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On the Class Field Theory on Algebraic Number
Fields with Infinite Degree

Yukiyosi Kawapa

By the celebrated Takagi’s class field theory a finite noimal abelian
extension field K, over an algebraic number field Z, with -finite degree is
completely characterized by the corresponding ideal group H(K,/4,) mod.
f. (Cf. Takagi [9]). Using the notion of “idc¢le” Chevalley has reformed
the class field theory so that we can characterize the Galois group G (B #oy)
of the maximal abelian extension Z’O of 4, by a suitable factor group of
the group J(4,) of all the idéles. (Cf. Chevalley [1] [2], Weil [11]).

On the other hand the ideal theory of an algebraic number field £
with infinite degree was investigated by many authors (Heibrand ,
Krull [6], Moriya and otheis). FEspecially Moriya [8] has extended
the Takagi’s class field theory oua such field 4. Nevertheless the idele
theory on such field Z does not yet appecar in the literature. The aim of
this vote is to extend the Chevalley’s idéle theory on algebraic number
ficlds with infinite degree and to reform the class field theory established
by Moriya. Our chief method is to consider the inductive limit group
of the id¢le groups J(#,) of algebraic number fields £, C/4 with finite
deg.cc.

1. Let P be the rational number field, and 4 be an algebraic number
field over P with infinite degrce. We shall denote by #,(ded) the ficlds
which are subfields of # and have finite degree over /. We have then
L= U a4l
Now we shall define a semi-order

A<y for £, Chk, @€))

in A4, then 4 becomes a directed set.

By a prime divisor p of £ we shall mean as usual an equivalence
class of valuations of 2. A valuation of £ induces a valua’tion of £,C4,
and so a piim: divisor p of % determines a unique prime divisor p, of
Iy /. We shall denote it by

pa=mp  (Zed). (2)
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If A<p, then p, of 4, is an extension of p, of £,. We shall dezote then
pa=mip.  (A<p). (3)
We have then evidently
Yy =y (A<p<y). (4)

(L-1) If a set of prime divisors p, of Fkr(Red) satisfies the condition
(3) then there exists one and only one prime divisor p of & such that (2) lholds.
We shall denote this primz divisor p of £ by

p=lim,p,. (5)

(L-2) Let b, b a prime divisor of Ry, then there exists at least
a prime divivisor 9 of k with (2).

Let R(4£) and R (%) be the set of all the prime divisors of £ or %,
respectively, then '

ER(/‘;A) Zﬂ)m</“’) ’ ER(/"’A) :‘T&% (l’u) (Z <la)' (6)

By (1-1) we have also

(1-3) ' R (£) =proj. lim, R (£,).

Remarlk. We can szlect a confinal sequence PC A CrRC ..., L= U ik
of A4 and so (1:3) b=comes a projective limit of a sequence: R (%)=proj.

Lim, R (4,).

2. Let £(p) (A2(p,)) be the completion of £ (£,) w.r.t. p (p,) and

£5(p) (£X(py)) be the multiplicative group of all the non-zero elements
of £(P)(4x(pr)). As usual we can consider £,(p,) CA(p) for py=mp
and £,(p,)) CA.(p,) for py=a%p, (A <p).

Now we shall put /(#) as the direct product gioup of all the A*(p)

(peR(£)) :
J#) =M pegmh* (p)- (7)
So an element ae_/(#£) is representable as |

a={a(p)a(p)es*(p), peR(4£)}.

We shall call a(p) the p-component of a.
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For the field £, an element aAej(/e,\)=]Iplem(zq)£ff(p,\) is called by
Chevalley an tzdele if almost all the components a,(p,) are units in
#5(pa). The group J(4,) of all the idéles of 4, is called the fundamental
group of £ by him.

