By Masatsugu TSUII.

(Received May 28, 1953)

1. Main theorem.

In the former paper^D, I have proved, by generalizing Beurling's theorem², the following theorem.

THEOREM 1. Let f(z) be regular in |z| < 1 and

$$\iint\limits_{z < 1} |f'(z)|^2 dx dy \le \infty , \quad z = x + iy .$$

Then there exists a set E on |z|=1, which is of logarithmic capacity zero, such that if $e^{i\theta}$ does not belong to E, then

$$\lim_{z\to e^{i\theta}} f(z) \cdot f(e^{i\theta}) (|---| \infty) \text{ exists and uniformly,}$$

when z tends to $e^{i\theta}$ from the inside of any Stolz domain, whose vertex is at $e^{i\theta}$ and for any rectilinear segment 1, which connects $e^{i\theta}$ to a point of |z| < 1,

$$\int_{I} |f'(z)| |dz| < \infty.$$

From this, we have

THEOREM 2. Let u(z) be harmonic in |z| < 1 and

$$\iint_{z\to z_1} |\operatorname{grad} u(z)|^2 dx dy < \infty.$$

Then there exists a set E on |z|=1, which is of logarithmic capacity zero, such that if $e^{i\theta}$ does not belong to E, then

$$\lim_{z\to e^{i\theta}}u(z)=u(e^{i\theta})\ (==\infty)\ exists\ and\ uniformly,$$

¹⁾ M. Tsuji: Beurling's theorem on exceptional sets. Tohoku Math. Journ. 2 (1950).

²⁾ A. Beurling: Ensembles exceptionels. Acta Math. 72 (1940).

when z tends to $c^{i\theta}$ from the inside of any Stolz domain, whose vertex is at $e^{i\theta}$ and for any rectilinear segment l, which connects $c^{i\theta}$ to a point of $|z| \le 1$,

$$\int_{I} |\operatorname{grad} u(z)| |dz| < \infty$$
.

In this paper, I shall prove the following similar theorem for a harmonic function in a unit sphere.

THEOREM 3. Let Δ be the inside of a unit sphere S about the origin O and u(x, y, z) = u(P) (P = (x, y, z)) be harmonic in Δ and

$$\iiint_{\Delta} |\operatorname{grad} u(P)|^2 \frac{dv_P}{1/1-r^2} < \infty, \qquad r = \overline{OP},$$

where dv_P is the volume element. Then there exists a set E on S, which is of Newtonian capacity zero, such that if $Q \in S$ does not belong to E, then

$$\lim_{P\to Q} u(P) = u(Q) \ (\neq \infty) \ \text{exists and uniformly,}$$

when P tends to Q from the inside of any Stolz domain³, whose vertex is at Q and for any rectilinear segment l, which connects Q to a point of 1,

$$\int_{l} |\operatorname{grad} u(P)| ds < \infty ,$$

where ds is the arc element on l.

Since
$$|du| = \frac{du}{ds} ds \leq |\operatorname{grad} u(P)| ds$$
,

$$\int_{l} |du| < \infty ,$$

where the left hand side is the total variation of u(P) on 1. First we shall prove some lemmas.

2. Lemmas.

LEMMA 1.
$$I = \int_0^{\infty} \frac{t \ dt}{(t^2 - 2at + 1)_2^3} = \frac{1}{1 - a}, \quad 0 < a < 1.$$

³⁾ A stolz domain is a domain, which is bounned by a cone, whose vertex is at Q and whose generator makes an angle $\theta_0 \left(< \frac{\pi}{2} \right)$ with the radius OQ.

Proof. From

$$I(a,R) = \int_0^R \frac{dt}{\sqrt{t^2 - 2at + 1}} = \log(R - a + \sqrt{R^2 - 2aR + 1}) - \log(1 - a),$$

we have

$$I = \lim_{R \to \infty} \frac{\partial I(a, R)}{\partial a} = \frac{1}{1 - a}.$$

LEMMA 2. If u(x, y, z) is harmonic, then

$$|\operatorname{grad} u(P)| = \sqrt{\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial z}\right)^2}$$

is subharmonic.

