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On the Algebraic Structure of Group Rings

Richard BrAUER

§1. Introduction

1. Let § be a group of finite order g. If K is any given field of
characteristic 0, the group ring I' of & with regard to K is a semisimple
algebra. By Wedderburn’s theorems, I” is a direct sum of simple algebras

1 '=A®A® - @A,

Each A, is isomorphic to a complete matric algebra of a certain degree gf
over a division algebra 4,;

@) - A =[4],.

The center Z; of A mziy also be considered as the center of 4,. It is an
extension field of finite degree », over K. Since 4; then is a central
simple algebra over Z,, its rank over Z; is the square of a natural integer
;. Then A, has the rank r7,im; over K. We shall call the numbers
the Schur indices of @, since they first occurred in the w01k of 7. Scﬁur
on representations of & by linear transformations.

2. The theory of representations of groups of finite order was deve-
loped originally by Frobenius for the case that the coefficients of the
representing linear transformations belong to an algebraically closed field
of characteristicd). The case of an arbitrary field K of characteristic O
was=considered by 7. Sciur. We quote the main results.

Every representation of ® is completely reducible. Two representations
of & are similar, if and only if they have the same character. It is then
sufficient to consider the irreducible representations of & in K and their
characters. These irreducible representations E,, E,, ---, L, are in one-to-
one correspondence to the simple algebras A, A, -, A, in (1).

If K is the algebraic closure of K, then T, breaks up in K into 7

1) Schur [1], [2]. The connections with the theory of algebras are given in Brauer 11,
[2].. See also Albert [1]; van der Waerden [1], Chapter XVII, [2]; Weyl [1], Chapters II1I
and X.
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distinct absolutely irreducible representations &, Fo, Far, ---s each appearing
with the same multiplicity sz,. Here, », and m, are the same numbers
which appeared in 1. Thus, if the character of , is denoted by y; the
character of &, is given by '

my (s + 20 + -+ )-

We now speak of #z, as the Schur index of each of the characters i, yu, -
with regard to K.?

The »; characters y,, yu, - form a full family of absolutely irreducible
characters of & which are algebraically conjugate with regard to K.
Conversely, each such family of characters appears in one and only one
irreducible representation &, of @ in K. Thus, if the characters of S (in
the classical sense) are known, it remains only to determine the $chur
indices 7z in order to have a complete theory of representations of & in
K. We then also know the number s of terms in (1) and the numbers
g. in (2) because ¢, is equal to the degree of ;. Furthermore, the
centers Z, are known, since Z; is is(omorphic over K to the field K(y,)
obtained from K by adjunction of all values y,(G), Ge®.

According to a result of Sclur, the index 2, can also be characterized
in the following manner. The representation ¥, can be wiitten in certain
extension fields £ of K. In the language of the theory of algebras, these
fields £ are the splitting fields of A;. It is clear that a splitting field &
must contain the character y,. If a splitting field £ has finite degree over
K(y:), this degree is divisible by 2, On the other hand, there exist
splitting fields of exact degree 7%, over K(y¥,). Thus, #, is the minimal
value of the degrees of splitting fields £ over K(y,). * .

If we are able to determine the Schur index of y; with regard to an
arbitrary field, we can decide whether or not a field £ DK(y,) is a splitting
field of A,. This will be so, if and only if ¥; has the Schur index 1 with
regard to L. ‘ o , _

3. The different characterizations of the Schur index do not providé
a method to determine 72, and this whole question remains open in Schur’s

~ 2) In the case of fields of characteristic p50, it follows from Wedderburn’s theorem on
division algebras over finite fields that all Schur indices are 1, cf. Brauer [2]. Ilowever I is
no longer semisimple in this case. '
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theory.” It is the purpose of the present paper to show that the problem
can be reduced to the case where the group is a soluble group of a very
special type (&). Only groups of type (&) have to be considered which
are subgroups of the given group &@. The groups of type (E) shall be
treated in a subsequent paper.

Though no use of class field theory is made in this investigation, it
is perhaps pertinent to remark that the group theoretical methods used
were first developed in connection with a problem which arose in class
field theory. Thus, in an indirect way, we have benefitted from Zakagi’s
fundamental work.