Now let an idéle a,e/(4,) be given. Then by the mapping 75 (R(%,))
=R(£) (A <p) we can define the dual mapping ¢} :

a=¢u(a)) ¢/(£4,) for A<y 9
by
20 (P) =0, (D) PR (4,)- (10)
It is easy to see that the mapping ¢} :
G I (<p) (11)

is an isomorphism of /(%) into J(4,)(A<g¢). We have also
Ghgr=g} for A<p<v. . (12)
Quite analogously by the mapping 7,(R (%)) =R (%)) we can define the
dual mapping ¢* of J(£,) into f(£) :
P (a)=a J(4) (13)
by .
a(p)=ax(m(p)) peR(4). (14)
It is also an isomorphism of /(#4,) into /() and we have
Predu=y¢* (A<p). (15)
From follows then
G (J(8)) P (J(£))  for A<y (16)
Now we shall define the fundamental group j(%) of Z by
T = Uread (S (42)) €T (£) an

and we shall call the clements of /(4) the idiles of 2. Hence -an idéle a
of £ can be represented for some e as
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a=¢*(a) me/(4), (18)
and then also for all pu>2
a=¢*(a,) for au-_—_ﬂbxi(aA)ej('éu)- (19)

An idéle a,e/(4)) is called a principal idele by Chevalley if we
have for an element a,e£f a,(p,)=a, for all p,eR(%). We shall denote
by P(%,) the group of all the principal idéles. It is clear that ¢}(P(£)))
CP(k,) for A<p. In the same way we shall define the principal idele a
of £ by a(p)=aek* for every peR(#) with a fixed element aei*, and
denote by P(%) the group of all the principal idéles of 2. We have then

P(#) = Uread (£(£,)) CJ(£).7 (20)

Now we shall consider a topology of /(%£). For an algebraic number
field 4, with finite degree a convenient topology, which is slightly different
from the topology introduced by Chevalley [2], is defined by Weil [11],
K. Iwasawa® and others. By this topology ¢L( /(%)) C /(%) for 2<,u is
a homzomorphism of /(4,) onto a closed subgroup of J(%,).

In general, let be given a system of topological groups G, (d€A) with a
directed set A and for each pair {G,, G,}(A<p) an isomorphic and home-
omorphic mapping ¢4 of G, onto a closed subgroup ¢i(G,) of G, such
that ¢hedt=¢3 for A<p<v holds. Then we can define a topological group
G, which is called the inductive limit group of G :G=ind.lim,G, (Cf.
Weil [10] p. 109, Freudenthal [3]).

In our case, for the group /(%) defied by - we can introduce the

topology as
J (&) =ind. lim, /(£,). (22)
Namely a set OC/(4) is open if and only if ONn¢*( /(%)) is the image

by ¢* of an open set in J(%,) for every deA. This is equivalent to the
fact that O has the form

O= U ¢ (0)) O,: open subsets of J(£,).® (23)

3. Let £ be an algebraic number field with infinite degree and X a
finite extension field over £, Let the degree of K/% be n: n=[K:%]. K
is a simple extension of £: K=#£(6), and 6 is aroot of an irreducible
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polynomial A X)eZ[X] with degree 7. Let /4,(a=a(K)) be the field
which is obtained by adjunction of all the coefficients of f(X) fo P. Let us
take then

A =1{A|Aed, 2> a} (24)

Namely, A’ is the residual set of 4 w.r.t. a=a(X). Let us put
K,=7%,(0) for 2eAd’, then we have [K; : A]=n and Z2=U, sk,
K= U ,\fA;I(A.

Let a prime divicor p of £ be extended to g prime divisors BW,...,

P of K. We shall define the norm of an idéle Ae/(K):
Naull=a J8) | (25)
by
a(p) =1 VE@O) 12o) (APL) ) peR(£). (26)

Instead of 7, ¢ ctc. for £ we shall denote by [I, & etc. the co responding
mappings for K. Then for some AeéA’ we have A=¥*(A,), with A, e/(K,).
Let be pa=mp, PR=1LPD(GE=1,...,¢), then PP (G=]1,...,g) aie all ex-
tensions of p, to K,. Let Q,..., QP (£ <X g) be the set of all the dif-

ferent ones within PP,..., VY. Fo- example, P'=... =P =Q, P =
e =00,..., then we have [AG(Q)): L (p) =20 [KEPP) - £(p) ] and

APP)=...=APD) =AU, (2) etc. It is then easy to sec by the well-
known methods in the theory of algebra that

13 N E(p®) 1 (2) (A(BD)) = Va (2,0) f. 0.0 (A (D))
On the other hand the norm of an idéle W,e/(K,) :

N 2 () = ¢/ (£))
. is defined by Chevalley by

(D) = 111 VR (2,9) [t (p2) (U (D))

Hence we have Ny, A=a=¢*(a,)=¢*(Nx;/r,N,) for ded’; this proves
the following:

(B.1)  The rorme Ny N=a of an idele WeJ(K) is an idéle of & and

N (T =9 (V& 030,)  for e, (28)
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From we have also

N J(K) = U, aP? (Nrcy )iy J(K2)) - | (29)

Since Nx,lt is a continuous mapping of J(K,) into J(#,) for every
Ze/d we can easily prove by the definition of the topology of /(%) the
following :

(8.2) Nyu is a continuons mapping of J(K) into J(%).