Proof. We put

$$v = \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial z}\right)^2,$$

then

$$\frac{\partial v}{\partial x} = 2\left(\frac{\partial u}{\partial x} \cdot \frac{\partial^2 u}{\partial x^2} + \frac{\partial u}{\partial y} \cdot \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial u}{\partial z} \cdot \frac{\partial^2 u}{\partial x \partial z}\right),$$

$$\Delta v = 2\left(\sum \left(\frac{\partial^2 u}{\partial x^2}\right)^2 + 2\sum \left(\frac{\partial^2 u}{\partial x \partial y}\right)^2\right).$$

By Schwarz's inequality,

$$\left(\frac{\partial v}{\partial x}\right)^2 \leq 4v \left(\left(\frac{\partial^2 u}{\partial x^2}\right)^2 + \left(\frac{\partial^2 u}{\partial x \partial y}\right)^2 + \left(\frac{\partial^2 u}{\partial x \partial z}\right)^2\right),$$

so that

$$\sum \left(\frac{\partial v}{\partial x}\right)^2 \leq 4v \left(\sum \left(\frac{\partial^2 u}{\partial x^2}\right)^2 + 2\sum \left(\frac{\partial^2 u}{\partial x \partial y}\right)^2\right) = 2v \Delta v.$$

If we put $w = \sqrt{v}$, then

$$4v^{\frac{3}{2}} \Delta w = 2v \Delta v - \sum \left(\frac{\partial v}{\partial x}\right)^2 \geq 0$$
, $\Delta w \geq 0$,

hence $w = |\operatorname{grad} u|$ is subharmonic.

LEMMA 3. Let O be the origin and $(\rho, \theta, \varphi) (\rho \ge 0, 0 \le \theta \le \frac{\pi}{2})$,

 $0 \le \varphi \le 2\pi$) be the polar coordinates of a point P=(x,y,z) and D be the conical domain, such that

$$D\colon 0<
ho< R$$
 , $0< heta< heta_0\left(<rac{\pi}{2}
ight)$, $0\leq arphi\leq 2\pi$,

and F be its boundary.

Let $u(P) = u(\rho, \theta, \varphi)$ be subharmonic in D and continuous in \overline{D} , except at O, such that

$$\iiint_{P} |u(P)|^{2} dv_{P} < \infty , \qquad \iint_{F} |u(Q)| d\sigma_{O} < \infty ,$$

where dv_P is the volume element and $d\sigma_Q$ is the surface element. Then for $P \in D$,

(i)
$$u(P) \leq \frac{1}{4\pi} \iint_F u(Q) \frac{\partial G(P;Q)}{\partial \nu} d\sigma_Q$$
,

where G(P; Q) is the Green's function of D with P as its pole and ν is the inner normal of F at Q.

(ii) If
$$u(P) \ge 0$$
 in D, then

$$\int_0^R u(t,0,0)dt \leq MR + \frac{1}{\pi} \int_0^{2\pi} d\varphi \int_0^R u(\rho,\theta_0,\varphi)d\rho,$$

where $M = \underset{P \in S_R}{\text{Max }} u(P)$, S_R being the part of F, which lies on a sphere $\rho = R$.

PROOF. Let $0 < \rho < R$ and D_{ρ} be the part of D, which lies in a half-space $z > \rho$ and $G_{\rho}(P;Q)$ be its Green's function with P as its pole. Then the boundary F_{ρ} of D_{ρ} consists of three parts:

$$F_{\rho} = S_R + \Sigma_{\rho} + \sigma_{\rho}$$
,

where Σ_{ρ} is the part of F_{ρ} , for which $x^2+y^2+z^2 < R^2$, $z > \rho$ and σ_{ρ} is that, which lies on a plane $z=\rho$.

Since D_{ρ} is convex, D_{ρ} is contained in a half-space H_{Q} , which lies in one side of a tangent plane π_{Q} of F_{ρ} at $Q \in F_{\rho}$.

Since $G_{\rho}(P; Q)$ is majorated by the Green's function of H_Q , we have, when P is fixed,

$$\frac{\partial G_{\rho}(P;Q)}{\partial \nu} \leq M_0 \quad (=\text{const.}), \tag{1}$$

for any $Q \in F_{\rho}$ and for small values of ρ .

