Remarks on Boolean functions. ${ }^{1)}$

David Ellis in Gainesville, Florida

(Received April 28, 1953)

1. Introduction. Let B be a Boolean algebra with partial ordering, meet, join, complement, and symmetric difference denoted by $a \leqslant b$, $a \wedge b, a \vee b, a^{\prime}$, and $a \oplus b$, respectively. When employing the ring notation (11), in B we write merely $a b$ for $a \wedge b$.

Numerous authors have considered Boolean functions [1, 6, 7, 8, 9, 10] of one or more variables. In this note we restrict attention for the most part to Boolean functions of one variable. As is well known $[1,6]$, every such function allows representation in its disjunctive normal form

$$
\text { (巾) } f(x)=(a \wedge x) \vee\left(b, \backslash x^{\prime}\right),
$$

or, in ring notation, $f(x)=(a \oplus b) x+b$.
It is clear that ($\mid \cdot$) is a motion of B as an autometrized Boolean algebra [2,3] if and only if $a=b^{\prime}$. We shall need the following two lemmas.

Lemma 1. (Solution Criterion [1]). The equation $a x=b$ has solu. tions in B if and only if $a b=b$ in which case the general solution is $x=b \oplus t ; t \leqslant 1 \oplus a$.

Lemma 2. (Müller's Theorem [9, 10]). The function (\downarrow) maps B onto $[a \wedge b, a \vee b]$.

Corollary. The function (\dagger) takes on minimum and maximum values $a \wedge b$ and $a \vee b$, respectively.

From Lemma 2 one may observe with Schmidt [10] that $a=b^{\prime}$ is necessary in order that (\uparrow) map B onto itself.

Combining this last remark with the remark preceding Lemma 1, we have

Lemma 3. The Boolean functions which map B onto itself are the autometrized motions of B and, hence, are necessarily biuniform.

1) Presented to the American Mathematical Society: Christmas, 1952.

Since the class of Boolean functions in B is precisely the class of linear functions in ring notation, and since a transformation product of linear functions (possibly constant) is a linear function in a ring, the class of Boolean functions in B is closed under transformation product.
2. The operator structure of the class of Boolean functions. From Lemma 3 and the remark following it in Section 1, we may conclude

Theorem 1. The class of Boolcan functions on B forms a transformation semigroup on B in which the group of units is precisely the group of motions of B in its autometrization, or, equivalently, the regular representation of the additive grout of B under (+) (see $[2,3,5]$).

Theorem 2. The class R of Boolcan functions on B forms an operator ring on B. The constant functions form an ideal J_{c} in R and R / J_{c} is a Boolcan ring with identity isomorphic to B.

Proof. One easily verifies the distributive laws for transformation product over symmetric difference. This proves the first statement. That J_{c} is an ideal is also easily verificd, and the required isomorphism is $a \leftrightarrows\{a x\}$, where $\{a x\}$ is the congruence class of the function mod J_{c}.

3. Müller's Theorem.

Theorem 3. The minimum arguments for which (†) takes on its minimum and maximum values, respectively, arc $a^{\prime} \wedge b$ and $a \wedge b^{\prime}$. The maximum arguments for which (\downarrow) takes on its minimum and maximum values, respectively, are $a^{\prime} \bigvee b$ and $a \vee b^{\prime}$.

Proof. Suppose $(a \wedge x) \bigvee\left(b \wedge x^{\prime}\right)=a \wedge b$. Then $a^{\prime} \wedge b \wedge x^{\prime}=0$ so that $a^{\prime} \backslash b \leqslant x$. Also,

$$
\begin{aligned}
& \left(a \wedge\left(a^{\prime} \wedge b\right)\right) \vee\left(b \wedge \left(a^{\prime} \backslash b^{\prime} ;=a \wedge b . \quad\right.\right. \text { Similarly, } \\
& \left(a \wedge\left(a \wedge b^{\prime}\right)\right) \vee\left(b \wedge\left(a \backslash b^{\prime}\right)^{\prime}\right)=a \vee b \text { and } \\
& (a \wedge x) \vee\left(b \wedge x^{\prime}\right)=a \wedge b \text { implies } a_{i} \backslash b^{\prime} \wedge x=a \wedge b^{\prime}
\end{aligned}
$$

so that $a \wedge b^{\prime}<x$. The second part of Theorem 3 follows dually.
We may generalize Müller's theorem to Boolean functions of several variables by induction. Let $f\left(x_{1}, x_{2}, \cdots, x_{n}, \mathrm{i}, x_{n}\right)$ be a Boolean function of n variables. We may write it in the disjunctive normal form as

$$
\left(\text { 巾 ヤ) } f\left(x_{1}, \cdots, x_{n}\right)=\bigvee_{P_{i}}\left\{a_{i} \wedge\left[\bigwedge_{j=1}^{n} x_{j}^{i}\right]\right\},\right.
$$

where x_{j}^{i} is either x_{j} or x_{j}^{\prime} and P_{i} ranges over the various combina－ tions of these choices．