4. Let £ be an algebraic number field with infinite degree. By the
absolute digree N(k) of £ we shall mean as in Moriya [S8] the following
Steinitz’s G-number: let A= Uk, Ny=[/£:PF] and for a prime nnmber p

=p M, (p, M;)=1, then we shall put
NE)Y=I,p7, r=supyrr. (30)

Let us put Ny(&)=II,p" for all the primes p with » <eo and N*(4)
=1I,/p" for all the primes p with »=c0. Then

N(E)=N*(£) - Ny(&). (31)

We shall call after Moriya [8] N*(#) the infinite part of N(%).
Now let K be a finite notmal abelian extension field over £ with the
Galois group G(&/#) and with degree n=[K:#]. Let us ptt

H(K) k) =P(k) - Neu J(K)) €/ (#) (32)
and
DK/ k) =] () JH (KR, h(K/R) =[] (&) : HK/BD].  (33)
By [20) ard [29) we have
H(K/#)= U aad* (H (B #2)) o (34)
for the corresponding group H(K,/ky)=P(#:) V&, 1y (J(K)) (Aed’).
For an algebraic number field £, with finite degree over P we have

DK, /) =G (Ky/F)» and k(K /B =[Kx: #1] (35)

by the class field theory (Cf. (,hcvalley [2D. but for our case (39) is not
always true. (Cf. Moriya [8]).
(4.1) For a finite rormal abelian extension field K/k we /m've




110 ’ Y. Kawapi

(KR < [K: #.@ - (36)

(Proof) Let a system of representartives of classes /(4#) mod. H(K/#)
be {a®, a®,...,a",...}. For any finite number of them: {a®,..., a"}, there
exists AdeA’ such that a® =¢*(a{?), aPe/ (%)), i=1,...,». If for some pair
(4,7) G a,=a(a¥) '=a, - Vi, (1, Us(are P(£,), Axe J(K,)), then ¢*(ay)
=a®(a?) '=¢*(a,)) - P*(N&; 16,0, =¢* (@) - Ny (FrA,) e H(K/#), which is
a contradiction. Hence a’,...,a” 'belong to » different classes of /(%))
mod. H(K,/#%), so that » < 2(Ky /%)) =[K,: £]=[K:#%]. Since we can
take {a®@,...,a”} arbitrarily from {a®,a®,...}, we have (36), q.e.d.

(4.2) For a finite norvmnal abelian extension K/k h(K/k) is relatz'zmly
prime to N*(£).

(Proof) Let 2(K/E)=p"t (»>0) and p* is a factor of N(#). Then
there exists an idele ae/(4) such that a4 (K/%) and a’¢ H(K/#). Hence °
we have for some 4, p, ved, a=¢*(a), aef(h); a"=a Nl ;
a=¢*(a,), aneP(k,); A=¥ (A,), NeJ(K,)). Take p>4, p, v. Then
a=¢*(a,), a”=¢*(a,) N, &' (A,) =¢*(b,), by=a,Nx,/: N, e/(4,). The-
refore, we have b,e(K,/4,), b,=qa}. Since p is a factor of N (%), we can
take o> p such that M=[4,: ,,] is divisible by 2.

By the theorem of translation in the class field theory (Chevalley [2])

H(Kofk) = 10| Nty tsaoe H(K,2,) (0 <0). (37)

For the idéle a,=¢%a,, a,¢/(4,) we have Ny, jt,a,=alf =b)Y"e H (K, ,/%,).
so that ¢&(a,) €/ /(K,/#s;) by [(87). Hence we have a=¢°(¢%(a,)) e H(K/%)
by [(34), which contradicts with our assumption. Therefore, £(X/£) is
relatively prime to V*(£), q.e.d.