: Notation

4. The order of the given group & will be denoted by g. For G,
G.6®, we write Gy~G,, if G, and G, are conjugate in &@. If A is a
subset of &, we shall denote by M(A) the normalizer of A, i.e. the
subgroup of & consisting of those elements G for which AG=GA. In
particular, this will be done, if A consists of one element A4, we then
write N(A). The order of N(A) will be n(A).

If ¢y=¢(U) is a character of a group W, restriction of the argument
U to a subcloup B of W1 yields a character of B for which we use the
notation ¢(8). By an irreducible character of a gioup, we always mean
an absolutely irreducible character, that is, a character which is irreducible
in the algebraically closed field.

“The -letter P will be used for the field of ratlonal numbers and e will
stand for a primitive g-th root of unity. The Galois group of P(e) with
regard to- P is- denoted by 2 Each 0€® carries ¢ into a power of ¢;
we set ' .

(3) _ o: e—e'?

Here, v(o) is an integer determined (mod ¢g) and prime to g. The cor-
respondence g—v(s) defines an isomorphism of £ on the multiplicative
group of integers prime to ¢ (mod g).

' Each character ¢ of a subgroup 1 of & lies in P(¢). An element

3) For instance, these characterizations do not show that all »; are equal to 1, if K
contains the g-th roots of unity.
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o€ carries ¢ into a character ¢°. If we write ¢(U) as sum of characteristic
roots for Uell, we see that ’ )

@) ¢ (U)=¢(U™).

If ¢ is irreducible, so is ¢°.

If p is a fixed prime, the p-part of a rational integer 7» is the highest
power p° of p dividing ». Similarly, we speak of the p-part of algebraic
integers for suitable prime ideals p. If Il is a group of finite order, a
fixed p-Sylow subgroup of 1 will often be denoted by U,. In particular,
g, will always stand for the unique p-Sylow subgroup of the group £.
Thus, 8, consists of thosc g€ for which v(s) in (3) belongs to an exponent
(mod g) which is a power of .

An element G of & will be said to be p-regular, if the oider of G
is prime to 2.

§ 2. Group of type (&)

5. Let y=x(G) denote an irreducible character of the group ®.
In order to determine the Schur index » of y with regard to a given
field K of characteristic O, it is sufficient to determine the p-part z, of m
for every prime number p. Since 2 divides the degree of y, we have ,
=1, if p does not divide th¢ order g of &. Our methcd will be based
on the following remark:

(2A) Let K* be a maximal subfield of K(y,e€) over K(y) such that
the degree [K*:K(x)] is not divisible by the prime p. If § is an irrveducible
character of a subgroup &% of & such that & lies in K* and that § appears
in (&%) with a multiplicity v prime to p, then the p-part p, of the index
p of & with regard to K(y) is equal lo the p-part m, of the index m of
with rvegard to K,

Proof® There exists a representation of & in K(y) whose character 6
is my. Then 6(®*) contains & with the multiplicity »o and hence p|mwv.
Since (v,p)=1, we have p, | m,.

On the other hand, there exists a representation of &* in K* with
the character p#§. The induced representation of & then lies in K* and
its character contains y with the multiplicity po. Thus the index of y

4) For the method used here, cf. Schur [1].
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with regard to K* divides pv and this implies that 2| po[K*:K(y)].
Since the last two factors here are prime to p, m,|p,. This proves (2A).

6. It will be shown below that there always exist subgroups &* of
a very special type (€) such that for a suitable character & of ®* the
assumptions of (2A) are satisfied. We now study subgroups of this type
(©). ‘

If p is a given prime number we shall say that a group £ is of #ype
(&) (for p), if  coatains a normal cyclic subgroup A={A} of order a
prime to p, such that /U is a p-group. It is clear that all such groups
9 are soluble. If P is a Sylow subgroup H, of £, we have

(9) H=AP.
For each Xe$, we must have an equation
XAX =4

where 4 is an integer prime to @ which is determined (mod a). The
mapping X—2 is a hombmorphism of $ on a multiplicative group A of
residue classes of integers (mod @). The kernel of this homomorphism
is the normalizer §, of 4 in . If PLE=PNPH,, then the product AP, is
direct and

(6) Do=U X P,
Since §, is normal in §, P, is normal in P, We have
(M | D/ D.=B/Py=4

For given p ‘we shall call a group an clementary group, if it is the direct
product of a . p-group with a cyclic group of an order prime to p. We
now have

(2B) A group O of type (€) for p contains an elementary normal
subgroup D, suck that /9D, is an abelian p-group. Groups of type (€) can
be defined by this condition.