Since $\iint_F |u(Q)| d\sigma_Q < \infty$, we can find $\rho_0 = \rho_0(\epsilon)$ for any small $\epsilon > 0$, such that

$$\int_{0}^{2\pi} \int_{0}^{\rho_{0}} |u(\rho, \theta_{0}, \varphi)| \rho \sin \theta_{0} \, d\rho \, d\varphi < \varepsilon. \tag{2}$$

Let $0 < \rho < \rho_0$. Since u(P) is continuous in \overline{D}_{ρ} , we have for $P \in D_{\rho_0}$,

$$u(P) \leq \frac{1}{4\pi} \iint_{F_{\rho}} u(Q) \frac{\partial G_{\rho}(P;Q)}{\partial \nu} d\sigma_{Q} = \frac{1}{4\pi} \iint_{S_{R}} u(Q) \frac{\partial G_{\rho}(P;Q)}{\partial \nu} d\sigma_{Q}$$

$$+ \frac{1}{4\pi} \iint_{\Sigma_{\rho_{0}}} u(Q) \frac{\partial G_{\rho}(P;Q)}{\partial \nu} d\sigma_{Q} + \frac{1}{4\pi} \iint_{\Sigma_{\rho} - \Sigma_{\rho_{0}}} u(Q) \frac{\partial G_{\rho}(P;Q)}{\partial \nu} d\sigma_{Q}$$

$$+ \frac{1}{4\pi} \iint_{\sigma_{\rho}} u(Q) \frac{\partial G_{\rho}(P;Q)}{\partial \nu} d\sigma_{Q} = I + II + III + IV , \qquad (3)$$

where

$$\lim_{\rho \to 0} \mathbf{I} = \frac{1}{4\pi} \iint_{S_R} u(Q) \frac{\partial G(P; Q)}{\partial \nu} d\sigma_Q,$$

$$\lim_{\rho \to 0} II = \frac{1}{4\pi} \iint_{\Sigma_{\rho_0}} u(Q) \frac{\partial G(P; Q)}{\partial \nu} d\sigma_Q.$$

By (1), (2),

$$|\mathrm{III}| \leq rac{M_0}{4\pi} \! \int_{\Sigma_0 - \Sigma_0} |u(Q)| \, d\sigma_Q \! < rac{M_0 arepsilon}{4\pi} \, ,$$

so that for $P \in D_{\rho_0}$,

$$u(P) \leq \frac{1}{4\pi} \iint_{S_R} u(Q) \frac{\partial G(P;Q)}{\partial \nu} d\sigma_Q + \frac{1}{4\pi} \iint_{\Sigma_{Q_0}} u(Q) \frac{\partial G(P;Q)}{\partial \nu} d\sigma_Q + \frac{M_0 \varepsilon}{4\pi} + \lim_{Q \to 0} IV.$$
 (4)

Since

$$|\text{IV}| \leq \frac{M_0}{4\pi} \iint_{\sigma_Q} |u(Q)| d\sigma_Q,$$

$$|\operatorname{IV}|^2 \leq \left(rac{M_0}{4\pi}
ight)^2 \iint_{\sigma_{
ho}} d\sigma_Q \iint_{\sigma_{
ho}} |u(Q)|^2 d\sigma_Q = O(
ho^2) \iint_{\sigma_{
ho}} |u(Q)|^2 d\sigma_Q \,.$$

Since

there exists $\rho_{\nu} \rightarrow 0$, such that IV $\rightarrow 0$, hence from (4),

$$egin{aligned} u(P) & \leq rac{1}{4\pi} \iint_{S_R} u(Q) rac{\partial G(P;Q)}{\partial
u} d\sigma_Q \ & + rac{1}{4\pi} \iint_{\Sigma_{Q_0}} u(Q) rac{\partial G(P;Q)}{\partial
u} d\sigma_Q + rac{M_0 \varepsilon}{4\pi} , \end{aligned}$$

so that if we make $\rho_0 \rightarrow 0$, we have

$$u(P) \leq \frac{1}{4\pi} \iint_{F} u(Q) \frac{\partial G(P; Q)}{\partial \nu}, \quad P \in D.$$
 (5)

Hence (i) is proved.