Theorem 4．The function（巾 巾）mats B^{n} onto $\left[{\widehat{P_{2}}}_{\wedge}^{\wedge} a_{i}, \bigvee_{P_{i}} a_{i}\right]$ ．
Proof．The proposition is valid for $n=1$ ，by Müller＇s theorem． Suppose it is valid for all $k<n$ ．Write（け巾）as $f\left(x_{1}, \cdots, x_{n-1}, x_{n}\right)$ $=\bigvee_{P_{i}}\left\{\left[\left(a_{i} \wedge x_{n}\right) \bigvee\left(b_{i} \wedge x_{n}^{\prime}\right)\right] \wedge\left[\bigwedge_{j=1}^{n-1} x_{j}^{i}\right]\right\}$ ．Where the b_{i} are the a_{i} cor． responding to values of P_{i} for which x_{n}^{i} is x_{n}^{\prime} ．

For each value of x_{n} ，（巾巾）maps B^{n-1} onto

$$
\left\lceil\widehat{P}_{i}\left\{\left(a_{i} \wedge x_{n}\right) \vee\left(b_{i} \wedge x_{n}^{\prime}\right)\right\},{\widehat{P_{i}}}^{\{ }\left\{\left(a_{i} \wedge x_{n}\right) \vee\left(b_{i} \wedge x_{n}^{\prime}\right)\right\}\right]
$$

by the inductive hypothesis．We may rewrite this interval as $\left[\left(a \wedge x_{n}\right) \bigvee\left(b \wedge x_{n}^{\prime}\right),\left(c \wedge x_{n}\right) \bigvee\left(d \wedge x_{n}^{\prime}\right)\right]$ ，where $a=\widehat{P_{i}} a_{i}, b=\widehat{P_{i}} b_{i}, c=\widehat{P_{i}} a_{i}$ ， $d=\bigvee_{P_{i}} b_{i} . \quad$ By Müller＇s theorem，however，a suitable choice of x_{n} will lower the left endpoint of the interval to $a \wedge b$ and another choice will raise the right endpoint to $c \vee d$ ．

We now observe an interesting application of Müller＇s theorem． It is well－known［1］that in a normed lattice，the triangle function $\delta(x)=\delta(a, x)+\delta(b, x)+\delta(c, x)$ takes on a minimum at $x=(a, b, c)$ ，the ＂median＂of the triangle［1］．Our application is to obtain the cor－ responding fact for the triangle function $d(x)=d(a, x) \cup d(b, x) \cup d(c, x)$ in the autometrization of B ．

ThEOREM 5．$d(x)$ takes its minimum value at $x=(a, b, c)$ ．
Proof．Since $d(x)=\left[\left(a^{\prime} \vee b^{\prime} \vee c^{\prime}\right) \backslash x\right] \vee\left[(a \vee b \vee c) . \backslash x^{\prime}\right]$ ，the mini－ mum values is，by the Corollary to Müller＇s theorem，（ $a^{\prime} \vee b^{\prime} \vee c^{\prime}$ ） $\wedge(a \vee b \bigvee c)$ ．But one verifies by direct computation that this is $d((a, b, c))$ ．One might also observe that this value is the＂perimeter＂ of the triangle，$d(a, b) \vee d(b, c) \bigvee d(a, c)$ ．

4．Curve fitting．In a 1936 paper［8］J．C．C．McKinsey discusses the fitting of graphs of Boolean function of n variables to sets of points in B^{n+1} ．His results are，however，qualitative．In this section we
determine the exact families of Boolean function of a single variable whose graphs pass through one or a pair of preassigned points in B^{2}.