We show next

(2C) The degrees of the irreducible representations of a group  of
type (&) for p are all powers of p.
Proof: The corresponding statement is certainly true for 9, since H, is
the direct product of a p-group with a cyclic group. If ¢ is an irreducible
character of a group I and B a normal subgroup of index ? then 50(%;)
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is either irreducible or it breaks up into p irreducible constituents of
equal degrees. The statement is obtained if this is applied successively
to the groups of a composition series leading from  to 9,.

7. In ordcr to construct subgroups $ of type (€) of a given group
®, we pick a p-regular element 4 of &. Since P in (5) must be a
p-group coatained in the normalizer |(A) of A={A} in &, we obtain
the maximal subgroups of type (E) of & by chcosing P as Sylow group
NA), of NR(A) ard taking H=AV.

We shall have to work only with these maximal subgroups of type
(€) ; subgroups $ and $* which are conjugate in & are equivalent for
our purpose. Hence it will not matter, which Sylow group of R(A) is
chosen for 8. We may also replace 4 by a conjugate element in .
Thus, for given p, the number of groups $ to be considered is equal to the
number / of classes of p-regular conjugate elements in &. If, for each of
these / groups , we know how the character breaks up into irreducible
characters of §, we can decide at once which of these § can be used for
&* in (2A). Our principal result is that such gioups $ always exist.
However, this will be proved only at the end of §4. :

We add here a few simple remarks concerning maximal subgroups of
S of type (€).

(2D) If H=UP is a maximal subgroup of & of type (€), A={A},

then © contains a Sylow group N(A), of the normalizer N(A) of A in .
We may take L, for NR(A),.
Proof: If we use the same notation as in 6, then B, will be contained
in a Sylow subgroup P, of N(A) and P, in turn is contained in a Sylow
subgroup P* of N(A). Since P too is a Sylow-subgroup of N(A), both
B and P* are conjugate in N(A), say, P=NVN"P*NV with NeRN).
Hence N7'B,NCPB. As NIP,NCR(A), it follows that N¥P,NV belongs
to PNARN(A). This intersection lies in R®,. Thus the order of P, is at
least equal to the order of B,. Hence P,=%,, and this proves (2D). |

(ZE) If A is conjugate in & to A* and if A belongs to an exponent
(mod a) whick is a power of p, then A and A* are conjugate with regard to
the Sylow subgroup P of N(A).

Progf: If GAG*=A* with Ge®, it follows that GIAGI=A". 1If j is
congruent to 1 modulo a sufficiently high power of p, this becomes
GIAG ¥ =A* We may impose on ; the further condition that it is divisible
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by all prime powers dividing g and prime to p. Then the order of G/ is
a power of p,- Since G’ belongs to M(A), it belongs to a conjugate
NPN-' of the Sylow subgroup P; NeN(A). For X=N"1GIN, we have
XAX '=A4* XePB, as stated. ‘

In the case of a maximal subgroup H={A4}P of & of type (€), the
set A4 in (7) can now be characterized by the condition that it consists
of the 2 (mod ) such that
(I) 2 is prime to a and belongs to an e\cponent (mod a) which is a

power of 2. ] :
(1) The elements 4 and A* are conjugate in &.

-

For each de4, we can choose an X A€ such that
(8) X, AX 1= A

These X, form a complete residue system of % (mod PB,) and hence of
9 (mod 9,). For 1 [AGA we have

9 XAX =X,P

with P, ,€PB,, (The indices here are to be taken mod a).

§3. Association of the characters of & with pregular elements

8. Let ¥, %2 *-+» ¥ denote the irreducible characters of . Suppose
that a fixed prime p has been chosen. We wish to associate each y;
with some p-regular element 4 of & in a fashion ‘which will enable us
to show later that the corresponding maximal subgroup $ of type (€)
has a character € satisfying the assumptions of (2A).

Let 8, &, -+, & be the classes of conjugate elements of & and let
G, be a representative element of R, Then &, consists of g/7(G))
elements. The p-regular elements among G, Gy, +++, G, Will be denoted
by A, Ay -+, A. For each A,, we define the section S(A,) as the set of
those classes &; which contain elements A.P such that / belongs to a
Sylow group RN(A4,),- Each class & belongs to one and only one of the
sections S (4,), S(4,), -+, S(A4,).. Thus, if S(A,) consists of /£(A4,)
classes &, ' '

b= 31 2(A).

