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On the exceptional set of a certain harmonic
function in a unit sphere.

By Masatsugu Tstu.

(Received NMay 280 1953)

1. Main theorem.

In the former paper”, 1 have proved, by generalizing  Beurling’s
theorem™, the following theorem.
THEOREM 1. Let f(2) be regular in 121<1 and

| ir@edeay o, 2wy,
;o
Then theve cxists a set E on 1z|-:1, which is of logarithmic capacity
zero, such that if ¢ docs not belong to I, ihen

im f(2)  f(e) (0 o) exists and wuniformly,

z_”,f(l
when z tends to o from the inside of any Stolz domain, whosc vertex
is at " and for any rectilinear seoment 1, which connects ¢ to a point

of lz|- 1,
J; @) dz)- o

From this, we have
THEOREM 2. Let u(2) be harmonic in 121<71 and

“ tgrad #(2) P dxdy < <o .

z <1

Then there exists a set E on izi—1, which is of logarithmic capacity
zero, such that if ¢ does wnot belong to E, then
lim2(z)-=u () (=)= o) exists and wuniformly,

1]

21t
7 1) M. ’l‘sujirz Beurling’s theorem on exceptional sets. Tohoku Math. Journ. 2 {1950).
2) A. Beurling: Ensembles exceptionels. Acta Math. 72 (1940). '
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when z tends to c® from thce inside of anyv Stolz: domain. whosc vertex
is at ¢*° and for any rectilinear segment 1, which connects ¢ to a point
of |z1<71,

| erad w2 dz| < o

In this paper, 1 shall prove the following similar theorem for a
harmonic function in a unit sphere.

THEOREM 3. Let 4 be the inside of a unit spheve S about the
origin O and u(x,y,z)=u(P) (P=(x,5,2)) bc harmonic in 4 and

m \grad u(P)[° d”P . <o, »=0OP,

where dvp is the volume clement. Then there cxists a set E on S,

which is of Newtonian capacity zcvo, such that if Q¢S does not belong
to E, then

}Jirré u(P)=u(Q) (5= =) exists and uniformly,

when P tends to @ from the inside of any Stolz domain®, whose vertex
is at Q and for any rectilinear segment I, which connects Q to a point

of 4,
S, lgrad #(P)|ds< o ,
where ds is the arc element on 1.

Since |du|= | ‘;” ds<|gradu(P)|ds,

[ 1aui< e,

where the left hand side is the total variation of #(P) on /. First we
shall prove some lemmas.

2. Lemmas.

LEMMA 1. Izg— t dt —_1 , 0<<a<1.
o (2_2at41); 1—a

3) A stolz domain is a domain, which iS bounned by a cone, whose vertex is at @ and

whose generator makes an angle 6g (<—2-> with the radius OQ.
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Proor. From

= ® dt = —_ 2 — —
I@R)= @ —log (R—a+V RP—2aR+1) —log(1~a),
we have
I=lim 2@ R) _ 1
R da l1—a

LEMMA 2. If u(x\, ¥, 2) is harmonic, then

lgradu(P)]% /(%)2_1_ (au >2+ <(;,: )2

o0y

is subharmonic.
Proor. We put

2 2 2
p= Qﬁ) " 6_u> 4 (_a_zf_)
-0 X oy 02
then

v :2<6u Ou  ou  Pu | ou 62u>
0x ox 0x° 0y 0x3dy 02 0x0z

soea(s( 2o (1))

By Schwarz’s inequality,
6v>2 - <02u ., [ Pu )2 < u )2
— | 4o (| —= ) + + ,
(ax T ( axz) (axay 0x 0z )
so that

> <% >2_S__ 4v <Z<g—2;—>2+22 < 6?:;; >2> =2v4v.

If we put w=1"v, then

3 2
402 JWw=20 49— (@> >0, 4w>0,

ox
hence w=| grad #| is subharmonic.
LemMMA 3. Let O be the origin and (p, 6, ) (pgo,ogeg

w
’

2
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0<" ¢ *i‘{27r) be the polar coordinates of a point P=(x,v,z) and D be

the conical domain, such that
D: 0-p-R, 0<0<a(<7), 0sp<2n,

and F be its boundary.

Let u(P)=u(p, 8, @) be subharmonic in D and continuous in D, cx-
cept at O, such that

\ ‘”.l’ 2t (P oy e ﬂﬁ |26 (Q)] dao< |

where dvp is the volume clement and do, is the surface element.
Then for PeD,

. Do,
(i) w(Pys -1 || w@ 2O g,
47 F or
where G(P; Q) is the Green’s function of D with P as its pole and v

is the inner normal of F at Q.
(1) If u(P)>=0 in D, then

R i 1 (2~ R
j w(t,0,0at MR+ ' {"d " u(p, 00 ydp,
0 T . JO

0

where M=Max u(P), Sg being the part of F, which lics on a sphere

PSp
p=R.

