coefficients of the power series $f_{2}(t)$ is not mapped. upon
$0$ by $\theta$, since $f_{2}(t_{0})\neq 0$ . It follows that we may write $f(t)=a/b$ , where
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$a$ and $b$ are elements of $0$ such that $\theta(b)\neq 0$ . It follows immediately
that $f(t_{0})=\theta(a)/\theta(b)$ is an element of $K$. Now, let $t_{1}$ be any element of
$H_{0}$ at which $f$ is defined; then $t_{1}$ is a specialisation of $t_{0}$ ovqr K. and
$f(t_{1})$ is a specialisation of $f(t_{0})$ . Since $f(t_{0})\in K$, we have $f(t_{1})=f(t_{0})$ . which
proves that $f$ is constant on $H_{0}$.

Let conversely $f$ be a rational function on $G$ which is constant on
every Cartan subgroup of $G$. Write $f=f_{1}/f_{2}$ , where $f_{1},f_{2}$ are polynomial
functions, and $f_{2}\neq 0$ . Then we have $f_{2}(t)\neq 0$ . If the formal power
series $f_{1}(t),$ $f_{2}(t)$ with coefficients in $0$ are proportional to each other,
then $f(t)\in L_{s}$ , whence $f(s)=f(t)\in L_{s}$ and $f\in L$ . We shall assume for a
moment that this is not the case, and we shall derive a contradiction
from this assumption. We therefore assume that there exist two co-
efficients $a,$

$b$ of the formal power series $f_{1}$ such that, $a^{\prime}$ and $b$‘ being
the corresponding coefficients of $f_{2}$ , we have $ab-ba^{\prime}\neq 0$ . Assuming,
as we did before, that $X_{1}$ is regular, we have seen that $Y_{1}$ is regular.
The coefficient $D$ of $T^{l}$ in the characteristic polynomial of $adY_{1}(T$

being the variable with which we write this polynomial) is therefore an
element $\neq 0$ of $0$ . Thus, $D(ab^{\prime}-ba^{\prime})$ is an element $\neq 0$ of $0$. The field
of quotients $L_{s}$ of $0$ is purely transcendental over $K$ ; expressing the
elements $g_{ik}(s),$ $D(ab^{\prime}-ba^{\prime})$ as rational fractions in the elements of some
transcendence base of $L_{s}/K$ , we see easily that there exists a homo-
morphism $\theta$

‘ of $0$ into $K$ such that $\theta^{\prime}(D(ab^{\prime}-ba^{\prime}))\neq 0$ . We extend as
above $\theta$

‘ to a homomorphism of $\mathfrak{o}[[T_{1},\cdots, T_{l}]]$ into $K[[T_{1}\cdots, T_{l}]]$ ,
and we set $X_{k}^{\prime}=\theta^{\prime}(Y_{k})(1\leqq k\leqq l),$ $t^{\prime}=\theta^{\prime}(t)$ , whence $ t^{\prime}=(\exp T_{1}X_{1}^{\prime})\cdots$

$(\exp T_{l}X_{l}^{\prime})$ . It is clear that $\theta^{\prime}(D)\neq 0$ is the co\’efficient of $T^{l}$ in the
characteristic polynomial of $adX_{1}^{\prime}$ , and therefore that $X_{1}^{\prime}$ is regular in
$\mathfrak{g}$ . From the relations $(adY_{1})^{r}Y_{k}=0(1\leqq k\leqq l)$ , it follows immediately
that $(adX_{1}^{\prime})^{r}$ . $X_{k}^{\prime}=0$ , and therefore that $X_{1}^{\prime},\cdots,$ $X_{l}^{\prime}$ belong to the Cartan
subalgebra $\mathfrak{h}_{0}^{\prime}$ of $\mathfrak{g}$ which contains $X_{1}^{\prime}$ . We have $Y_{k}=\sum_{i\rightarrow 1}^{r}g_{ik}(s)X_{l}$ ,
whence $X_{k}^{\prime}=\sum_{i=1}^{r}\theta^{\prime}(g_{ik}(s))X_{i}$ ; since $g_{ik}(s)=\delta_{jk}$ if $i\leqq l$ , we have also
$\theta^{\prime}(g_{ik}(s))=\delta_{ik}$ if $i\leqq l$ , which shows that $X_{1}^{\prime},\cdots,$ $X_{l}^{\prime}$ are linearly indepen-
dent and constitute a base of $\mathfrak{h}_{0}^{\prime}$ . Thus, $t$