%=1

We start fiom the determinant
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D= |7(G)]; Gyj=1,2, -, k).

Tt follows from the orthogé:lality relations for characters that
& 1
(10) D=1l n(G,)?
" J=t

Now use the Laplace expansion of the determinant D with regard to the
/ sections. In order to have a convenient way of writing the formula,
we introduce the following notation. Let Z(A,) denote the set of £(A.)
indices 7 for which £,65(A4,), taken in some fixed order. If YV is an
ordered set of /%(A,) indices 7,1<i<4#, we set

(11) DY, Z(A4))= | 1:(Gp|;  (FeY, jeZ(AL)).

Let € denote the symmetric group of all permutations of 1, 2, -.-, 2 and
let R denote the subgroup which permutes the elements of each Z(A4,)
among themselves. Then '

(12) D=3Yp(r) I D(Z (AT, Z(A)

where 7 ranges over a complete residue system of & (mod R), and where
¢o(mr)y=+1 for even 7, ¢(7) =—1 for odd #. If we denote the product

in by 7(m), ‘
(12+) D=3Yp(x)T(n);

then ¢(7) 7(7w) remains unchanged, if 7 is replaced by another element
of the same residue class. '

Chose a fixed prime ideal divisor p - of p in the field P(¢). As shown
previously,” the determinants are divisible by a certain power p*(A4,)
of p which is defined by the condition that its square p*(A4,)? is the p-
part of ]JI;z(Gj) where the product is extended over jeZ(A4,). If we set

1
pr= 1l p*(4,),
z=1
(13) T(n)=0 (mod p*).
9. On the other hand, as shown by [(I0), D is not divisble by pp*.

If we succeed in distributing the terms of the sum (12*) into disjoint sets

5) Brauer [3].
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such that the number of terms in each set is a power of p and that any
two terms belonging to the same set are congruent modulo pp*, it
follows that there must exist a set consisting of only one term, such that
for this term and all x :

(14) D(Z(A)m, Z(4))==0  (mod pp*(dx))

: .Every elem2nt ¢ of the Galois group & effecté a permutation ¢* of
the Z characters, y,—y;. We write y7=y,* where Z0* stands for one of
the indices 1, 2, ..., 2. It follows from (4) that "

(15) 2iox(G) =22 (G) =1 (G*).

Since v(a) is prime to g, the mapping G*®—(G is a permutation of
the elements of & which maps a class of conjugate elements &, on a class
of conjugate elements ®;. Let & denote this permutation of &, &, -, & ;
we set j=j6. For G=Gj, implies »

(16) - Yot (G3) =X¢(Gj) .
Substitution of this in yields
(17) - D(Y, Z(4)) =D(Vo*, Z(A,)5) .

The permutation '@ will carry the section S(A4,) into a section S(A4,/)
where A,, is determined by the condition A4~ A,. We can then set

(18)  Z(A)e=Z(A)r
with 7eR. It is seen easily that
19) sRh=Ra.

Now, (17) for Y#Z(A,)rr becomes A
DA, A AN =D A)ma*, A A)e) =X A)ra~ na*, Z(A)7)s

Here, the factor 7 can be removed, since it appears both in the rows and
in the columns. If x ranges from 1 to /, so does x’ and multiplication:

over x yields

20y  T(@)=7(@"7")

6) If r is a permutation of a certain set X, and if Xj is a subset of X, we write Xyr
for the set obtained from X by application of 7. " ’



246 v R. BRAUER

where 7'(m) is the same as in (12%). .
This holds for all ge®. We now restrict ¢ to the Sylow group £,

of & If p is odd, both  and ¢* are even and hence ¢(m) =¢(57'70*).
In any case, we have

(21) p(1)=¢(77'70*) (mod p)
since for p=2 both sides are +1. ‘
We call two permutations 7, 7'€¢S equivalent, if there exists a €@,

such that Ra’=Re"'me*. Because of [19), this is an equivalence relation.

By (20, (21}, and (1), |
(7)) T(m)=p (") T(x’) (mod pp*) |

for equivalent 7, #/. For a fixed 7S, the se, with Rry=Rs"'m* form

a subgroup 2% of 2, Then the number of terms of (12*) for which «

is equivalent to =, is equal to (%,:2%), that is, it is a power of 2.