Proor. l.et 0<p<ZR and D, be the part of D, which lies in a
half-space z>>p and G,(P; Q) be its Green’s function with P as its
pole. Then the boundary F, of D, consists of three parts:

F’,‘:—'Sl\"i' ‘ll,)'{ g, ,

where Y, is the part of F,, for which x>+ 3" +-2°<R? z_>p and o, is
that, which lies on a plane z=p.

Since D, is convex, D, is contained in a half-space //, which lies
in one side of a tangent plane = of F, at Q¢ F,.

Since G,(P; Q) is majorated by the Green’s function of /7, we
have, when P is fixed,



On the exceptional set of a certain harmonic function in a unit sphere. 311
0G (P Q) — pr (=const.), 1)

for any QeF, and for small values of p.
Since || 1#(Q)1daq< oo, we can find py=py(c) for any small ¢>0,
such that

27 ("Pa
jo j 14(p, 8y, )| p sin 6y dp dep<e . (2)

Let 0<p<p,. Since «(P) is continuous in D,, we have for PeD,,,

1 0G.(P;Q) ,  _ 1(f 3G, (P; Q) 4
u(P) < “Fpu(Q) D dog “SRu(Q) L8 dr

™ w

i u(Q),aGp((?i’; Q) 4o+ 41 i e ggg_(g_é’:;@ deg

- A47r ; r
+ 1 H w(@) PG PiQ) G, L LTIV, (3)
T 0”

4qr »
where '

limI= .1 H w(@) 36 Q) 4,
4 Sg

p=0 T . ov

p=>0 m 1

im = L[ (@) 2C¢E Q). o, .
1)), :

By (1), (2),

— My - Me
< ] 1@ dee <
so that for PeD, ,
1 0G(P; Q)
w(P)= L ”SRu(Q) 289 dog
+ 1“ w(@)2C B Q) g4, 4 Moe L lim1v. (4)
47'1" 200 ov 47T p-0
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Since

o], 1u@idoo,

A4S

WES(FE) ], dodf], 16(@Fdoe=06 [[ 1u(@rdoq.

Since

0

(Ve IZZ'“ dp < 0(1) S:odp”dp (@ Fdao<OM(| |uP)Pdvp< <o,
there exists p,— 0, such that IV—0, hence from (4),

1 0G(P; @)
u(P>g;1—;jst (@29 aq,

1 0G(P; Q) M
+ﬁj‘j‘;pnu(Q) ov dO'Q+ 4 0€ ,

ks

so that if we make p,— 0, we have
wP)< || w(@?@ 89 | pep. (5)
4o JJF Jdv

Hence (i) is proved.
To prove (ii), let P=(¢,0,0) (0<t<<R) and Q@=(p, 0, ) (0<p<R),
then we shall prove that

0G(P; Q)
ov

2t sin 90
(22—2tp cos 6,+ pg)%‘

\

(6)

!

where v is the inner normal of F at Q.
Let m¢ be the tangent plane of F at @. We choose the coordinate
axes (¢,7,¢), such that @ is the origin and = is the £ 5-plane, the line

OQ coincides with the positive &-axis and » coincides with the positive
¢-axis. '

Then D lies in a half-space ¢>>0. Let G,(P; M) be the Green’s
function of the half-space ¢>>0, with P as its pole, then G(P; M) is
majorated by G,(P; M), such that
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G M)<Gy(P; M)= —— — ——, r=PM, n=PM,
1

where P, is the image of P with respect to T Q.
Since G(P; M) and G,(P; M) vanish at M=@Q, we have
0G(P; Q) - 9Gy(P;Q) _ 2cosg
ov - ov P

>
where @ is the angle between QP and ».

. ¢ sin 6
Since cos p= —2_-0 |
P PO
0G(P;Q) - 2tsing, _ 2t sin 6,
-9y Y % (£2—2tp cos 6(,+p2)§

Hence putting ¢=pr, we have by Lemma 1,
[F26P:Q) 4 (*__ stsinodt

0 ov ~J0 (2—2tp cos 60+p2)'§
2 sin 6, g"" rdr — 2 sin 6,
P 0 (2—2rcos B+ 1)2 p(1—cos 6,)
— 2(1+cos 6)) < 4
P sin 00 P sin 60 )

From (5), we have by putting P=(¢, 0, 0)

1 ~ 0G(P; Q)
u(t,0,0< - w@ 2¢ED 4,

4 Jo

2z (R .
0 ov

where Q=(p, 6, ) in the second integral.