4.3) Let K be a finite normal abelian extension over k and [K: %] is
velatively prime to N* (&), then we lave

D(K/E) =G (K/F) and so h(K/E)=|K: %]. (38)

(Proof) By our assumption we can take B=f(K)ed’ such that
M=[rk,: %] is relatively prime to n=[K: /%] for A> .

Let af®,...,a{® be a complete system of representatives of classes of
J (&) mod. H(K,/#%). If a¥@=¢*(af’) (¢=1,..., ) belong to different classes
mod. H(K/%#) in J(%), then we see by (4.1) that {a™,...a™{ is also a

complete system of representatives of /J(4#) mod. H(K/#). Hence we
have
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H(K/ k) = H(E, /1)) =G (K, /) =G (K %)

If this is not the case, there exists some pair (7,7) (¢37) with
H(K/E)ra=a®(a?)'=¢*(a,) for a,=aP(a®)~*. Then by we
have for some pu>2 a=¢*(a,)=¢*(¢i(ay)) with a,eH(K,/#). By
the theorem of translation we have as in (4.1) a¥eH(K,/#) for
M=[r,: %] Since M and » are relatively prime, this. means a,eZ(K,/%,),
which is a contradiction, g.e.d.

We can easily prove the following by (4.1), (4 2), (4.3):
(44) Let K be a finite normal abelian extension over k and let

n=|K:k]=n*- n, 39)

‘where n* is a divior of N*(&) and n, is relatively prime to N*(&). Then
we fave

(K /) =, (40)

We shall call a finite normal abelian extension K/ a class field over
% if the equality

(K/E)=[K: %] (41)

holds. Then by (4.4) a wnecessary and sufficient condition that a finite
normal abelian extension K/k is a class field is that [K: k] is velatively
prime to N*(£&).

As in the classical case, we can easily prove :

4.5) (i) Let K and K' be class fields over k. Then

KoK if and only if H(K/¥) CH(K'/E). (42)
Then we have also
[K: K" =[H(K'/F) : H(K/E)] (43)

(i) ZLet K and K' be class fields over k, then KUK' and Kn K
are also class fields over £ with
H(KUK'/B)y=H(K/%) nH(K'k), _
H(KNK'JE)=H(K/k) -H(K'/%). (44)
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5. Let K be a class field over 4 Then the subgroup A =H(K/})
of J(#) satisfies the following four conditions (i)-(iv) :

G)  H2P). | ‘

(i) [J(&) :H])=n<eo; n and N*(k) are relatively prime.

(i) H is an open and closed subgroup of J(%).

(Proof) By the class field theory for finite algebraic fields H(K,/4,)
are open and closed subgroups of J(#)(AeA’) (Cf. Weil [II]). Hence
H(K/%) is open by and by the definition of the topolpgy of /J(£).
Since [J(#) : H(K/#)] is finite, H(K/#) is also closed, q.e.d.

We shall denote by £/, for a subgroup A of J(4) the subgroup of
J(#,) defined by

P = (J(k)) NH. (45)
(iv)  There exists B(H) €A suck that for all »> p>B(H)
H,={a, | Vi, wa,eHy, a,e/(4,) (46)

leold.
(Proof) Take B(A) as in the proof of (4.3). We shall sce now

P (H (K, 1) ) =9 (S (k) D H(K k) for p> 8, (47)

then (46) follows from by the theorem of tianslation. In the
inclusion relation C holds obviously by (34). Converscly let a=¢*(ay),
a.e/(%,) belongs to H(K/%), then for some v>p ¢(a,)eH(K,/k) as
in (4.1). By the the theorem of translation we have ayf = Nz (P5(a,))
eH(K,/#,) with M=[k,:#,]. Since (M, ny=1, we have a,e/(K,/#,),
i.e. a=¢*(a,)ed*(H(K,/#,)). This shows [(47), q.e.d.

Remark. Just as in (4.2) from (iv) follows that [ J(4) : A] is rela-
tively prime to NV*(4).

We shall call a subgroup A of J(#) with the propeities (i)-(iv) a
characteristic subgroup. (This corresponds to the A-Giuppe in Moriya [8]).
We shall prove now the converse:

(b))  Let H be a characteristic subgroup of J(&), them there cxisls a
class ficld K over ke with H=H(N/%).

