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Remarks on Boolean functions.1)

David ELLIS in Gainesville, Florida

(Received April 28, 1953)

1. Introduction. Let $B$ be a Boolean algebra with partial order-
ing, meet, join, complement, and symmetric difference denoted by $a\leq b$ ,
$a\wedge b,$ $ab,$ $a^{\prime}$ , and $a(+3b$ , respectively. When employing the ring
notation (11), in $B$ we write merely $ab$ for $a\wedge b$ .

Numerous authors have considered Boolean functions [1, 6, 7, 8, 9,
10] of one or more variables. In this note we restrict attention for
the most part to Boolean functions of one variable. As is well known
$[1, 6]$ , every such function allows representation in its disjunctive normal
form

$(\prod 1)$ $f(x)=(a\wedge x)(b\backslash x^{\prime})$ ,

or, in ring notation, $f(x)=(a^{r}+)b)_{X^{1}}+|b$ .
It is clear that $(\Gamma|7)$ is a motion of $B$ as an autometrized Boolean

algebra $[2, 3]$ if and only if $a=b^{\prime}$ . We shall need the following two
lemmas.

LEMMA 1. (Soluhon Criterion [1]). The equation $ax=b$ has solu-
tions in $B$ if and only if $ab=b$ in $\iota$ {) $hich$ case the $ge$ neral solution is
$x=b\cap\backslash +,$ $t;t\leq 1\cap+a$ .

LFMMA 2. (Mitller’s Theorem [9, 101). The function $(\backslash |^{\urcorner})$ maps
$B$ onto $[a\wedge b, ab]$ .

$CoROLLARY$ . The function $(\eta\urcorner)$ takes on minirnum and maximum
values $a\wedge b$ and $ab$ , respectively.

From Lemma 2 one may observe with Schmidt [10] that $a=b^{\prime}$ is
necessary in order that $(\ulcorner|^{\urcorner})$ map $B$ onto itself.

Combining this last remark with the remark preceding $I_{l}emma1$ ,
we have

LEMMA 3. The Boolean functions zvhich map $B$ onto itself are
the autometrized motions of $B$ and, hence, arc necessarily biuniform.

1 $j$ Presented to the Amet ican Mat hematical Scciet $y$ : Christmas, 1952.
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Since the class of Boolean functions in $B$ is precisely the class of
linear functions in ring notation, and since a transformation product
of linear functions (possibly constant) is a linear function in a ring,
the class of Boolean functions in $B$ is closed under transformation
product.

2. The operator structure of the class of Boolean func-
tions. From Lemma 3 and the remark following it in Section 1, we
may conclude

THEOREM 1. The class of Boolcan functions on $B$ forms a trans-
formation semigroup on $B$ in which the group of units is precisely
the group of motions of $B$ in its autometrization, $or$, equivalently, the
regular representation of the additive group of $B$ under $(+^{\backslash })$ (see [2, 3, 5]).

THEOREM 2. The class $R$ of Boolean functions on $B$ forms an
operator ring on B. The constant functions form an ideal $J_{c}$ in $R$

and $R/J_{c}$ is a Boolean ring with identity isomorphic to $B$.
PROOF. One easily verifies the distributive laws for transformation

product over symmetric difference. This proves the first statement.
That $J_{c}$ is an ideal is also easily verified, and the requircd isomorphism
is $a_{\rightarrow}^{\leftarrow}\{ax\}$ , where $\{ax\}$ is the congruencc class of the function mod
$J_{c}$ .

3. M\"uller’s Theorem.
$T\iota IFOR1^{\backslash _{d}}M3$ . The minimum argumcnts $fo_{l^{\prime}}\iota vhich(\Gamma 7)$ takcs on

its minimum and maximum valz. $(^{)}s$ , respcctively, arc $a^{\prime}\wedge b$ and $a\wedge b^{\prime}$ .
The maximum arguments for which $(\eta\urcorner)$ takcs on its minimum and
maximum values, respectively, are $a^{\prime}b$ and $ab^{\prime}$ .