313

(6)

(7)

If #(P)=>0 in D and M=Max «(P), then since ”s 9GBQ) 4,
R

PESR all

<4, we have by (7)

SR u(t, O, O) dtéMR"i‘ —1—Szmd¢jRu(Q)p sin 00 deR aG(P; Q) dt
0 47 Jo 0

0 ov
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O CN
<< MR-+ 1 j d(ﬂ\ u(p, 6, p)dp.
T G

A

Hence (ii) is proved.
LEMMA 4. Let D be the same domain as in Lemma 3, such that

’
/

D: 0=p<R, 0-700(~ T), 0 p2m.

-~

Let w(P) be harmonic in D, except at the orvigin O, such that

H( \grad #(P) dvp— oo | \H grad w(P) P < oo, p—0P
JoeD Vv l) o

Then for 0-260-76, (<6y), 0~ - 27,
(1) limu(p, 6, p)==u, (:|- ) cxists und uniformly,
n=0

R
(i1) S fgrad u(p, 8, »)idp - K (- const.).
0

Proor. By Lemma 2, 1grad«| is subharmonic. Since
(lvp il R v e
{[{ imcad @y @r - ["ao| "("1grad up, 6, p)isin 0 dp dop— oo,
o /)' 0 o U ¢
we have for almost all ¢ of [0, 6,],
o R
i \ lgrad u(p, 6, )| sinbdp dy <" o,
JO0 00
a fortiori,
2n R : }
j ‘ fgrad u(p, 0, )| psin@dp dy " <o .
0 JO

Hence for a non-cxceptional ¢, |grad #(P)| satisfies the condition of
Lemma 3, so that for a non-exceptional 6,

1

o

R "2 R
ja | grad (4, 0,0)| &t=<SMR+ ' | dr/)ju | grad u(p, 6, )| dp

where M==Max | grad #(P)].

P(SR
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0\\
Since j siné d6-=1—cos 6, by muliiplying sin ¢ and integrating over
0

[0, 6,], we have

jkigrad 2(t,0,0)| dt < _MR
[{]

1 fO, P2 PR )
o - ) ) ) )
* (1 -cos 6,) \ 0 \ 0 .‘u lgrad (p, 6, )| sin 6 dp d g 46
1 T ' dv
o MR .l. d P P .
Ko (1 —CO0S 9()) .‘ .‘ -S‘I)' gra 71( ) ' pl’ (1)

From this, we sce that for 0:=26:26,(<6y), 0-Igp~27,

-~

lgrad u(p, 6, ¢)| dp -
]

MR +. 1 m lgrad u(P) | WP =K< oo | (5=0,—8,). (2)
w(1--cosé§) b P’

Hence (ii) is proved.
From (2), we see that for 0-76<78, 0 ¢ 2,

llrgl m(p, 0, ¢)- A (A, @) (-i- o) (3)
exists.
If we put M,—~Max |u(P)], then we see from (2) that u(P) is
P«Sl‘.

bounded, such that for 0-28-6,(- ), 0~ ¢ < 2, 0<p<R,

l1e(p, 0, )| " M,+ K. (4)
Let

2

L(p, 6,)— (0 | grad u(p, 6, )| psint, dys, (5)
then by (2),

R 1 (2 (R
\ L(p, 6)) dp-< j d oy \ lgrad «(p, 6, )| dp.S:ZWK,
Jo P 0 70

so that there exists p,—0, such that L(p.,8,)—0. Since

¥ i . >
Lt (ps, 61, ) —u(p., 61, ") j |grad «(p,, 61, ¢) | p, sin 6, do» <" L(p,,6;)—0,
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we have in (3),
lim u(P, 01) ¢)=1im u(P’ 91’ q)’) ’
p-0 p=0
so that A (6, ) is independent of o, such that

12_{(1]’1 u(p, 6;, P)=n(6;) (O=<op=27). (6)

Since by (4), #(P) is bounded and the origin O is a regular point for
Dirichlet problem, we see from (6), that

lim u(p, 6, p)=u, (F ) (7)

uniformly for 0<0<6;, 0 p <2m.
Hence (i) is proved.