(Proof) Take A>@(/7) in (iv). Thea we have as in tac proof of
4.3) [J(&) : H])=|J(#)) : H,]- Since H, is an open and closed subgroup
of J(#) with finite index containing /Z’(4,), there exists a class field
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Ky=k(0) over £, with H,=H(K,/#) (Whaples [12]). But by the
property (iv) and by the theorem of translation H,=H(K,/k,) for p>2
holds for K,=#,(#). Heiace for the field A'=£(0)=U, K we have
H(H/%) = P (H(K,/#))= U *(H)=FH. On the other hand [K: %]
—-[KA = J(&)  H)]= [](fl) H]. Hence K is the required class field,

Now let H(%) be the set of all the characteristic subgroups of /(£).

(i) If H, H,eH(%), then H,nH,e H (%)

(i) If HeH(Z) and H,CH,CJ(%), then H,e H (%)

i.e. H(%Z) makes a lattice with H,UH,=H,-H, and with the set-
theoretical intersection /N H,. On the other hand let K(%) be the set of
all the class fields over /4.

(i) I K, K,eK(%), then K,-K,e K(%).

(iiy It lﬁjeK(/p) and KD K, D2, then Ke K(%).

i.e. K (#) makes a lattice with the field compositum KU K,=K,- K’ and
with the set-theoretical intersection &N K.

Let # be the union of all the class fields over 4. Then the Galois-
group G=G(%/#) is a compact topological group by the Krull's topology
(Cf. Krull [5]). For a finite extension #D K>k the correspoding group
G(K)={a|aeC, a(a) =a for all aeK} is open and closed and has a finite
index [G: G(K)]=[K": #].

Let G (%) be the lattice of all the open and closed subgroups G of
G with finite indices. By the above considerations and by the Galois
theory for infinite algebraic extensions we have ’

(5.2) Let HeH(E). Then there cxists a class ficld K/ke K (&) with
H=H(K/%). To K corvesponds G=G(K)eG (k). Tlis correspondence

H ) eHoo(H)=GeG (k)

is @ onc to one correspondence between H(k) and G (#) whick is also a
lattice~isomor pliismn
() HDH,2¢H,)De(H,) and then 'H,: Hy))=[¢(H,) : ¢ (H,) ]
(i) (N H,y) =¢(H,) Ne(H),)
(i) @ (H-Hy) =¢(H,) - ¢(/1,).
Finally let vs put

—nH for all HeH (). (48)
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Then /, is also a closed subgroup of.j(/l’). We shall put then
I(#) =/ (%) /H, (49)

Now we shall give a new topology in /(%#) which is in general weaker
than the the topology induced from J(%), i. e. we shall take as the basis
of neighourhoods of the neutral element of /(%) the set of all the subgroups
H/H, for HeH(%#). Then /(%) is a topological group which is totally
disconnected and totally bounded. L=t the completion of 7(#) be denoted
I(#). Then I(#) is a compact topological group.

Theorem. Lot % be the union of all the class ficlds over & and lct
G=G(%/F) be the compact Galois-group of k)b, Then

G=1(k) (isomorphism and homcomorplhism). (90)

(Proof) Put #=U.K, #CK,CK,C.. K,eK(?), G,=G(#/K,),
H,=H(K,/#) and I,=H,/H, Then H,DH,D... and H,= N,[H,. Hence
Nn.,={1}. By (4.3) 5/6”__G(I(n/l) ~H(](/A) ~ J(#) ) Hy=I(%) /1.
Let an isomorphic mapping 7(#) /l,~G/G, be ¢™. Then for m<n ¢™
also induces an isomorphic mapping ¢ of 7(#)/[,. By the well-known
diagonal msthods we can choose mappings ¢ of 7(&)//. to G/G, such
that ¢™ induces ¢ on I(£)/7, for m <n.

Since 7(#) and G can be defined as the projective limit group of
sequences §/(%2)/I,} and G/G | respectively we can define an isomorphic
and homz=omorphic mapping ¢, of 7(%) onto G such that ¢, induces
o™ on (%) /l,~I(#)/I, (Cf. Freudenthal [3]), q.e.d.

Tokyo University
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