If we collect the terms of (12*) which belong to equivalent permuta-’
tions, we now see that the conditions set down at the beginning of 9 are.
satisfied. Hence it is possible to choose a permutation #=m, such that
holds and that £,=2). Hence Rar= Ré'7o* for all g€, and this
yields mo*eRanr. Now shows that if 7¢Z(A4,)n, then io*eZ (Au)n.
We associate with A4, the /%(A,) characters y; with ZeZ(A4,)nm, (x=1,
2, .-, ).

We have thus shown

(BA) Let Ay A, -, A, rcpresent the different classes of p-vegular
conjugate elements in &. If the section of A, consists of k(A,) classes, we
can associate h(Ay) irveducible characters of & with A,, (x=1,2, -, 1),
suck that eaclk character ¥, of & is associated with exactly onc A. and that
2. following two conditions (), (B) lold
(@) If y: is associated with Ay, then, for o€, y? is associased with that
clement A for whick A} ~A,.

(B) If y. ranges over the characters associated with A,, and if G, ranges
over the representatives of the classes of the scction of A, we have

(22) | 2:(Gy) | ==0 . (mod pp*(4))

where p is a prime ideal divisor of p in the ficld P(e) and p*(A,)* is the
p-part of IIn(G;).
i

The following statement is a special case of (¢) :
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(3B)  Suppose that y; is associated with A,. For o€, the character
Xi 1 associated with A, if and only if A~AL". In particular, if 3 = 1
Jor o€, then A ~AL>. . ,

§ 4. Proof of the main result

10. Let A=A, be one of the elements A,, ---, 4, With A there
are associated /(A) characters y; and for suitable choice of A, any given
irreducible character of & appears among the y,. Changing the notation,
we may assume that the characters y,, i=1, 2, ---; %(A4), are associated
with 4. If A4 is now fixed, we consfruct a corresponding maximal sub-
group § of & of type () as described in 7. By (2D), and (6), 9, is
a.direct product of A={A4} and a Sylow subgroup P,=N(A),.

Let 8,9, -+, &, denote the irreducible character of ,. Each irreducible
rcharacter ¢ of $, then is a product of a linear character ¢ of 2 and one

of the &,

P(ATP) =L (A)"FP) (for Pe,).

Since each yx,($,) must break up into characters ¢, we can set
t
(23) x:(AP)= ’l:ll'?"ijﬁj(l) ) (for Pefp,)

where the z,, are algébraic integers, z,€P(¢).
11.: The elements €@, for which 4~A4*“, form a subgroup &,*.
If we apply aei, * to (23) "and use the same notation as in m we find

(24a) ¥ (AP)° =yt (AP) = E; zio* 3% (P).

On the other hand, by (4), 3:(AP)° =5 (A*@P*®). For ce,*, the
exponent (o) satisfies the conditions (I), (II) in 7. 'Hence v(o)eA. By
(8), A« ’*"X,(B)AXV(U) and, consequently

1:(AP)° —-z,(Xv(a,AX\,(a)P”“')) Xz(AXwoJP“ 'Xya)-
‘NOW - ylelds
Xz (AP)°= Z ~¢j’9 (X»(o)P"(o)Xv(c))

Since, for fixed ¢, the mapping P— X,5,P X, is an automorphism -of Bos
the expression o ' '
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0.1’(P) 0 (AV(G)PV(O)XV(O)) 29 (Xv!a)P/Yv(o))o

is again an irreducible character of 3, Hence we have a permutatiqil 4
of &,?y, -+, 9, ; we set j'=7s'. TFurthermore, it follows from (9) ‘that for
0, 6,€%,*%, we have (g,0,)'=0/0,; the ¢ foim a repiesentation of ¥,* by
permutations. We can now write

‘ ;
(24b) Xi (AP)Oz El -71_119;)0/ (P)
and on comparing this with [24a), we obtain
(25) 2y=20 g0 (1SIiSN(A), 1= 7<t; 0el%)

Let X denote any set of /2(A) indices ;. We can then fo:m the
minor W(X) of the (Z(A4) x¢)-matrix (z;) which contains the columns
j€X(A).” We shall consider X as an unordered set. Then WA X) is
determined only apart from a + sign. The m=thod applied in an earlier
investigation together with yields |

(26) 3 W(X)*=E (mod p).»
On the other hand, (25) gives
W(Xo')=+W(X) ~ (for aeQ,*).