LEMMA 5. Let C be a unit circle on the xy-plane about the origin o
and C, be a circle of radius 1/2, which touches C at Q=(1,0) inter-
nally and 4, 4, be the inside of C and C, respectively. Let P be any

point of 4 and r=0P, p=PQ and ¥ be the angle between OP and
PQ. Then for Ped—4,,

leosy| 2
P2 T V1=

ProOF. We remark that cos ¢y <0 for Ped—4,.
Let P=(x,y)e 4— 4, then x*+3*=x,
r’=x+y*, P=1+22+y"—2x,
so that
P14 22+ P —2(+32)=1—(2+3)=1—7. 1

Let 8 be the angle between QO and QP, then _
r=1+p*—2pcosé, 1=+ p2—2rp|cos ¥]|.
If we eliminate 72 from these equations, we have

rlcos¥|=p—cosf=p.
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Hence if »=1/2, then -
lcos | <2p. | (2

If 0=<7r<1/2, then p=>1/2, so that 2p>>1, hence (2) holds in genéral.
From (1), (2), we have

lcosxlrl 2
P° 1/1 —2

LEMMA 6. Let S be a unit spheve about the ovigin O and E be
a closed set on S, which is of Newtonian capacity v(E)>0 and D be
the complement of E with respect to the whole space.

Then there exists a positive mass distribution du(Q) on E of total
mass 1, such that if we put

wp)=| 229 [ g, @=1,

E 7pg

then

2 47
mplgradw(m dop =< T < oo

PROOF. Let 4, be an open set, which contains E in its inside and
whose boundary F, consists of a finite number of analytic Jordan sur-
faces, each point of which is of distance <p from E and D, be the
complement of 7, with respect to the whole space. Then there exists
a positive mass distribution du,(Q) on F, of total mass 1, such that
if we put

wP)=[_ 4@ au@=1, ®
» F, 7pg F,
then w,(P) is of constant value —L  on F,.
'Y(F p)
Let F® be the niveau surface w,(P)= 1 —e (e>>0) and D be

'Y(F p)
the complement of the inside of F . Then by Green’s formula,

[, o= [ 9 do=( e =), 2
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=i (S~ @=4n( Gy —¢) <y -

Hence for ¢—0,

(f ij | grad w, (P) P dop < ;‘(‘—;{—) : @)

Since the total mass of du,(Q) is 1, we can find p,—0, such that
dp, (Q)—du(Q), where dp(Q) is a positive mass distribution on E of

total mass 1. Hence w, (P) tends to
w(P)= S Q) j dup(@)=1. (3)
E 7pg E

Since y(F,)—v(E), we have from (2),

g”u lerad w(P)F dvp;i'y—zt%,y :

so that for p—0,

HSD |grad w(P) | dvp = .');425,; < o

3. Proof of Theorem 3.

Let 4 be the inside of a unit sphere S about the origin O and @
be a point of S and 4(@) be the inside of a sphere of radius 1/2, which
touches S at @ internally. Let E be a set of @eS, such that

x@=([f, 1aradu(P)l BV dvp=e, p=PQ, (1)

——>

where Y is the angle between OP and PQ.

Then we shall prove that v(E)=0, where v(E) is the Newtonian
capacity of F.

Suppose that v(E)>>0, then we may assume that E is closed.
Let w(P) be the potential function defined by Lemma 6, such that
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w(P)sz»d;fp(f) [ an@=1, ([[ leradw@pasp <o
We put
Izmd| grad u(P)| "”a”: dop, 7r=0OP,

then

Izsf_ﬁjdi grad u(P) dop m <2Z:>zdvp

>M| grad u(P) | dvp HL' grad w(P)F dvp<<oo .

Since

owiB) [ SV gu@),  p=PQ
or £ P")v ’ ’

we have
_ [ CcoSs
1={_ap(@ |[f 1grad u(p) 5V avp.
Since cos ¥ >0 for Pe 4(Q) and cosy<<0 for Ped—4(Q),

I:Sﬁ: 41(Q) XSL(Q) | grad u(P)]| CO;‘P dvp
[ an@{f], . 1erad w195 an,

Since by Lemma 5, for Pea—a4(Q), 1€S¥ !l < 2

T 1—2
we have
lcos ¥ | | grad 2 (P) | dvp
jyja—-4<0)l grad u(P) | p° dvp S‘ijjdw(o) 1"1—-«1'2

<affff, g [, ey

=2 {[] lgra%@f wr i =k,

319

(2)

(3)

(4)

(5)

(6)

(7)
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so that by (1),
I={ x(@du(@—-K==,

which contradicts (4). Hence «(E)=0.
Hence if Q¢S does not belong to E, then

x(@= ([[ 1gradu(®)| ¥ dop<eo. (8)
2Q p°

Let 40,(Q) (0<90<%) be the part of 4(Q), which lies in a cone,

whose vertex is at @ and whose generator makes an angle 6, with

QO, then for Pe 4,,(Q), cos v =a>0, where a is a constant, so that

i1 leradu@) 2% <o . (©)
49 (@ P
Since

SSL%(Q) | grad w(P)Pdop< [[[ grad u(@F P2 <o, (10)

Theorem 3 follows from Lemma 4.

Mathematical Institute, Tokyo University.
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