‘ is a generic point of the
Cartan sub$g$roup $H_{0}^{\prime}$ of $G$ whose Lie algebra is $\mathfrak{h}_{0}^{\prime}$ . Since $\theta^{\prime}(ab^{\prime}-ba^{\prime})\neq 0$ .
$\theta^{\prime}(a^{\prime})$ and $\theta^{\prime}(b^{\prime})$ are not both $0$ , from which it follows that the power
series $\theta^{\prime}(f_{2}(t))=f_{2}(t^{\prime})$ is $\neq 0$ and that $f$ is defined at $t^{\prime}$ . We have

$f(t^{\prime})=f_{1}(t^{\prime})/f_{2}(t^{\prime})$, and, since $\theta^{\prime}(ab^{\prime}-ba^{\prime})\neq 0$, the power series $f_{1}(t^{\prime}),$ $f_{2}(t^{\prime})$

are not Proportional to each other, which shows that $f(t^{\prime})$ is not in $K$.
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Since $f_{2}(t^{\prime})\neq 0,$ $f$ is defined at least one point $t_{1}^{\prime}$ of $H_{0}^{\prime}$ ; set $c=f(t_{1}^{\prime})$ .
Then $f(t^{\prime})-c\neq 0$ ; the restriction to $H_{0}^{\prime}$ of $f-c$ being a rational function
$\neq 0$ , there is at least one point $t_{2}^{\prime}$ of $H_{0}^{\prime}$ at which $f-c$ is defined and
takes a value $\neq 0$ . Then $f$ is defined at $t_{1}^{\prime}$ and $t_{2}^{\prime}$ and $f(t_{1}^{\prime})\neq f(t_{2}^{\prime})$ , in
contradiction to the assumption that $f$ is constant on $H_{0}^{\prime}$ .

Thus, the functions in $L$ are characterized by the property of being
constant on every Cartan subgroup of $G$ , which shows that the field
$L$ does not depend on the choice of the generic point $s$ .

Now, let $K^{\prime}$ be any overfield of $K$, and choose for $s$ a generic point
of $G^{K^{\prime}}$(and therefore, a fortiori, of $G$ ). Then the Cartan subgroup of
$G^{K^{\prime}(s)}$ which contains $s$ is clearly $H^{K^{\prime}(s)}$ , and its Lie algebra is $\mathfrak{h}^{K^{\prime}(S)}$ . The
elements $Y_{1},\cdots$ . $Y_{l}$ form a base of $\mathfrak{h}^{K^{\prime}(S)}$ . Therefore, the arguments used
above show that the field of rational functions on $G^{K^{\prime}}$ which are con-
stant on every Cartan subgroup of $G^{K^{\prime}}$ is obtained by adjunction to
$K^{\prime}$ of the elements $g_{ik}$ : this field is $L^{K^{J}}$ . Thus we have proved the
following redults:

PROPOSITION 3. The ration$al$ functions on $G$ which are constant
on every Cartan subgroup of $G$ form a subfield $L$ of the field of rational
functions on G. If $G$ is of dimension $r$ and rank $l$, then $L/K$ is a
purely transcendental extension of transcendence degree $r-l$. If $s$ is
a generic point of $G$, and $H$ the Cartan subgroup of $G^{K(S)}$ which con-
tains $s$, then we may write $H=H_{1}^{h^{\prime}(s)}$ , where $H_{1}$ is a Cartan subgroup
of $G^{Ls},$ $L_{s}$ being the image of $L$ under the isomorphism $f\rightarrow f(s)$ of $\mathfrak{R}(G)$

with $K(s)$ . The point $s$ is a generic point of $H_{1}$ ; the functions $f$ of $L$

are characterized by either one of the following properties: a) $f(s)c\cdot L_{s}$ ;
b) $f$ is constant on $H_{1}$ . If $K^{\prime}$ is an overfield of $K$, the rational func.
tions on $G^{K^{\prime}}$ which are constant on every Cartan subgroup are exactly
those of $L^{K^{\prime}}$.

Consider now the field extension 9 $\mathfrak{i}(G)/L$ . The isomorphism $f\rightarrow f(s)$

of $\mathfrak{R}(G)$ with $K(s)$ maps $L$ onto $L_{s}$ , and we have $K(s)=L_{s}(s)$ . Since $s$ is
a generic point of $H_{1},$ $K(s)$ is isomorphic to the field of rational func.
tions on $H_{1}$ . Thus, we see that $\backslash ]_{\grave{t}}$ is isomorphic, as an algebra over
$L$ , to the field of rational functions on some Cartan subgroup of $G^{L}$.