Now an argument similar to that used in 9 in connection with the
sum (12*) shows that there must exist a minor W(X)==0 (mod p) such
that ¢/ permutes the corresponding ¢, among themselves. Taking the &,
in suitable order, we may assume that IV(X) occupies the first /z(A)
columns.

7) As shown in Brauer [3], we have £=/(A). :

8) We use the formulas [(23), (24) in Brauer [4). The determinant 4 there is the same
as the determinant of the present paper. If U in (23) of the previous paper is specialized
suitably, we obtain a formula

alV(X)==+RM(X).

Here, M(X) is the minor of degree ¢—/%(4) of 6;* which contains the characters #; with J¢X.
The numbers a, § are algebraic integers with (f, p)=1 which do not depend on X and which
can be given explicitly. On the other hand, the p-part of

| 8,*/6,* | =204 (X)*

has been determined in Brauer [3], pp. 59-61. It follows from [(22) of the present paper that
thxs si the same as the p part of a2 and this gives the desnred result.

PG T
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The square matrix

| @)y G j=1, 2, =y J(A)),
now has the following properties : (a) The coefficients are algebraic integers
of a certain number field. (b) The determinant is not divisible by a
prime ideal divicor p of p. (c) There exist two permutation representa-
tions {6*} and {a’} of a certain p-group &,* such that application of o*
to the rows and of ¢ to the columns maps each coefficient z; on an
equal one, cf. (25). A simple lemma® states that we then may arrange
the columns. in such an order that

(27) ' o z'z-ijEO (mod p)

for z-_.l 2, /2(A) and that the two equations io* =7, i’ = ¢ imply
each othel ' : :

12, Let ¥x=y: be a ﬁxed character associated with A4 and let K*
have the same significance as in (2A). The Galois group M of K*(e)
with regard to K* may be considered as a subgroup of €, Since y, lies
in K*, we have y,* =y, for e and (3B) shows that IMC Lt Further-

inore, the last statement in 11 gives
(28) . * ic'=i  (for aeM).
If we break up ¥,(9) into irreducible characters of §, characters which

are aldeblalcally conjugate with regard to K* appear with the same
multiplicity. We write the formula in the form

(.29) .o Xf(@)=Zi’»(¢v+¢v'+¢»"+'")
where the £,8/),§), --- are irreducible characters of § and wkere in each
parenthesis characters have been collected which are algebraically conjugate
with reé‘ard to K*. Hence the number of characters in each parenthesis
is a power of p, and each character in the parenthesis contammcr ¢, has
the form &) with oeIN. :

Replacc for a moment & by £. Fo1 £,(4P), we must have formulas
analogous to (23), say :

§,(AP)=32,8,(P).
Applying in this case, we have

9) The proof of the lemma is not difficult, It will be given in the continuation of the
paper.
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(30) E(AP)" =35, ; Osor (P).

In particular, for €Ik, the term & (P) appears with the coefficient 7,
because of (28). Substitute [(30) in (29) for the element AP&@‘;C.@

On comparing the coefficient of () in y,(AP) here and in -
have

Ziizz'z’v(gw'i'gvi'" )‘
v

Now, shows that there must appear at least one &, in (29) such that
2,==0 (rriod p) and that there is only one term in its bracket. The latter
statement means that §, belongs to K*. :

We have now shown that &, satisfies the conditions of (2A) and hence
(2A) can be used to find the p-part of the index m of y. The result
(2C) yields a slight simplification : We must have g,=g, since ‘the ‘_d:egr'e‘é
of £, is a power of 2. - ”

We thus have _ :

Theorem : [f y is an irveducidle chavacter of the group &, if K is @
field of characteristic O, then for covery prime p theve exists a subgroup
of type () and an irveducible characicr & of  such that the p-part of the
Schur index of y with vegard to K is equal to the Schur index p of & with
regard to K(y).

If we take K=P and deteimine the character ¢ in this case, the
same character ¢ can be used for every field of characteristic 0., Hence
we have the

Remark: The character § in the Theorem can be chosen independ-
ent of the field K. , |

As already remarked, the selection of § can be made if we know how
2(9) breaks up into irreducible characters of § for every maximal
subgroup of type (&) of (3. |

Thus, the whole problem of the Schur indices has been reduced to
the case where the group is of type (&).

University of Michigan.
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