To prove (ii), let P=(t,0,0) (0 < t < R) and $Q=(\rho,\theta_0,\varphi)$ $(0 < \rho < R)$, then we shall prove that

$$\frac{\partial G(P;Q)}{\partial \nu} \leq \frac{2t \sin \theta_0}{(t^2 - 2t\rho \cos \theta_0 + \rho^2)^{\frac{3}{2}}},\tag{6}$$

where ν is the inner normal of F at Q.

Let π_Q be the tangent plane of F at Q. We choose the coordinate axes (ξ, η, ζ) , such that Q is the origin and π_Q is the ξ η -plane, the line \overrightarrow{OQ} coincides with the positive ξ -axis and ν coincides with the positive ξ -axis.

Then D lies in a half-space $\zeta > 0$. Let $G_0(P; M)$ be the Green's function of the half-space $\zeta > 0$, with P as its pole, then G(P; M) is majorated by $G_0(P; M)$, such that

$$G(P; M) \leq G_0(P; M) = \frac{1}{r} - \frac{1}{r_1}, r = \overline{PM}, r_1 = \overline{P_1M},$$

where P_1 is the image of P with respect to π_Q . Since G(P; M) and $G_0(P; M)$ vanish at M=Q, we have

$$\frac{\partial G(P;Q)}{\partial
u} \leq \frac{\partial G_0(P;Q)}{\partial
u} = \frac{2\cos \varphi}{PQ^2}$$
,

where φ is the angle between \overrightarrow{QP} and ν .

Since
$$\cos \varphi = \frac{t \sin \theta_0}{\overline{PQ}}$$
,

$$\frac{\partial G(P;Q)}{\partial \nu} \le \frac{2t \sin \theta_0}{PQ^3} = \frac{2t \sin \theta_0}{(t^2 - 2t\rho \cos \theta_0 + \rho^2)^{\frac{3}{2}}}.$$
 (6)

Hence putting $t=\rho\tau$, we have by Lemma 1,

$$\int_{0}^{R} \frac{\partial G(P;Q)}{\partial \nu} dt \leq \int_{0}^{R} \frac{2t \sin \theta_{0} dt}{(t^{2}-2t\rho \cos \theta_{0}+\rho^{2})^{\frac{3}{2}}}$$

$$\leq \frac{2 \sin \theta_{0}}{\rho} \int_{0}^{\infty} \frac{\tau d \tau}{(\tau^{2}-2\tau \cos \theta_{0}+1)^{\frac{3}{2}}} = \frac{2 \sin \theta_{0}}{\rho (1-\cos \theta_{0})}$$

$$= \frac{2(1+\cos \theta_{0})}{\rho \sin \theta_{0}} \leq \frac{4}{\rho \sin \theta_{0}}.$$
(7)

From (5), we have by putting P=(t, 0, 0)

$$\begin{split} u(t,0,0) & \leq \frac{1}{4\pi} \iint_{S_R} u(Q) \, \frac{\partial G(P;Q)}{\partial \nu} \, d\sigma_Q \\ & + \frac{1}{4\pi} \int_0^{2\pi} \int_0^R u(Q) \, \frac{\partial G(P;Q)}{\partial \nu} \, \rho \sin \theta_0 \, d\rho \, d\varphi \,, \end{split}$$

where $Q=(\rho, \theta_0, \varphi)$ in the second integral.

If $u(P) \ge 0$ in D and $M = \max_{P \in S_R} u(P)$, then since $\iint_{S_R} \frac{\partial G(P; Q)}{\partial \nu} d\sigma_Q \le 4\pi$, we have by (7)

$$\int_0^R u(t,0,0) dt \leq MR + \frac{1}{4\pi} \int_0^{2\pi} d\varphi \int_0^R u(Q) \rho \sin\theta_0 d\rho \int_0^R \frac{\partial G(P;Q)}{\partial \nu} dt$$

$$\leq MR + \frac{1}{\pi} \int_0^{2\pi} d\varphi \int_0^R u(\rho, \theta_0, \varphi) d\rho$$
.

Hence (ii) is proved.

