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Quadratic forms.
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(Received April 9, 1953)

1. Introduction. The theory of quadratic forms over a p.adic
number field is a vital building block of the Minkowski-Hasse theory
of quadratic forms over an algebraic number field, and has been
expounded from several different points of view. A recent account of
the purely number-theoretic attack on the problem appears in [2]. A
field with a valuation, subjected to appropriate axioms, is the frame.
work in [1]. A development from the point of view of the theory of
algebras is given in [3].

In this last reference it appears that all the major portions of the
theory can be deduced just from the fact that a quadratic form in five
variables must represent zero. The main point of the present paper is
that this in turn can be deduced from the following assumptions on a
field $F$ : that $F$ is not formally real, and that its multiplicative group
mod squares has exactly order four. It is plausible to make the
following more general conjecture: if there are $n$ classes mod squares,
then every quadratic form in $n+1$ variables represents zero. We are
able to prove this for the next case $(n=8)$ , and in other cases as well,
for instance characteristic $p$. Beyond these partial results, it seems
to be worth while to give a systematic formulation of the problems
involved.

Notation: we shall use the symbol $(a_{1}, \cdots , a_{n})$ for the quadratic
form $\sum a_{i}x_{i}^{2}$ . Equivalence of quadratic forms (or congruence of the
corresponding matrices) will be indicated by the notation

$(a_{1}, \cdots, a_{n})\sim(b_{1}, \cdots, b_{n})$ .

2. Three invariants. Throughout the paper $F$ will denote a field
of characteristic different from two, and it will be assumed that $F$ is
not formally real (that is, $-1$ is a sum of squares). The formally real
case probably has a parallel theory, which may be worth separate
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study. Of course, quadratic forms of characteristic two are markedly
different, and have to be treated specially.

We proceed to define three invariants of a field $F$, indicating the
dependence on $F$ when desirable.

(a) Let $F^{*}$ denote the multiplicative group of non.zero elements,
and write $A(F)$ for the order of the group $F^{*}/(F^{*})^{?}$. Of course $A(F)$

may be infinite; if it is finite it is evidently a power of 2, for in the
group $F^{*}/(F^{*})^{2}$ the square of every element is the identity.

(b) $B(F)$ is the smallest integer $n$ such that $-1$ is a sum of $n$

squares. We note that $B(F)\leq 2$ if $F$ has characteristic $p$ , for this is
already true in the prime subfield of $F$.

(c) $C(F)$ is the smallest $n$ such that every quadratic form in
$n+1$ variables over $F$ is a null form (that is, the form vanishes for
some choice of the variables, not all zero).

We can prove at once the following restriction on the possible
values of $B(F)$ .

THEOREM 1. Let $F$ be a fiold which is not formally real. Then
$B(F)=1,2,4$ or a multiple of 8.

PROOF. Write $-1=a_{1}^{2}+\cdots+a_{n}^{2}$ with $n$ minimal. Suppose first
that $n$ is odd, $n>1$ . We have

(1) $-(1+a_{1}^{2})^{2}=(a_{2}^{9}\lrcorner+a_{3}^{2})(1+a_{1}^{2})+(a_{4}^{2}+a_{5}^{2})(1+a_{1}^{2})+\cdots$

Now each product on the right side of (1) may be condensed to a
sum of two squares; indeed we have the identity

(2) $(a^{2}+b^{2})(c^{2}+d^{\underline{\gamma}})=(ac-bd)-+)(ad+bc)-)$

Also the left side of (1) is non.zero, and we may divide by it. The
result is an expression of $-1$ as a sum of $n-1$ squares, a contradiction.

In just the same way we show that if $n$ exceeds 2 or 4, it is a
multiple of 4 or 8 respectively; we use the identities analogous to (2)
which compose sums of 4 or 8 squares (obtainable from the quaternions
and Cayley numbers). Thus we complete the proof of Theorem 1. We
remark that sums of 16 squares cannot be composed, so that this
method of proof cannot be pushed any further. Nevertheless it seems
unlikely that $B$ for example could be 24. In fact we conjecture that
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$B$ is always a power of 2, and we make the same conjecture for $C$,
although here the evidence is more meager.