PROOF. Suppose $(a\wedge x)\vee(b_{/^{\prime}}\backslash x^{\prime})=a\wedge b$ . Then $a‘\wedge b,\nwarrow x^{\prime}=0$ so
that $a^{\prime}\wedge b\leq x$. Also,

$(a_{/}\wedge (a‘, \backslash b))\vee(b,\backslash (a^{\prime}\backslash b)^{\prime})=a\wedge b$ . Similarly,
$(a\wedge(a,\wedge b^{t}))\vee(b,\backslash (a, \backslash b^{\prime})^{\prime})=ab$ and
$(a\wedge x)\vee(b\wedge x’)=a\wedge b$ implies $a\backslash b^{\prime}\backslash x=a,$ $\backslash b^{\prime}$

so that $a\wedge b^{\prime}<x$ . The second part of Theorem 3 follows dually.
We may gcneralize M\"uller’s theorem to Boolean functions of

several variables by induction. Let $f(x_{1}, x_{\underline{\circ}},\cdots,x_{l}:, x_{n})$ be a Boolean
function of iz variables. We may write it in the disjunctive normal
form as
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$(\eta 7\eta_{\gamma})f(x_{1},\cdots, x_{n})=_{i}P\{a_{i}\wedge\lceil\bigwedge_{j\approx 1}^{n}x_{j}^{i}]\}$ ,

where $\dot{P}_{j}$ is either $x_{j}$ or $x_{\acute{j}}$ and $P_{i}$ ranges over the various combina-
tions of these choices.

THEOREM 4. The function $(\eta\urcorner\eta 7)$ maps $B^{\prime\prime}$ onto $\lceil\bigwedge_{P_{l}}a_{j},$ $_{i}Pa_{i}]$ .
PROOF. The proposition is valid for $n=1$ , by M\"uller’s theorem.

Suppose it is valid for all $k<n$ . Write $(\eta\urcorner\Pi^{\urcorner})$ as $f(x_{1},\cdots, x_{n-1}, x_{n})$

$=\bigvee_{i}P\{|_{-}^{-}(a_{i}\wedge x_{n})(b_{i}\wedge x_{Jl}^{\prime})]\wedge|^{-}\bigwedge_{-j\Leftarrow 1}^{ll1}x_{j}^{i}]\}$ . Where the $b_{i}$ are the $a_{i}$ cor.
responding to values of $P_{i}$ for which $x_{n}^{i}$ is $x_{\acute{n}}$ .

For each value of $x_{n},$ $(\eta\urcorner\eta\urcorner)$ maps $B^{n-1}$ onto

$|^{-}\bigwedge_{P_{i}}\{(a_{i}\wedge x_{n})(b_{i/}\wedge x_{l}^{\prime})\},\bigwedge_{P_{i}}\{(a_{i}\wedge x_{n})(b_{i}\wedge x_{n}^{\prime})\}]$

by the inductive hypothesis. We may rewrite this interval as
$[(a\wedge x_{n})\vee(b\wedge x_{n}^{\prime}), (c/\backslash x_{n})(d\wedge x_{n}^{\prime})]$ , where

$a=\bigwedge_{P_{i}}a_{i},$ $b=\bigwedge_{P_{i}}b_{i},$ $c_{P}=_{i}a_{i}$
,

$d=\bigvee_{i}b_{i}P$ By M\"uller’s theorem, however, a suitable choice of $x_{n}$ will
lower the left endpoint of the interval to $a\wedge b$ and another choice will
raise the right endpoint to $cd$.

We now observe an interesting application of M\"uller’s theorem.
It is $well\cdot known$ [1] that in a normed lattice, the triangle function
$\delta(x)=\delta(a, x)+\delta(b, x)+\delta(c, x)$ takes on a minimum at $x=(a, b, c)$ , the
“ median “ of the triangle [11. Our application is to obtain the cor-
responding fact for the triangle function $d(x)=d(a, x)Ud(b, x)Ud(c, x)$
in the autometrization of $B$.