If $\mathfrak{g}$ is a nilpotent Lie algebra and $\mathfrak{n}$ the largest ideal of $\mathfrak{g}$ composed
of nilpotent elements, then $\mathfrak{g}$ is direct sum of 11 and of an algebraic
subalgebra $a$ of the center of $q$ whose elements are semi-simple ([1], V,
prop. 22, 3). Taking prop. 1 into account, we see that the field of



On algebraic group varieties. 317

rational functions on the irreducible algebraic group whose Lie algebra
is $\mathfrak{g}$ is a purely transcendental extension of a field isomorphic to the
field of rational functions on the irreducible group $A$ whose Lie algebra
is $\mathfrak{a}$ . Thus we have the following result:

PROPOSITION 4. Let $G$ be an irreducible algebraic group and $\mathfrak{R}(G)$

the field of rational functions on G. Then $\mathfrak{R}(G)$ has a subfield $M$ with
the following properties: $M$ is purely transcendental over the basic
field of $G$ , and $\mathfrak{R}(G)$ is isomorphic (as an algebra over $M$) to the field
of rational functions on some irreducible abelian algebraic subgroup of
$G^{M}$ whose elements are semi-simple.

IV. Abelian groups.

We shall now assume that the group $G$ is abelian and that its
elements are semi.simple. The Lie algebra $\mathfrak{g}$ of $G$ is then abelian and
its elements are semi $\cdot$simple; for, the enveloping associative algebra of
$\mathfrak{g}$ is the same as that of $G$ ([1], VI,cor. 2 to th. 8, 12) and the elements
of this algebra are all $semi\cdot simple$ ([1], $I$ , prop. 4, 8). We can find a
finite galoisian extension $L/K$ of $K$ such that the characteristic poly-
nomials of the elements of a base of $\mathfrak{g}$ split into linear factors with
coefficients in $L$ . It is then clear that $\mathfrak{g}^{L}$ is abelian of type $(D)$ . It
follows that the field $\mathfrak{R}(G^{L})$ of rational functions on $G^{L}$ may be repre $\cdot$

sented in the form $L(z_{1},\cdots, z_{r})$ , where $z_{1},\cdots,$ $z_{r}$ are al$g$ebraically indepen-
dent over $L$ and are rational representations of $G^{L}$ in the multiplicative
group $L^{*}$ of elements $\neq 0$ in $L$ ; the mapping $s\rightarrow(z_{1}(s),\cdots,$ $z_{r}(s))$ is an
isomorphism of $G^{L}$ with $(L^{*})^{r}$ .

Let $\mathfrak{G}$ be the Galois group of $L/K$. Then we may make the ele-
ments of $\mathfrak{G}$ operate on $V^{L}$ and on the space of endomorphisms of $V^{L}$.
The elements (resp. : the endomorphisms) of $V$ are the elements (resp. :
endomorphisms) of $V^{L}$ which are invariant by the operations of $\mathfrak{G}$ . In
particular, $G$ is the set of elements of $G^{L}$ invariant by all automor $\cdot$

phisms of $\mathfrak{G}$ . Moreover, since $G^{L}$ is defined by a system of equations
with coefficients in $K$, the elements of $G^{L}$ are permuted amon $g$ them-
selves by the operations of $\mathfrak{G}$ . Now, since $G^{L}$ is abelian, it is clear
that, for any $s\in G^{L}$, the element $\Gamma I_{\sigma\epsilon \mathfrak{G}^{S^{\sigma}}}$ is in $G$ ; we shall denote this
element by $N(s)$ . The mapping $s\rightarrow N(s)$ is a homomorphism of $G^{L}$ into
$G$.
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We propose now to determine the form of the expressions of the
elements $z_{i}(s^{\sigma})(s\in G^{L}, \sigma\in \mathfrak{G})$ in terms of $z_{1}(s),\cdots,$ $z_{r}(s)$ . We shall first
prove that any rational representation $z$ of $G^{L}$ into $L^{*}$ is in the group
generated by $ z_{1},\cdots$ . $z_{r}$ . We may write $z=R(z_{1},\cdots, z_{r})$ , where $R$ is a
rational fraction defined at all points of $L^{r}$ whose coordinates are all
$\neq 0$. If $M$ is any overfield of $L$ , the rational function on $G^{M}$ which
extends $z$ is a rational representation of $G^{M}$ into the multiplicative
group $M^{*}$ of elements $\neq 0$ in $M;R$ is therefore defined at every point
of $M^{r}$ whose coordinates are all $\neq 0$ . Let $M=L(u_{2},\cdots, u_{r})$ , where
$u_{2},\cdots,$ $u_{r}$ are algebraically independent over $L$. Then the rational frac-
tion $R(U. u_{2},\cdots, u_{r})=R^{\prime}(U)$ is defined at every element $u\neq 0$ of $M$, and
we have $R^{\prime}(uu^{\prime})=\rho R^{\prime}(u)R^{\prime}(u^{\prime}),$ $\rho\in M$, whenever $u,$