THEOREM 2. $C(F)$ cannot be 3.
PROOF. The assertion $C(F)\geqq 3$ means that there exists a non-

null form in 3 variables, which we can assume to be $(1, a, b)$ . To
prove the theorem we have to exhibit a non.null form in 4 variables,
and our choice is (1, $a,$

$b$, ab). For if

(3) $x^{2}+ay^{2}+bz^{2}+abt^{2}=0$ ,

we repeat the artifice used in Theorem 1: multiply (3) by $z^{2}+at^{2}$ and
use the identity

$(x^{2}+ay^{2})(z^{2}+at^{2})=(xz-ayt)^{2}+a(yz+xt)^{2}$

The result is a non-trivial representation of $0$ by $(1, a, b)$ .
We note finally that fields with valuations provide examples show-

ing that $A$ and $C$ can be any powers of 2. The proof is straightfor-
ward and is left to the reader.

THEOREM 3. Let $F$ be a field complete with respect to a discrete
rank one valuation, and suppose that the residuc class field $K$ has
characteristic different from 2. Then $A(F)=2A(K)$ and $C(F)=2C(K)$ .

3. Main results. The principal conjecture of this paper is that
$C\leqq A$ . In attacking this problem we find that a critical role is
played by the value of $B$. So we begin by noting $B\leqq A$ . Indeed
write $-1=a_{1}^{2}+\cdots+a_{n}^{2}$ with $n$ minimal, and set $b_{i}=a_{1}^{2}+\cdots+a_{i}^{2}$. Then
two different $b’ s$ must be in different classes mod squares; otherwise
the representation of $-1$ could be shortened. Thus $A\leqq n=B$ . Actu-
ally we can slightly refine this result.

THEOREM 4. If $A>2$ , then $B<A$ .
PROOF. Suppose on the contrary that $A=B=n$ , and use the

notation above. Then $b_{1},$ $\cdots b_{n}$ give us precisely a set of representa-
tives of the non.zero elements mod squares. In particular, for each
element $-b_{i}$ there is a unique index $j$ such that $-b_{j}/b_{i}$ is a square $c^{2}$ .
We must have $i+j\geqq n+1$ , for otherwise the equation $c^{2}b_{i}+b_{j}=0$

would give us a representation of $-1$ as a sum of $n-1$ or fewer
squares. Since $i$ and $j$ both range precisely over the integers from 1
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to $n$ , we must actually have $i+j=n+1$ always. If we write $n=2m$
we get in particular

$b_{m}+a_{m+1}^{2}=b_{m+1}=-c^{2}b_{n}$ ,

$(1+c^{2})^{2}b_{n}+a_{m+1}^{\underline{o}}(1+c^{2})=0$ .
That is, we have a representation of $0$ as a sum of $m+2$ squares, and
hence a representation of $-1$ as a sum of $m+1$ squares. This is a
contradiction if $m+1<n,$ $i$ . $e$ . $2<n$ .

We turn our attention to inequalities for $C$, beginning with $c_{-}<AB$ .
This is easy to see: let there be given a quadratic form $\sum a_{i}x_{i}^{2}$ in
$AB+1$ variables. Since there are $A$ classes mod squares, there must
be $B+1$ of the $a’ s$ which are multiplicatively congruent mod squares.
Since $-1$ is a sum of $B$ squares, it follows that the form represents $0$ .
The argument can be subjected to two successive refinements.

THEOREM 5. (1) $C\leq AB/2lfB_{-},>2$ . (2) $C\backslash \prime AB/4- lfB>4$ .
PROOF. We shall give the proof of (2), and indicate the modifica-

tions needed in the (easier) proof of (1).
If $B\geq 4$ we have that $-1$ is not a sum of 2 squares. Consequently

there must exist an element $c$ which is a sum of two squares, but not
itself a square. The quadratic form $(1, 1)$ represents $c$ , and it follows
from this that $(1, 1)$ is equivalent to $(c, c)$ . Let us write $G$ for the
multiplicative group of $F$ mod squares; $G$ is a group of order $A$ .
The elements $\pm 1,$ $\pm c$ map onto a subgroup $H$ of $G$ having order 4.
Now let there be given a quadratic form $f=\sum a_{i}x^{2_{i}}$ in $1+AB/4$
variables. If we map the elements $a_{i}$ into $G/H$, a group of order $A/4$ ,
it must be the case that at least $1+B$ of the $a^{)}s$ map into the same
element. After multiplying $f$ by a constant (this does not affect the
question as to wh\’ether $f$ represents $0$ ), we can assume that $1+B$ of the
$a’ s$ are actually in $H$. If both 1 and $-1$ , or both $c$ and $-c$ occur, then
$f$ trivially represents $0$ . By another multiplication, if necessary, we
can suppose that the $1+B$ elements consist of a certain number of 1) $s$

and a remaining group consisting entirely of $c’ s$ or else entirely of
$-c’ s$ . Now by Theorem 1, $B$ is even and so $1+B$ is odd. Of the
two numbers adding up to $1+B$ , it must therefore be the case that
one is even and the other odd. By still another normalizing mutlipli.