THEOREM 5. $d(x)$ takes its minimum value at $x=(a, b, c)$ .
PROOF. Since $d(x)=[(a^{\prime}b^{\prime}c^{\prime})\backslash x][(a^{\prime}bc)$ . $\backslash x^{\prime}]$ , the mini-mum values is, by the Corollary to M\"uller’s theorem, $(a^{\prime}b^{\prime}c^{\prime})$

$4\backslash (abc)$ . But one verifies by direct computation that this is
$d((a, b, c))$ . One might also observe that this value is the “ perimeter “

of the triangle, $d(a, b)d(b, c)d(a, c)$ .
4. Curve fitting. In a 1936 paper [8] J. C.C. McKinsey discusses

the fitting of graphs of Boolean function of $n$ variables to sets of points
in $B^{n+1}$. His results are, however, qualitative. In this section we
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determine the exact families of Boolean function of a single variable
whose graphs pass through one or a pair of preassigned points in $B^{2}$.

In addition to the case of exact fit, we also discuss the curve of

best fit to a set of points in $B^{2}$ in the following sense: If $(x_{i},y_{i})$ ;
$i=1,2,\cdots,$ $n$ is a finite set of points in $B^{2}$, and if $f(x)=y$ is a Boolean
function in $B$, then by the total deviation of the function from the set

we shall mean $i1\bigvee_{-}^{l}(y;\oplus f(x_{i}))$ ; that is, the join of the autometrized

distances between actual ordinates and computed ordinates. The curve
(or, more precisely, a curve) of best fit will be one whose total devia-
tion from the set is minimal. Obviously, a curve will be an exact fit
if and only if the total deviation is $0$ .

THEOREM 6. If $(x_{1},y_{1})$ is any point in $B^{2}$, there is a two $\cdot$parameter
family (possibly degenerate) of Boolean functions whose graphs pass
through $(x_{1},y_{1})$ , namely,

$f_{s.t}(x)=(y_{1}(1\oplus x_{1})\oplus s\oplus t)x\oplus y_{1}\oplus s$ ; where $s\leq x_{1}$ and $t\leq 1\oplus x_{1}$ .
PROOF. The statement is verified by direct computation.
THEOREM 7. Let $(x_{1},y_{1})$ and $(x_{\underline{7}},y_{2})$ be any pair of points in $B^{2}$ .

There is a Boolean function whose graph passes through the pair if
and only if $y_{1}\oplus y_{2}\leq x_{1}\oplus x_{2}$ in which case there is $a$ one-parameter
(possibly degenerate) family of such functions, namely,

$f_{t}(x)=((y_{1}\oplus y_{2})\oplus t)x\oplus(y_{1}\oplus x_{1}(y_{1}\oplus y_{2})\oplus x_{1}t)$ ; where $t\leq 1\oplus x_{1}\oplus x_{2}$ .
PROOF. $f_{l}(x)$ as given goes through $(x_{1},y_{1})$ by Theorem 6. By

Lemma 1, one finds that $f_{l}(x_{2})$ is $y_{2}$ if and only if the conditions given

in Theorem 7 are valid.
THEOREM 8. A Boolean curve of best fit, $f(x)=(a\oplus b)x\oplus b$, with

respect to the set $(x_{i},y_{i});i-1,\cdots,$ $n$ , is obtained by taking

$ a=[(\bigwedge_{i\approx 1}^{n}y_{i})\wedge(_{1}^{n}(x_{i}\oplus y_{i})^{\prime})i\Leftrightarrow$ A $(_{i}_{=1}^{n}(x_{i}\oplus y_{i}))]\vee[(_{-1}y_{i}^{\prime})\wedge(\bigwedge_{ii^{n}- 1}^{n}(x_{i}\oplus y_{i})^{\prime})$

$\wedge(i^{n}=1y_{i})]$ and $b=[(\bigwedge_{i\Leftarrow 1}^{n}y_{j})\wedge(\bigvee_{1}t-n(x_{i}\oplus y_{i}))]\vee[(\bigwedge_{i\Leftrightarrow 1}^{n}(x_{i}\oplus y_{i}))$ A $(i-1$

In this case, the total deviation will be

$(_{\Leftrightarrow}y_{i}^{\prime})i^{n}1$ A $((x;\oplus y_{i})^{t})i\Rightarrow 1n$ A $(_{i}_{\infty 1}^{n}(x_{i}\oplus y_{i}))\wedge(^{n}y;)i\leftarrow 1$
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PROOF. To verify Theorem 8, one merely regards the total devia-
tion of an arbitrary curve with respect to the given set of points as
a Boolean function of the coefficients and applies Theorem 4.