$u^{\prime}$ are elements $\neq 0$

of $M$. Write $R^{\prime}(U)=P(U)/Q(U)$ where $P,$ $Q$ are polynomials with co-
efficients in $M$, relatively prime to each other. Then, for $u\neq 0$ in $M$,
we have

$P(uU)/Q(uU)=\rho R(u)P(U)/Q(U)$ .
Since $P(uU)$ (resp. : $Q(uU)$ ) is of the same degree as $P$ (resp. : $Q$), we
have $P(uU)=c(u)P(U),$ $Q(uU)=c^{\prime}(u)Q(U)$ , where $c(u)$ . $c^{\prime}(u)eM$. This
implies that $P(U)=aU^{p},$ $Q(U)=bU^{q}$ . $a,$ $b$ in $M$, whence $R^{\prime}(U)=fU^{e}$,
with $feM,$ $e$ being an integer. In other words, we have $R(z_{1},\cdots, z_{r})$

$=z_{1}^{e}R_{1}(z_{2},\cdots, z_{r}),$ . $R_{1}$ being a rational fraction in $r-1$ variables. We
would see in the same way that, for any $i,$ $R(z_{1},\cdots, z_{r})$ is the product
of a power $z_{i^{(}}^{ei)}$ of $z_{i}$ by an element which is a rational fraction in the
$z_{j}’ s$ for $i\neq i$. It follows that $R(z_{1},\cdots, z_{r})=c\prod_{i}^{r_{-1}}l_{i}^{(i)}$ , with ce $L$, and it
is clear that $c=1$ , which shows that $z$ belongs to the group generated
by $z_{1},\cdots,$ $z_{r}$ . This being said, if we denote by $w_{1}(s),\cdots,$ $w_{m}(s)$ the co-
ordinates of $s$ with respect to a base of the space of endomorphisms
of $V$ (and therefore also of $V^{L}$), we have $w_{k}(s^{\sigma})=\sigma\cdot w_{k}(s)$ . Expressing
the $z_{i}(s)$ as rational fractions in $w_{1}(s),\cdots,$ $w_{m}(s)$ , we see immediately $that\backslash $

the mappings $s\rightarrow\sigma^{-1}(z_{i}(s^{\sigma}))(1\leqq i\leqq r)$ are rational representations of
$G^{L}$ into $L^{*}$ . Thus we have

$z_{i}(s^{\sigma})=\sigma\cdot\prod_{j-1}^{r}z_{i^{ij^{(\sigma)}}}^{e}$

where the $e_{ij}(\sigma)$ are integers. It is clear that the mapping $\sigma\rightarrow(e_{ij}(\sigma))$

is a representation of $\mathfrak{G}$ by matrices of degree $r$ with integral coeffici.
ents.
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Now, we shall see that the image $N(G^{L})$ of $G^{L}$ under the homo-
morphism $s\rightarrow N(s)$ is dense in $G$ in the sense of the Zariski topology.
Let $P$ be a polynomial function on $G$ which is zero on $N(G)$ . We may
extend $P$ to a polynomial function on $G^{L}$, still denoted by $P$ : we have
$P=R(z_{1},\cdots, z_{r}),$ $R$ being a rational fraction in $r$ variables $Z_{1},\cdots,$ $Z_{r}$ .
Introduce $dr$ letters $Z_{i_{\sigma}}.(1\leqq i\leqq r, \sigma\in \mathfrak{G})$ (where $d=[L:K]$ ) and let
$R^{\prime}(\cdots, Z_{i}.\sigma’\cdots)$ be the rational fraction obtained from $R$ by the substitu.
tion

$ Z_{i}\rightarrow\prod_{\sigma\epsilon \mathfrak{G}}\prod_{j\rightarrow I}^{r}Z_{j^{ij_{\sigma}^{(\sigma)}}}^{e}.\cdot$

Then it follows from the assumption that $P$ vanishes on $N(G^{L})$ that,
for any elements $\zeta_{1},\cdots,$ $\zeta_{r}$ all $\neq 0$ of $L$ , the result of the substitution
$Z_{i}.\sigma\rightarrow\sigma\cdot\zeta_{i}$ in $R$ ‘ is $0$ . Making use of Lemma 2, [1], II, 13, we conclude
that $R^{\prime}=0$. Now, if $\sigma_{1}$ is the unit element of $G$ then $e_{ij}(\sigma_{1})=\delta_{ij}$, and
it follows that $R(Z_{1},\cdots, Z_{r})$ is the rational fraction which results from
$R^{t}$ by the substitution $Z_{i.\sigma_{1}}\rightarrow Z_{i}(1\leqq i\leqq r),$ $Z_{i,\sigma}\rightarrow 1$ for $\sigma\neq\sigma_{1}$ . We con-
clude that $R=0$, whence $P=0$. This proves that $N(G^{L})$ is dense in $G$ .