204 I. KAPLANSKY

cation we arrange that the number of l’s is even. Since $(1, 1)\sim(c, c)$ ,
we can switch all the l’s to $c’ s$ . This finally gives us $1+B$ elements,

all $c$ or $-c$. If there is actually a mixture, $f$ again trivially represents
0. There remains the case of $1+Bc’ s$ , where $f$ again represents $0$

since $-1$ is a sum of $B$ squares.
The proof of (1) is similar but simpler; we use the subgroup $H$

of order 2 consisting of 1 and $-1$ . A form in $1+AB/2$ variables will
then have $1+B$ elements in the same coset $mod H$, and they can be
normalized to be all l’s and -l’s.

Let us assemble our results concerning the inequality $C\leqq A$ . If
$B=1$ we deduce $C\leqq A$ from the fact (noted above) that $C\leqq AB$

always holds. If $B=2$ or 4, Theorem 5 shows that $C\leqq A$ . So we
have achieved success for $B\leqq 4$ . Since we always have $B\leq A$ , the
case $A\leqq 4$ is accounted for. But we can also look after $A=8$ , for
then $B<8$ by Theorem 4, and $B\leqq 4$ by Theorem 1. We summarize
in the following theorem.

THEOREM 6. Let $F$ be a field which is not of characteristic two,

and is not formally real. Suppose that the multiplicative group of
non-zero elements of $F$, mod squares, is precisely of order A. Then
we can assert that every quadratic form in $1+A$ variables over $F$

represents $0$ at least in the following two cases: (1) $A\leqq 8,$ (2) $-1$ is a
sum of four or fewer squares in F. In particular, the conclusion is
valid if $F$ has characteristic $p$, for $-1$ is then a sum of two squares
in $F$.

4. Quaternion algebras. We shall devote this final section to
surveying the connection between quaternion algebras and quadratic

forms. Let $F$ be a field of characteristic different from 2. By the
quaternion algebra $Q(a, b)$ over $F$ we mean the four-dimensional
algebra with basis 1, $x,y,$ $xy$ satisfying $x^{2}=a,$ $y^{2}=b,$ $xy=-yx$ . It is
known that $Q(a, b)$ is central simple, and so is either a division algebra

or a two by two total matrix algebra. The connection with quadratic

forms is summarized in the following three known lemmas (where

$\underline{\simeq}$ denotes isomorphism).

LEMMA 1. $Q(a, b)\cong Q(c, d)$ if and only if $(a, b,-ab)\sim(c, d, -cd)$ .
LEMMA 2. $(a, b, c)\sim(p, q, r)$ if and only if the determinants of

the forms agree up to a square (that is, $abc/pqr$ is a square), and
$Q(-ab,-ac)\cong Q(-pq,-pr)$ .
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LEMMA 3. $Q(a, b)$ is a total matrix algebra $lf$ and only $lf(a$ ,
$b$, -ab) represents $0$ .

Next we note the following two statements, of which the first is
evident, while the second is a consequence of Lemma 3.

(1) $F$ has no quadratic extensions if and only if $C(F)=1$ (that
is, every quadratic form in two variables over $F$ represents $0$).

(2) $F$ admits IIO quaternion division algebras if and only if
$C(F)\leqq 2$ (that is, every quadratic form in three variables over $F$

represents $0$).
It is natural to conjecture that there is a third result to add to

this list, stating that $C(F)\leqq 4$ is equivalent to a certain assertion
about algebras. We have not discovered such a result, but we do call
attention to the following statement:

$(*)$ $F$ admits exactly one quaternion division algebra (in the sense
of isomorphism).

We summarize the facts concerning $(*)$ .
(a) lf $F$ is not formally real and $A(F)=4$ , there are just two

possibilities. Either $C(F)\leqq 2$ , a case of no further interest, or else
$C(F)=4$ and $(*)$ holds. The $p$-adic numbers, for instance, fall into the
latter category.