LEMMA 4. Let D be the same domain as in Lemma 3, such that

$$D: \ 0 <
ho < R \,, \ \ 0 \le heta < heta_0 \left(< rac{\pi}{2}
ight), \ \ 0 \le arphi \le 2\pi \,.$$

Let u(P) be harmonic in \overline{D} , except at the origin O, such that

$$\iiint_{D} |\operatorname{grad} u(P)|^{2} dv_{P} < \infty , \quad \iiint_{D} |\operatorname{grad} u(P)| \frac{dv_{P}}{\rho^{2}} < \infty , \quad \rho = \overline{OP}.$$

- Then for $0 \le \theta \le \theta_1(\le \theta_0)$, $0 \le \varphi \le 2\pi$, (i) $\lim_{n \to \infty} u(\rho, \theta, \varphi) = u_0$ ($+ \infty$) exists and uniformly,
 - (ii) $\int_{a}^{R} |\operatorname{grad} u(\rho, \theta, \varphi)| d\rho \leq K$ (= const.).

PROOF. By Lemma 2, $|\operatorname{grad} u|$ is subharmonic.

$$\iiint_{D} |\operatorname{grad} u(P)| \frac{dv_{P}}{\rho^{2}} = \int_{0}^{\theta_{0}} d\theta \int_{0}^{2\pi} \int_{0}^{R} |\operatorname{grad} u(\rho, \theta, \varphi)| \sin \theta \, d\rho \, d\varphi < \infty ,$$

we have for almost all θ of $[0, \theta_0]$,

$$\int_0^{2\pi} \int_0^R |\operatorname{grad} u(\rho, \theta, \varphi)| \sin \theta \, d\rho \, d\varphi < \infty ,$$

a fortiori,

$$\int_0^{2\pi} \int_0^R |\operatorname{grad} u(\rho, \theta, \varphi)| \rho \sin \theta \, d\rho \, d\varphi < \infty.$$

Hence for a non-exceptional θ , $|\operatorname{grad} u(P)|$ satisfies the condition of Lemma 3, so that for a non-exceptional θ ,

$$\int_0^R |\operatorname{grad} u(t,0,0)| dt \leq MR + \frac{1}{\pi} \int_0^{2\pi} d\varphi \int_0^R |\operatorname{grad} u(\rho,\theta,\varphi)| d\rho,$$

where

$$M = \underset{P \in S_R}{\text{Max}} | \operatorname{grad} u(P) |$$
.

Since $\int_0^{\theta_0} \sin \theta \ d\theta = 1 - \cos \theta_0$, by multiplying $\sin \theta$ and integrating over $[0, \theta_0]$, we have

$$\int_0^R |\operatorname{grad} u(t,0,0)| dt \leq MR$$

$$+\frac{1}{\pi(1-\cos\theta_0)}\int_0^{\theta_0}\int_0^{2\pi}\int_0^R |\operatorname{grad} u(\rho,\theta,\varphi)| \sin\theta \,d\rho \,d\varphi \,d\theta$$

$$= MR + \frac{1}{\pi (1 - \cos \theta_0)} \iiint_D |\operatorname{grad} u(P)| \frac{dv_P}{\rho^2}. \tag{1}$$

From this, we see that for $0 \le \theta \le \theta_1 (< \theta_0)$, $0 \le \varphi \le 2\pi$,

$$\int_0^R |\operatorname{grad} u(\rho, \theta, \varphi)| d\rho \le$$

$$MR + \frac{1}{\pi(1-\cos\delta)} \iiint_D |\operatorname{grad} u(P)| \frac{dv_P}{\rho^2} = K < \infty$$
, $(\delta = \theta_0 - \theta_1)$. (2)

Hence (ii) is proved.

From (2), we see that for $0 \le \theta \le \theta_0$, $0 \le \varphi \le 2\pi$,

$$\lim_{\theta \to 0} u(\rho, \theta, \varphi) = \lambda(\theta, \varphi) \quad (\exists | \cdot \cdot \circ)$$
(3)

exists.