Let $(\omega_{1},\cdots, \omega_{d})$ be a base of $L/K$. Let $L(w)$ be a field obtained
from $L$ by adjunction of $rd$ elements $w_{ik}(1\leqq i\leqq r, 1\leqq k\leqq d)$ which
are algebraically independent over $L$ . Then $L(w)$ is galoisian of degree
$d$ over $K(w)$ , and the Galois group of $L(w)/K(w)$ may be identified to
$\mathfrak{G}$ . Let $s_{w}$ be the element of $G^{L(w)}$ such that $z_{i}(s_{w})=\sum_{n=1}^{d}W_{ik}\omega_{k}$ . Pro.
ceeding as above, we see that $\mathfrak{G}$ operates in a natural manner on
$G^{L(w)}$ , and that the set of elements of $G^{L(w)}$ which are left fixed by the
operations of $\mathfrak{G}$ is $G^{K(w)}$ . We set $t_{w}=N(s_{w})=\prod_{\sigma\epsilon \mathfrak{G}}s_{w}^{\sigma}$ . Then $t_{w}$ is an
element of $G^{K(\iota v)}$, and it is clear that every element of $N(G^{L})$ is a
specialisation of $t_{w}$ over $K$. It follows that $t_{w}$ is a generic point of $G$ .
If $f\in \mathfrak{R}(G)$, then $f(t_{w})\in K(w)$ , and the mappin $gf\rightarrow f(t_{w})$ is an isomorphism
of $\mathfrak{R}(G)$ with a subfield of $K(w)$ , which is purely transcendental over
$K$ : this isomorphism leaves the elements of $K$ fixed.

Now, we shall prove the following lemma:
LEMMA 2. Let $K$ be an infinite field, and $K(w_{1},\cdots, w_{p})$ a purely

transcendental extension of transcendence degree $p$ of K. Let $R$ be a
subfield of $K(w)=K(w_{1},\cdots, w_{p})$ containing $K$ and of transcendence
degree $r$ over K. Then there is a purely transcendental extension
$M/K$ of transcendence degree $r$ of $K$ such that $R$ is isomorphic (as an
algebra over $K$) to a subfield of $M$.
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The following proof of this lemma has been communicated to me
by Mr. Shimura.

Proceeding by induction on $p$ , it is obviously sufficient to prove
the following result: let $K$ be an infinite field, $L$ a finitely generated
overfield of $K$ of transcendence degree $r,$ $L(w)$ an overfield of $L$ obtained
by adjunction to $L$ of an element $w$ which is transcendental over $L$

and $R$ a subfield of $L(w)$ containing $K$ and whose transcendence degree
over $K$ is $\leq r$ ; then there exists a Kisomorphism of $R$ with a subfield
of $L$.

By adjoining to $R$ some elements of a transcendence base of
$L(w)/K$, we may obviously reduce the problem to the case where $R$ is
of transcendenoe degree $r$ over $K$. Assume that this is the case. We
may further assume that $w$ is transcendental over $R$ . For, if this is
not the case, then $L$ must contain some element $a$ which is trans-
cendental over $R$ (since $L(w)$ is not algebraic over $R$); if we set
$w^{\prime}=w+a$ , we have $L(w^{\prime})=L(w)$ , and $w^{\prime}$ is transcendental over both $L$

and $R$ . Represent $L$ in the form $K(x_{1},\cdots, x_{n})$ , with $x_{i}\in L(1\leq i\leq n)$ .
Since the extension $L(w)/K$ is finitely generated, it is well known that
the same is true of $R/K$ ; let $y_{m},\cdots,y_{n}$ be elements of $R$ which generate
$R$ over $K$. We may write $v;=Y_{i}(w)(1\leq i\leq m)$ , where each $Y_{i}$ is a
rational fraction in one letter with coefficients in $L$ . On the other
hand, it follows from our assumptions that $R(w)$ is of transcendence
degree $r+1$ over $K$. Each $x_{k}$ is therefore algebraic over $R(w)$ , and we
have relations of the form

$\sum_{j=0}^{d(k)}X_{jk}(y_{1},\cdots,y_{m}, w)x_{k}^{d(k)- j}=0$

where each $X_{kj}$ is a polynomial in $m+1$ letters with coefficients in
$K$ and $X_{0k}(y_{1},\cdots,y_{m}, w)\neq 0$ . We may write