(b) $C(F)=4$ does not imply $(*)$ , as is witnessed by the function
fields in one variable over a finite constant field.

(c) However $(*)$ does imply $C(F)=4$ , as we shall now prove.
THEOREM 7. Let. $F$ be a field which is not of characteristic two,

and is not formally real. Suppose that $F$ admits exactly one quater-
nion division algebra, up to isomorphism. Then every quadratic form
in five variables over $F$ represents $0$ .

PROOF. We shall break the proof into a number of steps.
I. If $(1, a, b)$ and $(1, c, d)$ both fail to represent $0$, then $(a, b, ab)$

$\sim(c, d, cd)$ . For if $(1, a, b)$ does not represent $0$ , neither does $(-a,-b$,
-ab), as we see by multiplying by -ab. By Lemma 3, $Q(-a,-b)$ is a
division algebra; and the same holds for $Q(-c,-d)$ . By hypothesis,
they are isomorphic. Then by Lemma 1, $(-a,-b,-ad)\sim(-c,-d,-cd)$ .
It remains to multiply by $-1$ .

II. If $Q(-1,-1)$ is not a division algebra, $-1$ is a sum of two
squares. This follows at once from Lemma 3.

III. If $Q(-1,-1)$ is a division algebra, then for any element $a$,
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either $a$ or $-a$ is a sum of 2 squares. For suppose that $-a$ is not a
sum of 2 squares; then (1, 1, a) does not represemt $0$ . Also (1, 1, 1)

does not represent $0$ , as follows from Lemma 3 and the assumption
that $Q(-1,-1)$ is a division algebra. By I, $(1, a, a)\sim(1,1,1)$ . Hence
by Witt’s cancellation theorem [3, Satz 4], $(a, a)\sim(1,1)$ . That is, $a$ is
a sum of 2 squares.

IV. $-1$ is a sum of 4 squares. Since $F$ is not formally real, $-1$

is the sum of a certain number of squares, say $-1=a_{1}^{2}+\cdots+a_{n}^{2}$ with
$n$ minimal. If $n>4$ , we can apply III to the element $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}$ .
It is not a sum of 2 squares, and so its negative must be a sum of 2
squares. This gives us a sum of 5 squares equal to $0$ , whence $-1$ is
a sum of 4 squares.

V. Any element $x$ is a sum of 4 squares. (a) If $-1$ is a sum of
2 squares, $-1=a^{2}+b^{2}$ , we write

$4x=(1+x)+(a^{2}+b^{2})(1-x)^{2}$,

and 3 squares suffice. (b) Otherwise we can apply III. If $x$ is not a
sum of 2 squares then $-x$ is, and $(-x,-x)\sim(1,1)$ , whence

$(1, 1, 1, 1, -x)\sim(-x,-x,-x,-x,-x)=-x(1,1,1,1,1)$ .
This last form represents $0$ since-l is a sum of 4 squares. Hence $x$

is a sum of 4 squares.
VI. If $(1, p, q, r, s)$ does not represent $0$, then $(p, q)\sim(1, pq)$ . To

prove this we first show that $(1,-p,-q)$ must represent $0$ . For if not,
we apply I to it and $(1, r, s)$, getting

$(-p,-q, pq)\sim(r, s, rs)$ .
Multiply by $-1$ and enlarge by $r$ and $s$ :

(4) $(p, q, r, s,-pq)\sim(r, s,-\gamma,-s, rs)$ .

Now $(r,-r)\sim(pq,-pq)$ by [3, Satz 5]. Apply this in (4) and then cancel
$-pq$ by Witt’s cancellation theorem:

$(p, q, r, s)\sim(pq, s,-s, rs)$ .

But this tells us that $(p, q, r, s)$ represents $0$ , a contradiction. Hence
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it must be the case that $(1, -p,-q)$ represents $0$ , and so does its
negative. From [3, Satz 5] we get

$(-1, p, q)\sim(-1,1, pq)$ .

It remains to cancel $-1$ .
We are ready to complete the proof of Theorem 7. Suppose that

$(1, p, q, r, s)$ does not represent $0$ . By repeated applications of VI we
get

$(1, p, q, r, s)\sim(1,1, pq, r, s)\sim\cdots\sim$ ( $1,1,1,1$ , pqrs).

By V, -pqrs is a sum of 4 squares, and this says that the form
represents $0$ .

University of Chicago
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