If we put $M_1 = \underset{P \in S_R}{\text{Max}} |u(P)|$, then we see from (2) that u(P) is bounded, such that for $0 \le \theta \le \theta_1 (\le \theta_0)$, $0 \le \varphi \le 2\pi$, $0 \le \rho \le R$.

$$|u(\rho,\theta,\varphi)| \leq M_1 + K.$$
 (4)

Let

$$L(\rho, \theta_1) = \int_0^{2\pi} |\operatorname{grad} u(\rho, \theta_1, \varphi)| \rho \sin \theta_1 d\varphi, \qquad (5)$$

then by (2),

$$\int_0^R \frac{L(\rho,\theta_1)}{\rho} d\rho \leq \int_0^{2\pi} d\varphi \int_0^R |\operatorname{grad} u(\rho,\theta_1,\varphi)| d\rho \leq 2\pi K,$$

so that there exists $\rho_{\nu} \rightarrow 0$, such that $L(\rho_{\nu}, \theta_{1}) \rightarrow 0$. Since

$$|u(\rho_{\nu},\theta_{1},\varphi)-u(\rho_{\nu},\theta_{1},\varphi')| \leq \int_{\varphi'}^{\varphi} \operatorname{grad} u(\rho_{\nu},\theta_{1},\varphi)|\rho_{\nu}\sin\theta_{1}|d\varphi \leq L(\rho_{\nu},\theta_{1}) \to 0,$$

we have in (3),

$$\lim_{\rho\to 0} u(\rho,\theta_1,\varphi) = \lim_{\rho\to 0} u(\rho,\theta_1,\varphi'),$$

so that $\lambda(\theta_1, \varphi)$ is independent of φ , such that

$$\lim_{\rho \to 0} u(\rho, \theta_1, \varphi) = \lambda(\theta_1) \quad (0 \le \varphi \le 2\pi). \tag{6}$$

Since by (4), u(P) is bounded and the origin O is a regular point for Dirichlet problem, we see from (6), that

$$\lim_{\rho \to 0} u(\rho, \theta, \varphi) = u_0 \quad (\pm \infty) \tag{7}$$

uniformly for $0 \le \theta \le \theta_1$, $0 \le \varphi \le 2\pi$.

Hence (i) is proved.

LEMMA 5. Let C be a unit circle on the xy-plane about the origin O and C_1 be a circle of radius 1/2, which touches C at Q=(1,0) internally and Δ , Δ_1 be the inside of C and C_1 respectively. Let P be any point of Δ and $r=\overline{OP}$, $\rho=\overline{PQ}$ and Ψ be the angle between \overline{OP} and \overline{PQ} . Then for $P \in \Delta - \Delta_1$,

$$\frac{|\cos\psi|}{\rho^2} \leq \frac{2}{\sqrt{1-r^2}}.$$

PROOF. We remark that $\cos \psi \leq 0$ for $P \in \Delta - \Delta_1$. Let $P = (x, y) \in \Delta - \Delta_1$, then $x^2 + y^2 \geq x$,

$$r^2 = x^2 + y^2$$
, $\rho^2 = 1 + x^2 + y^2 - 2x$,

so that

$$\rho^2 \ge 1 + x^2 + y^2 - 2(x^2 + y^2) = 1 - (x^2 + y^2) = 1 - r^2.$$
 (1)

Let θ be the angle between \overrightarrow{QO} and \overrightarrow{QP} , then

$$r^2 = 1 + \rho^2 - 2\rho \cos \theta$$
, $1 = r^2 + \rho^2 - 2r\rho |\cos \psi|$.

If we eliminate r^2 from these equations, we have

$$r|\cos\psi|=\rho-\cos\theta\leq \rho$$
.

Hence if $r \ge 1/2$, then

$$|\cos\psi| \leq 2\rho$$
. (2)

If $0 \le r \le 1/2$, then $\rho \ge 1/2$, so that $2\rho \ge 1$, hence (2) holds in general. From (1), (2), we have

$$\frac{|\cos\psi|}{\rho^2} \leq \frac{2}{\sqrt{1-r^2}}.$$

LEMMA 6. Let S be a unit sphere about the origin O and E be a closed set on S, which is of Newtonian capacity $\gamma(E) > 0$ and D be the complement of E with respect to the whole space.