In addition to the case of exact fit, we also discuss the curve of best fit to a set of points in B^{2} in the following sense: If $\left(x_{i}, y_{i}\right)$; $i=1,2, \cdots, n$ is a finite set of points in B^{2}, and if $f(x)=y$ is a Boolean function in B, then by the total deviation of the function from the set we shall mean $\bigvee_{i-1}^{n}\left(y_{i} \oplus f\left(x_{i}\right)\right)$; that is, the join of the autometrized distances between actual ordinates and computed ordinates. The curve (or, more precisely, a curve) of best fit will be one whose total deviation from the set is minimal. Obviously, a curve will be an exact fit if and only if the total deviation is 0 .

THEOREM 6. If $\left(x_{1}, y_{1}\right)$ is any point in B^{2}, there is a two-parameter family (possibly degenerate) of Boolean functions whose graphs pass through $\left(x_{1}, y_{1}\right)$, namely,

$$
f_{s, t}(x)=\left(y_{1}\left(1 \oplus x_{1}\right) \oplus s \oplus t\right) x \oplus y_{1} \oplus s ; \text { where } s \leqslant x_{1} \text { and } t \leqslant 1 \oplus x_{1}
$$

Proof. The statement is verified by direct computation.
THEOREM 7. Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be any pair of points in B^{2}. There is a Boolean function whose graph passes through the pair if and only if $y_{1} \oplus y_{2} \leqslant x_{1} \oplus x_{2}$ in which case there is a one-parameter (possibly degenerate) family of such functions, namely,

$$
f_{t}(x)=\left(\left(y_{1} \oplus y_{2}\right) \oplus t\right) x \oplus\left(y_{1} \oplus x_{1}\left(y_{1} \oplus y_{2}\right) \oplus x_{1} t\right) ; \text { where } t \leqslant 1 \oplus x_{1} \oplus x_{2}
$$

PROOF. $f_{t}(x)$ as given goes through $\left(x_{1}, y_{1}\right)$ by Theorem 6. By Lemma 1, one finds that $f_{t}\left(x_{2}\right)$ is y_{2} if and only if the conditions given in Theorem 7 are valid.

THEOREM 8. A Boolean curve of best fit, $f(x)=(a \oplus b) x \oplus b$, with respect to the set $\left(x_{i}, y_{i}\right) ; i-1, \cdots, n$, is obtained by taking

$$
\begin{aligned}
& a=\left[\left(\bigwedge_{i=1}^{n} y_{i}\right) \wedge\left(\bigvee_{i=1}^{n}\left(x_{i} \oplus y_{i}\right)^{\prime}\right) \wedge\left(\bigvee_{i=1}^{n}\left(x_{i} \oplus y_{i}\right)\right)\right] \vee\left[\left(\bigvee_{i-1}^{n} y_{i}^{\prime}\right) \wedge\left(\bigwedge_{i-1}^{n}\left(x_{i} \oplus y_{i}\right)^{\prime}\right)\right. \\
& \left.\wedge\left(\bigvee_{i=1}^{n} y_{i}\right)\right] \text { and } b=\left[\left(\bigwedge_{i=1}^{n} y_{i}\right) \wedge\left(\bigvee_{i=1}^{n}\left(x_{i} \oplus y_{i}\right)\right)\right] \vee\left[\left(\bigwedge_{i=1}^{n}\left(x_{i} \oplus y_{i}\right)\right) \wedge\left(\bigvee_{i=1}^{n} y_{i}\right)\right] .
\end{aligned}
$$

In this case, the total deviation will be

$$
\left(\bigvee_{i=1}^{n} y_{i}^{\prime}\right) \wedge\left(\bigvee_{i=1}^{n}\left(x_{i} \oplus y_{i}\right)^{\prime}\right) \wedge\left(\bigvee_{i=1}^{n}\left(x_{i} \oplus y_{i}\right)\right) \wedge\left(\bigvee_{i=1}^{n} y_{i}\right)
$$

Proof. To verify Theorem 8, one merely regards the total deviation of an arbitrary curve with respect to the given set of points as a Boolean function of the coefficients and applies Theorem 4.
5. The special case. Homomorphism and orbital topologies. In this section, we restrict attention to those functions (巾) for which $b \leqslant a$. By Lemma 2, such a function maps B onto [b, a]. This case we call the special case. For the notions involved in the discussion of orbital topologies, see [4]. We denote by B_{f} the space of B under the orbital topology induced by $f(x)$.