5. The special case. Homomorphism and orbital topo-
logies. In this section, we restrict attention to those functions $(\ulcorner p)$

for which $b\leq a$. By Lemma 2, such a function maps $B$ onto $[b, a]$ .
This case we call the special case. For the notions involved in the
discussion of orbital topologies, see [4]. We denote by $B_{f}$ the space
of $B$ under the orbital topology induced by $f(x)$ .

THEOREM 9. For the special case, $f(f(x))=f(x)$ ; for all $x$ . Also,
$f(x)=f(y)$ if and only $lfx=y(mod J_{f})$ , where $J_{f}$ is the principal ideal
of $1\oplus a\oplus b$.

PROOF. The first assertion follows by direct computation. Suppose
$x\oplus y\leq 1\oplus a\oplus b$ . Then $f(x)\oplus f(y)=(a\oplus b)(x\oplus y)\oplus b\oplus b=0$ . Con-
versely, if $f(x)\oplus f(y)=0$ , then $(a\oplus b)(x\oplus y)=0$ and $x\oplus y\leq 1\oplus a\oplus b$.

THEOREM 10. For the specral case, $f(x)$ is a lattice homomorphism
of $B$ onto $[b, a]$ and, in $B_{f},$ $x$ is an accumulation point of a set $E$ if
and only $lfx$ is in $[b, a]$ and $E$ contains infinitely many points of the
congruence class of $xmod J_{f}$ .

PROOF. In the special case, $(a\oplus b)b=0$ . Thus, $f(uv)=(a\oplus b)$

$(u\oplus v\oplus uv)\oplus b$ and $f(u)f(v)=(a\oplus b)(u\oplus v\oplus uv)\oplus b\oplus(a\oplus b)b(u\oplus v)$

$f(uv)\oplus O$. Similarly, $f(uv)=f(u)\wedge f(v)$ . This proves the first as.
sertion. If $f(y)=x$ , then $(a\oplus b)y=x\oplus b,$ $(a\oplus b\oplus 1)y=(x\oplus y)\oplus b,$ $x\oplus y$

$=(a\oplus b\oplus 1)y\oplus b$. But, $(a\oplus b\oplus 1)y$ is in $J_{f}$ and, in the special case,
$b=b(a\oplus b\oplus 1)$ is in $J_{f}$ so that $x=y(mod J_{f})$ .

THEOREM 11. In the speczal case, $I$, the principal ideal of $a\oplus b$ ,
is a group of homoemorphisms of $B_{f}$ onto itself.

PROOF. Take $c$ in $I$ and consider $T_{c}$ , the $\oplus$ translation by $c$.
$f(x\oplus c)=(a\oplus b)(x\oplus c)\oplus b=(a\oplus b)x\oplus b\oplus c$, since $c$ is in $I$. Hence,
$f(xT_{c})=(f(x))T_{c}$ and $T_{c}$ commutes with $f$. Also, $T_{c}$ is biuniform and
is its own inverse so that $T_{c}$ is a homeomorphism of $B_{f}$ onto itself
by Theorem 5 of [4].

THEOREM 12. In the lattice of all topologies on $B$, the join of
the orbital topologies induced by functions in the special case is the
slrongest $T_{1}$ topology on $B$ (see [12] for terminology).
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PROOF. Taking $a=b$ in $f(x)$ we find $J_{f}=B$. By Theorem 10,
then, only finite sets are closed in the join of these topologies.

The University of Florida
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