Then there exists a positive mass distribution $d\mu(Q)$ on E of total mass 1, such that if we put

$$w(P) = \int_E \frac{d\mu(Q)}{\gamma_{PQ}}$$
, $\int_E d\mu(Q) = 1$,

then

$$\iiint_D |\operatorname{grad} w(P)|^2 dv_P \leq \frac{4\pi}{\gamma(E)} < \infty$$
.

PROOF. Let Δ_{ρ} be an open set, which contains E in its inside and whose boundary F_{ρ} consists of a finite number of analytic Jordan surfaces, each point of which is of distance $<\rho$ from E and D_{ρ} be the complement of $\overline{\Delta}_{\rho}$ with respect to the whole space. Then there exists a positive mass distribution $d\mu_{\rho}(Q)$ on F_{ρ} of total mass 1, such that if we put

$$w_{\rho}(P) = \int_{F_{\rho}} \frac{d\mu_{\rho}(Q)}{r_{PQ}}, \qquad \int_{F_{\rho}} d\mu_{\rho}(Q) = 1,$$
 (1)

then $w_{\rho}(P)$ is of constant value $\frac{1}{\gamma(F_{\rho})}$ on F_{ρ} .

Let $F_{\rho}^{(\epsilon)}$ be the niveau surface $w_{\rho}(P) = \frac{1}{\gamma(F_{\rho})} - \epsilon \ (\epsilon > 0)$ and $D_{\rho}^{(\epsilon)}$ be the complement of the inside of $F_{\rho}^{(\epsilon)}$. Then by Green's formula,

$$\iiint_{D_{\rho}^{(e)}} |\operatorname{grad} w_{\rho}(P)|^2 dv_P = \iint_{F_{\rho}^{(e)}} w_{\rho} \frac{\partial w_{\rho}}{\partial \nu} d\sigma = \left(\frac{1}{\gamma(F_{\rho})} - \epsilon\right) \iint_{F_{\rho}^{(e)}} \frac{\partial w_{\rho}}{\partial \nu} d\sigma$$

$$= 4\pi \left(rac{1}{\gamma(F_{\scriptscriptstyle
ho})} - \epsilon
ight)\!\!\int_{F_{
ho}}\! d\mu_{\scriptscriptstyle
ho}(Q) = 4\pi \left(rac{1}{\gamma(F_{
ho})} - \epsilon
ight) < rac{4\pi}{\gamma(F_{
ho})} \; .$$

Hence for $\epsilon \rightarrow 0$,

$$\iiint_{D_{\rho}} |\operatorname{grad} w_{\rho}(P)|^2 dv_P \leq \frac{4\pi}{\gamma(F_{\rho})}. \tag{2}$$

Since the total mass of $d\mu_{\rho}(Q)$ is 1, we can find $\rho_{\nu} \to 0$, such that $d\mu_{\rho_{\nu}}(Q) \to d\mu(Q)$, where $d\mu(Q)$ is a positive mass distribution on E of total mass 1. Hence $w_{\rho_{\nu}}(P)$ tends to

$$w(P) = \int_{E} \frac{d\mu(Q)}{r_{PQ}}, \quad \int_{E} d\mu(Q) = 1.$$
 (3)

Since $\gamma(F_{\rho_u}) \rightarrow \gamma(E)$, we have from (2),

$$\iiint_{D_{\rho}} |\operatorname{grad} w(P)|^2 dv_P \leq \frac{4\pi}{\gamma(E)}$$
,

so that for $\rho \rightarrow 0$,

$$\iiint_D |\operatorname{grad} w(P)|^2 dv_P \leq rac{4\pi}{\gamma(E)} < \infty$$
 .

3. Proof of Theorem 3.

Let Δ be the inside of a unit sphere S about the origin O and Q be a point of S and $\Delta(Q)$ be the inside of a sphere of radius 1/2, which touches S at Q internally. Let E be a set of $Q \in S$, such that

$$\chi(Q) = \iiint_{A(Q)} |\operatorname{grad} u(P)| \frac{\cos \psi}{\rho^2} dv_P = \infty, \quad \rho = PQ, \quad (1)$$

where ψ is the angle between \overrightarrow{OP} and \overrightarrow{PQ} .

Then we shall prove that $\gamma(E)=0$, where $\gamma(E)$ is the Newtonian capacity of E.