$X_{0k}^{(}y_{1},\cdots,y_{m},$ $w$) $=X_{k}^{\prime}(w)$

where $X_{k}^{\prime}$ is a rational fraction $\neq 0$ with coefficients in $L$ . Since $K$

is infinite, there exists an element $w_{0}\in K$ such that the rational frac.
tions $Y_{i}(1\leq i\leq m),$ $X_{k}^{\prime}(1\leq k\leq n)$ are all defined at $w_{0}$ and $X_{k}^{\prime}(w_{0})\neq 0$

$(1\leq k\leq n)$ . Let $0$ be the subring of $L(w)$ composed of all elements of
the form $A(w)$ , where $A$ is any rational fraction with coefficients in $L$

which is defined at $w_{0}$ . There exists a homomorphism $\varphi$ of $0$ into $L$

which coincides with the identity on $L$ and which maps $w$ upon $w_{0}$.
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The elements $y_{i},$ $w$ belon $g$ to $0$ , whence $K[y_{1},\cdots,y_{m}, w]\subset 0$ ; set $y_{i}^{\prime}=\varphi(y_{i})$

and
$\xi_{jk}=\varphi(X_{jk}(y_{1},\cdots,y_{m}, w))=X_{jk}(y_{1}^{\prime},\cdots,y_{m}, w_{0})$ .

Then we have $\sum_{j=0^{)}}^{dk}\xi_{jk}x_{k^{(k)-j}}^{d}=0$ ; moreover, $\xi_{0k}=\varphi(X_{k}^{\prime}(w))=X_{k}^{\prime}(w_{0})\neq 0$ .
It follows that $x_{1},\cdots,x_{n}$ are algebraic over the subfield $R‘=K(y_{1}^{\prime},\cdots,y_{m}^{\prime})$

of $L$, and therefore that $R^{f}$ is of transcendence degree $r$ over $K$ The
mapping $\varphi$ induces a homomorphism $\varphi_{1}$ of $K[y_{1},\cdots,y_{m}]$ onto $K[y_{1}^{\prime},\cdots,y_{\acute{m}}]$ .
Since both $K(y_{1},\cdots,y_{m})=R$ and $K(y_{1}^{\prime},\cdots, y_{m}^{\prime})=R^{\prime}$ are of transcendence
degree $r$ over $K$, it is well known that $\varphi_{1}$ is an isomorphism and
therefore extends to an isomorphism of $R$ with $R^{\prime}$ . Lemma 2 is there-
by proved.

This proves that the field $\mathfrak{R}(G)$ of rational functions on an irreduci $\cdot$

ble algebraic group $G$ which is abelian and whose elements are semi-
simple is isomorphic to a subfield of a purely transcendental extension
of transcendence degree $r$ of the basic field of $G,$ $r$ being the dimension
of $G$ .

Taking prop. 4, III into account, we obtain the following result:
THEOREM 2. Let $G$ be an irreducible algebraic group of dimension

$r$ over a field $K$ of characteristic $0$ . Then the field of rational func-
tions on $G$ is isomorphic (as an algebra over $K$ ) to a subfield of a
purely transcendental extension of transcendence degree $r$ of $K$.

Returning to the notation used above, it is of interest to charac-
terize the subfield $\mathfrak{R}(G)$ of $\mathfrak{R}(G^{L})=L(z_{1},\cdots, z_{r})$ . It is clear that a rational
function $f\in \mathfrak{R}(G^{L})$ belongs to $\mathfrak{R}(G)$ if and only if it satisfies the follow-
ing condition: for any $s\in G^{L}$ and $\sigma\in \mathfrak{G}$ such that $f$ is defined at $s$ and
$s^{\sigma}$ , we have $f(s^{\sigma})=\sigma\cdot f(s)$ . Now, we may let the group $\mathfrak{G}$ operate in
two different manners on the field $\mathfrak{R}(G^{L})=L(z_{1},\cdots, z_{r})$ . Let $\sigma$ be an
element of $\mathfrak{G}$ . Denote by $\psi_{1}(\sigma)$ the automorphism of $L(z_{1},\cdots, z_{r})$ which
transforms any $a\in L$ into $\sigma\cdot$ $a$ and which leaves $z_{1},\cdots,$ $z_{r}$ fixed; then
$\psi_{1}$ is an isomorphism of $\mathfrak{G}$ with a group $\mathfrak{G}_{1}$ of automorphisms of
$L(z_{1},\cdots, z_{r})$ , and the elements which are left fixed by the operations of
$\mathfrak{G}_{1}$ are those of $K(z_{1},\cdots, z_{r})$ . On the other hand, the matrix $(e_{ij}(\sigma))$

being of determinant $\pm 1$ , there is an automorphism $\psi_{2}(\sigma)$ of $L(z_{1},\cdots, z_{r})$