Theorem 9. For the special case, $f(f(x))=f(x)$; for all x. Also, $f(x)=f(y)$ if and only if $x=y\left(\bmod J_{f}\right)$, where J_{f} is the principal ideal of $1 \oplus a \oplus b$.

Proof. The first assertion follows by direct computation. Suppose $x \oplus y \leqslant 1 \oplus a \oplus b$. Then $f(x) \oplus f(y)=(a \oplus b)(x \oplus y) \oplus b \oplus b=0$. Conversely, if $f(x) \oplus f(y)=0$, then $(a \oplus b)(x \oplus y)=0$ and $x \oplus y \leqslant 1 \oplus a \oplus b$.

ThEOREM 10. For the special case, $f(x)$ is a lattice homomorphism of B onto $[b, a]$ and, in B_{f}, x is an accumulation point of a set E if and only if x is in $[b, a]$ and E contains infinitely many points of the congruence class of $x \bmod J_{f}$.

Proof. In the special case, $(a \oplus b) b=0$. Thus, $f(u \vee v)=(a \oplus b)$ $(u \oplus v \oplus u v) \oplus b$ and $f(u) \bigvee f(v)=(a \oplus b)(u \oplus v \oplus u v) \oplus b \oplus(a \oplus b) b(u \oplus v)$ $f(u \vee v) \oplus 0$. Similarly, $f(u \vee v)=f(u) \wedge f(v)$. This proves the first as. sertion. If $f(y)=x$, then $(a \oplus b) y=x \oplus b,(a \oplus b \oplus 1) y=(x \oplus y) \oplus b, x \oplus y$ $=(a \oplus b \oplus 1) y \oplus b$. But, $(a \oplus b \oplus 1) y$ is in J_{f} and, in the special case, $b=b(a \oplus b \oplus 1)$ is in J_{f} so that $x=y\left(\bmod J_{f}\right)$.

THEOREM 11. In the special case, I, the principal ideal of $a \oplus b$, is a group of homoemorphisms of B_{f} onto itself.

Proof. Take c in I and consider T_{c}, the \oplus translation by c. $f(x \oplus c)=(a \oplus b)(x \oplus c) \oplus b=(a \oplus b) x \oplus b \oplus c$, since c is in I. Hence, $f\left(x T_{c}\right)=(f(x)) T_{c}$ and T_{c} commutes with f. Also, T_{c} is biuniform and is its own inverse so that T_{c} is a homeomorphism of B_{f} onto itself by Theorem 5 of [4].

THEOREM 12. In the lattice of all topologies on B, the join of the orbital topologies induced by functions in the special case is the strongest T_{1} topology on B (see [12] for terminology).

Proof. Taking $a=b$ in $f(x)$ we find $J_{f}=B$. By Theorem 10, then, only finite sets are closed in the join of these topologies.

The University of Florida

Bibliography

[1] Garrett Birkhoff, Lattice Thcory (Revised Edition), American Mathematical Society, 1948, New York.
[2] David Ellis, Aufometrized Boolcan algehras I, Canadian Jour. of Math. vol. 3 (1951), pp. 8793.
[3] David Ellis, Autometrized Boolean algebras II, Canadian Jour. of Math., vol. 3 (1951), pp. 145-147.
14] David Ellis, Orbital topologies, To appear in Quart. Jour. of Math. (Oxford), early 1953.
[5] N. Jacobson, Lectures in Abstract Algehra, Van Nostrand, 1951, New York.
[6] S. A. Kiss, Structures of Logic, Stephen A. Kiss, 1947, New York.
[7] J. C. C. McKinsey, On Boolean functions of many variables. Trans. Am. Math. Soc., vol. 40 (1936), pp. $343 \cdot 362$.
[8] J. C. C. McKinsey, Boolcan functions and points, Duke Math. Jour., vol. 2 (1936), pp. 465-471.
[9] Eugen Müller, Schröder's Abriss der Algebra der Logik, 1909, Leipzig.
[10] Karl Schmidt, The theory of functions of one Boolean variable, Trans. Am. Math. Soc., vol. 23 (1922), pp. 212-222.
[11] M. H. Stone, Subsumption of Boolean algebra under the general theory of rings, Proc. Nat. Acad. Sci., vol. 20 (1934), pp. $197 \cdot 202$.
[12] R. Varidyanathaswami, Treatise on Sct Topology, Indian Math. Soc.. 1947, Madras.