Suppose that $\gamma(E) > 0$, then we may assume that E is closed. Let w(P) be the potential function defined by Lemma 6, such that

$$w(P) = \int_E \frac{d\mu(Q)}{r_{PQ}}$$
, $\int_E d\mu(Q) = 1$, $\iiint_A |\operatorname{grad} w(P)|^2 dv_P < \infty$. (2)

We put

$$I = \iiint_{\Delta} |\operatorname{grad} u(P)| \frac{\partial w}{\partial r} dv_{P}, \qquad r = \overline{OP},$$
(3)

then

$$I^{2} \leq \iiint_{\Delta} |\operatorname{grad} u(P)|^{2} dv_{P} \iiint_{\Delta} \left(\frac{\partial w}{\partial r}\right)^{2} dv_{P}$$

$$\leq \iiint_{\Delta} |\operatorname{grad} u(P)|^{2} dv_{P} \iiint_{\Delta} |\operatorname{grad} w(P)|^{2} dv_{P} < \infty. \tag{4}$$

Since

$$\frac{\partial w(P)}{\partial r} = \int_{E} \frac{\cos \psi}{\rho^2} d\mu(Q), \qquad \rho = PQ, \qquad (5)$$

we have

$$I = \int_{E} d\mu(Q) \iiint_{\Delta} |\operatorname{grad} u(P)| \frac{\cos \psi}{\rho^{2}} dv_{P}.$$
 (6)

Since $\cos \psi \ge 0$ for $P \in A(Q)$ and $\cos \psi \le 0$ for $P \in A - A(Q)$,

$$I = \int_{E} d\mu(Q) \iiint_{A(Q)} |\operatorname{grad} u(P)| \frac{\cos \psi}{\rho^{2}} dv_{P}$$

$$- \int_{E} d\mu(Q) \iiint_{A-J(Q)} |\operatorname{grad} u(P)| \frac{|\cos \psi|}{\rho^{2}} dv_{P}.$$

$$(7)$$

Since by Lemma 5, for $P \in \Delta - \Delta(Q)$, $\frac{|\cos \psi|}{\rho^2} \le \frac{2}{\sqrt{1-r^2}}$, we have

$$\iiint_{A-A(Q)} |\operatorname{grad} u(P)| \frac{|\cos \psi|}{\rho^2} dv_P \leq 2 \iiint_{A-A(Q)} \frac{|\operatorname{grad} u(P)|}{1 - r^2} dv_P \\
\leq 2 \left[\iiint_{A-Y^2} \iint_{A} \frac{|\operatorname{grad} u(P)|^2}{1 - r^2} dv_P \right]_2^1 \\
= 2\pi \left[\iiint_{A} \frac{|\operatorname{grad} u(P)|^2}{1 - r^2} dv_P \right]_2^1 = K,$$

so that by (1),

$$I \ge \int_{F} \chi(Q) d\mu(Q) - K = \infty$$
 ,

which contradicts (4). Hence $\gamma(E)=0$.

Hence if $Q \in S$ does not belong to E, then

$$\chi(Q) = \iiint_{\Delta(Q)} |\operatorname{grad} u(P)| \frac{\cos \psi}{\rho^2} dv_P < \infty.$$
 (8)

Let $\Delta_{\theta_0}(Q)$ $\left(0 < \theta_0 < \frac{\pi}{2}\right)$ be the part of $\Delta(Q)$, which lies in a cone, whose vertex is at Q and whose generator makes an angle θ_0 with \overrightarrow{QO} , then for $P \in \Delta_{\theta_0}(Q)$, $\cos \psi \geq a > 0$, where a is a constant, so that

$$\iiint_{A_{\theta_0}(Q)} |\operatorname{grad} u(P)| \frac{dv_P}{\rho^2} < \infty.$$
 (9)

Since

$$\iiint_{A_{\mathbf{a}}(Q)} |\operatorname{grad} u(P)|^2 dv_P \leq \iiint_{\mathcal{A}} |\operatorname{grad} u(P)|^2 \frac{dv_P}{\sqrt{1-r^2}} < \infty , \quad (10)$$

Theorem 3 follows from Lemma 4.

Mathematical Institute, Tokyo University.