which leaves the elements of $L$ fixed and which transforms each $z_{i}$

into $\prod_{j=1}^{r}z_{j^{ij^{(\sigma-1})}}^{e}$ . It is clear that $\psi_{2}$ is a homomorphism of $\mathfrak{G}$ into the
group of automorphisms of $L(z_{1},\cdots, z_{r})$ . Let $s$ be an element of $G^{L}$ and
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$f$ an element of $\mathfrak{R}(G^{L})$ which is defined at $s$ and $s^{\sigma}$ . Set $f=F(z_{1},\cdots, z_{r})$,
where $F$ is a rational fraction with coefficients in $L$ , and set $\zeta_{i}=z_{i}(s)$,
$\zeta_{i}^{\prime}=z_{i}(s^{\sigma})$ ; then we have $\zeta_{i}^{\prime}=\sigma\cdot II_{j\Leftarrow 1}^{r}\zeta_{j^{ij^{(\sigma)}}}^{\rho}$ . It follows easily that $f(s^{\sigma})$

$=\sigma\cdot(\psi_{1}(\sigma^{-1})\cdot\psi_{2}(\sigma^{-1}))f(s)$ ; thus, $f$ will belong to $\backslash $}$\grave{\iota}(G)$ if and only if
it is invariant by every automorphism of the form $\psi_{1}(\sigma)\cdot\psi_{2}(\sigma)$ of
$\mathfrak{R}(G^{L})$ . These automorphisms form a group isomorphic to $\mathfrak{G}$ . The field
$\backslash J\grave{\backslash }(G)$ admits a subfield conlposed of the elements of $K(z_{I},\cdots, z_{r})$ which
are invariant under the automorphisms of this field induced by the
operaions of $\psi_{2}(\mathfrak{G})$ . This subfield is of interest in the case where $G$

is a Cartan subgroup of a semi.simple linear group; we hope to come
back to this question some time in the future.

V. A counter-example.

We wish to prove that there exists an irreducible algebraic group
$G$ over a field of characteristic $0$ such that the field of rational func-
tions on $G$ is not purely transcendental over $K$.

We take $K$ to be the field of $p$ adic numbers, $p$ being any prime
number. It is easily seen that there exists a finite algebraic extension
$L/K$ of $K$ which is abelian but not cyclic: we may for instance take
$L$ to be the composite field of the unramified extension of degree $p-1$

of $K$ and of the field obtained by adjunction to $K$ of the p.th roots of
unity. We consider $L$ as a vector space over $K$ and every element of
$L$ as operating on this vector space by means of the multiplication in
$L$ . Take $G$ to be the group of elements of $L$ of norm 1 with $\cdot$ respect
to $K$. If $(\omega_{1},\cdots, \omega_{n})$ is a base of $L/K$, and $u_{1},\cdots,$ $u_{n}eK$, then we may
write

$N_{L/K}(u_{1}\omega_{1}+\cdots+u_{n}\omega_{n})=F(u_{1}\cdots, u_{n})$

where $F$ is a polynomial with coefficients in $K$ ; in order for $\sum_{i-1}^{n}u_{i}\omega_{i}$

to be in $G$, it is necessary and sufficient that $F(u_{1},\cdots, u_{n})=1$ , which
shows that $G$ is algebraic. On the other hand, $F$, considered as a
polynomial with coefficients in $L$, splits into the product of $n$ linear
forms, which shows that $G$ is irreducible.

From now on, we denote by $u_{1},\cdots,$ $u_{n}$ the polynomial functions on
$G$ such that $x=\sum_{i-1}^{n}u_{i}(x)\omega_{i}$ for every $x\in G$ ; the field $\mathfrak{R}(G)$ of rational
functions on $G$ is therefore $K(u_{1}, \cdots, u_{n})$ . We shall assume that this
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field is purely transcendental over $K$, and we shall derive a contradic-
tion from this assumption. It is clear that $G$ is of dimension $n-1$ .
Our assumption then means that $K(u_{1}, \cdots, u_{n})=K(t_{1},\cdots, t_{n-1})$, where
$t_{1},\cdots,$ $t_{n-1}$ are $n-1$ suitable elements of $\mathfrak{R}(G)$ . Write $u_{i}=A_{i}/D(1\leqq i\leqq n)$ ,
where $A_{1},\cdots,$ $A_{n},$ $D$ are in $K[t]=K[t_{1},\cdots, t_{n-1}]$ . Let $\mathfrak{G}$ be the Galois
group of $L/K$ ; we then have

$D^{n}=\prod_{\sigma\epsilon \mathfrak{G}}(A_{1}\omega_{1}^{\sigma}+\cdots+A_{n}\omega_{n}^{\sigma})$ .
It is clear that we may write

