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Note on Betti numbers of Riemannian manifolds III.

By Yasuro TOMONAGA.

(Received July 27, 1953)

In continuation of our former papers,” we consider a Riemannian
manifold which is compact orientable and whose fundamental differential
form is positive definite. Consider an infinitesimal motion

(1) T=xiteX?,
where X satisfies Killing’s equations

(2) ' Xi;;+X;,:i=0.
It follows from (2) that

(3) Xi.j:nt Riju X'=0.

If X satisfies only (3), the transformation (1) defines an infinite-
simal affine collineation.

From (3) we have
(4) 4Xi=—Ri; X7
Consider a symmetric tensor A;; whose quadratic form
Ai;fifi

is positive definite. Then we get by the same way as before
5) —S(—%- 4Ai;+ A RE)X X do+ [Ayy X430 X0, do=0.
Hence, if the equadratic form

(6) Q=(—5- 44i+ AuRE) ff?
is everywhere negative definite, it follows from (5) that
Xi=0,

1) Note on Betti numbers of Riemannian manifolds I, II, Jour. Math. Soc. Japan, §
(1953), 59-69.
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i. e. our manifold admits no infinitesimal motion (affine collineation).
If @ is everywhere negative semi-definite, we have

Xi; i=0,
hence the vector X¢ contains at most » arbitrary constants.
Especially in the case in which
Ai;j=r*9i;  (p=F0)

we have

@) Q=%(Ap2)f,-f"+p2Ruf"ff

é{i (4p%)+ R p*+p? /RaaR“”— Ei}fifi .
2 n n
Hence, if there exists a scalar such that the inequality

(8) ;(‘Zf) + B4 JRaRe— B <o

holds everywhere, then our manifold admits no .infinitesimal motion
(affine collineation). If it holds that

(9) ‘%(1§2>+§+ JRaRo— B <0,

then X satisfies
X, .= 0.
Especially in the case
(10) pPP=1+cR?

we have the
THEOREM 1. If the inequality

L CaR N, R ab_ R
1D 2(1+02R2>+ n -y RaR w0

holds everywhere for a cevtain constant c, our manifold admits no in-
JSinitesimal motion (affine collineation). If

1/ F4R? R R
12 4+ = + J/RyRe_- 1 <0
(12) 2 ( 1+cZR2> n ‘/ > n S—
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holds, then X¢ satisfies

By the same way, we have, for Betti numbers, the
THEOREM 2. If the inequality

B %<T§4&RR2 )= ‘IZ = v/ Ra Rab—ﬁnz’

holds everywhere for a certain constant c, then we have
B <n.

If, in (13), the equality sign can be omitted, then we have
B;=0.

THEOREM 3. If the inequality
2 2 —

2 \1+E3R? n(n—1)
_ N P=1Vp  piimy 4D+ 2 B pij 1 _ (=0 \ pol
~/( 2 )R”’”R + 4 Rij +{ 4 2n(n—1)} }
holds everywhere for a certain constant c, it holds that
n
8,<(%)

and the covarviant derivative of any harmonic tensor of degree p vani-
shes. If, in (14), the equality sign can be omitte_d, then we have

Bp:O .
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