$A_{1}+\cdots+A$

where $H_{1},\cdots,$ $H_{r}$ are prime elements of the ring $L[t_{1}\cdots, t_{n-1}]$ such that,
for $i\neq j,$ $H_{i}$ is relatively prime to all conjugates of $H_{j}$ , while each $f_{i}$

is an element of the group ring of $\mathfrak{G}$ over the ring of rational
integers and $a\in L$ . Each $H_{i}$ divides prime element $G_{i}$ of $K[t_{1},\cdots , t_{n-1}]$ ,
which we may assume to be the product of the distinct conjugates of
$H_{i}$ . Let $S$ be the sum of the elements of $\mathfrak{G}$ (in the group ring), and
write $f_{i}=\sum_{\sigma\epsilon \mathfrak{G}}a_{1}(\sigma)\sigma,$ $s_{i}=\sum_{\sigma e\mathfrak{G}}a_{i}(\sigma)$ . Then we have $f_{i}S=s_{i}S$ and

$D^{n}=N_{L/K}a$ . $\Gamma I_{i\approx 1}^{r}H_{i}^{s_{i}S}$ .
On the other hand, if the group of elements $\sigma\in \mathfrak{G}$ such that $H_{l}=H_{i}^{\sigma}$

is of order $h_{i}$ , we have $H_{i}^{S}=G_{i}^{h_{i}}$ ; if $d_{i}$ is the exponent with which $H_{i}$

enters into the decomposition of $D$ into prime elements in $K[t_{1}, \cdots,t_{n-1}]$ ,
then $nd_{i}=h_{i}$ si. Set $G_{i}=H_{i}^{q_{i}}$ , where $q$ is in the group ring of $\mathfrak{G}$ .
Then the sum of the coefficients of $q_{j}$ , when expressed as a linear
comcination of the elements of $\mathfrak{G}$ , is $n/h_{i}$ . We have $D=d\prod_{i-1}^{r}H_{i}^{q_{i}d_{i}}$ ,
where $d$ is an element of $K$. The sum of the coefficients of $f_{i}-q_{i}d_{i}$

is $0$ in virtue of the relation $nd_{i}=h_{i}s_{i}$ . It follows immediately that
$D^{-1}$. $\sum_{i=1}^{n}A_{i^{\omega_{j}}}$ may be expressed in the form

$a^{\prime}$ . $\Gamma]_{\sigma\epsilon \mathfrak{G}}R_{\sigma}^{1-\sigma}$

where each $R_{\sigma}$ is an element of $L(t_{1},\cdots, t_{n-1})$ and $a^{\prime}$ an element of $L$ .
Let $x$ be an element of $G$ which satisfies the following conditions: a)
the rational functions $t_{1},\cdots,$ $t_{n-1}$ are all defined at $x$ ; let $\tau_{i}=t_{i}(x)$

$(1\leqq i\leqq n-1);b)$ the rational fractions $R_{\sigma}$ are all defined and $\neq 0$ for
the values $\tau_{1},\cdots,$ $\tau_{n-1}$ of their argument and $D(\tau_{1},\cdots, \tau_{n-1})\neq 0$ . Then, if
we set $y_{\sigma}=R_{\sigma}(\tau_{1},\cdots, \tau_{n-1})$ , the $y_{\sigma}r_{S}$ are in $L$, and we have
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$x=a^{\prime}\cdot I^{-}I_{\sigma\epsilon \mathfrak{G}}y_{\sigma}^{1-\sigma}$

Let $I$
’ be the subgroup of $G$ generated by all elements of the form

$y^{1-\sigma}$ , where $y$ runs over all elements $\neq 0$ of $L$ and $\sigma$ over all elements
of $\mathfrak{G}$ ; then $x$ belongs to the coset $a^{\prime}l$ ’ of $G$ modulo $I^{\gamma}$ . It is clear
that the set of elements $x\in G$ which satisfy our conditions is thick in
$G(i$ . $e$. its complementary set is contained in an algebraic subset of
dimension $<n-1$ of $G$). Now, it has been proved by Matsuhima
([3]) that $I^{7}\neq G$ . Let $a^{\prime\prime}I^{\gamma}$ be a coset $\neq a^{\prime}I$

’ of $G$ modulo $I^{7}$ . Then $a^{\prime\prime}$

$I^{7}=(a^{;/}a^{\prime-1})(a^{\prime}I^{7})$ , and, since $a^{\prime}I^{7}$ is thick, the same is clearly true of
$ a^{;/}\Gamma$ . But this is impossible, since any two thick subsets of $G$ have
at least one common point (since $G$ is irreducible), while two distinct
cosets of $G$ modulo $I^{7}$ are disjoint from each other.
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