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" Factor Systefn Approach to the Isbmorphism: and
Reciprocity Theorems

Tadasi Nakayama

The Takagi-Artin class field theory establishes a canonical isomo:phism
between the Galois group of the full Abelian extension A, of an algebraic
number field 2 and a certain factor group of the idéle-class group €, of £,
according to Chevalley’s formulation ([2], [8]). Let K be a (finite) Galois
extension of £ and let A, be the full Abelian extension of K. Then the
Galois group of Ax over £ is an extension of the Galois group of Ax/K
by the Galois group & of K/£. Thus it defines, by the cited canonical
isomarphism, a factor system of & in a factor group of the idéle-class
group €x of K. Weil showed recently that this factor system can be
represented by a factor system in the idéle-class group itself, so as some
further requirements are met ([I2]). Now, it is hoped to construct such
factor systems directly and to use them conversely in establishing the
class field theory. ~For the lodal class field theory such a factory system
approach has been given in the note [8]® As to the global theory,
i.e. the class field theory proper, Hasse has shown that his sum-relation
“of locol invariants of Brauer algebra-classes gives a central assertion in
the reciprocity law ([6]). Noether has given a factor system formulation
of the principal genus theorem‘). To proceed further (or, to start
with, rather), it is desirable to define certain canonical factor systems in
idéle-class groups and to derive from them the isomorphism and reciprocity
theorems directly. This we propose to do in the present note.? Thus
the work has little novelty in its true arithmetical bearing. But it provides,
as the writer hopes, a rather elegant approach to those thorems.

1) Cf. also and Akizuki [1]. Further, Hochschild has constructed the whole
theory without appealing to the theory of algebras but by dealing merely with factor systems
(or cohomology classes).

2) Hochschild has given recently a very direct and elegant proof to the reciprocity
law (using also the idea of Hasse but without dealing with algebras explicitely). However,
while he combines local canonical isomorphisms defined by local factor systems, in order to
obtain global canonical isomorphism, so to speak, our present program is to carry out the transi-
tion to “global ’ already at the stage of factor systems, which also clarifies the combination of
isomorphisms.
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Besides his deepest veneration to Professor Takagi, the writer wishes
to express his hearty thanks to Professors Weil and Hochschild, who have
kindly given him the opportunxty to read the m1nuscr1pts of their so far
unappeared papers [12], [7] 1

1. Lemmas. Let %4 be an algebraic number ﬁeld » Denote the
groups of idéles, principal idéles of %Z by /., /% 1espectively, So €,=/./F;
is the idele-class group of 2. With a (finite) extension X of 4, denote
by N=/Ng; the norm operation, for Jx, Fx or €. The following index
relations are proved at a rather earlier stage of the standard treatment of
the class field theory ([3)) :

Lemma 1. 'With an Abelian extension K/%, the degree [K: £]> the
index [ Jo: BN (/)]

If K/% is cyclic then [K: 4] (< whence)=[/.: BN(Jx)] And, as
a by-product we obtain usually :

Lemma 2 (Norm theorem). If K/% is cyclic then PN N(Jx) =N(FPx).

We shall also make use of the reciprocity law for cyclotomic fields; as
a matter of fact we shall use merely the cyclic case. We also need a very
weak? existence theorem asserting that there exsits a cyclic cyclotomic
field of a given degree over 4. Naturally we assume the local class field
theory for our disposal ; its formulation most suited for our purpose being
given in [8], [@] or,[11]. "

We shall also use, though at the very end, the sum-relation :

Lemma 3. If A is a central simple algebra over £ and x, denote,
with primes g of #, the p-invariants of 2, then 3x,=0 (mod 1).?

This is a theorem of rather deep arithmetical nature, but is derived
from Lemma 2 and the class field theory for cyclotomic ﬁelds (mcludmOr
ceitain existence theorem for them). <

2. Ideéle-class factor systems. Our starting point is

Lemma 4. With cyclic® K/# the l-dimensional cohomology group

3) Or, an algebraic function field of one variable over a finite field.

4) There is no significance in this weakness of the employed existence theorem, since a
much stronger existence theorem, cyclotomic fields, is used in proving below.

5) One could avoid the terminologies in the theory cf algebras. Cf. m

6) As a matter of fact, the lemma holds for arbitrary Galois extension (or, even for
arbitrary extension, if we employ Schur-Brauer factor systems), which amounts to formulate
Noether’s principal genus theorem in terms of idéles and idéle-classes. IHowever, since the
cyclic case suffices for our purpose of defining canonical factor systems and proving the isomor-
phism and reciprocity theorems, we restrict ourselves to the case here. The same for Lemmas

5, 6.
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HY(®, Cx) of its Galois group & in €x (i,e. the group of idele-class
“ Transformationsgrossen ”’ (modulo splitting ones)) is unity. In other
words, if V(a)=1 with aeCg, then a=0b'"° Wlth a suxtable be@ 5, where o
denotes a generator of @.

Proof. I.et a€/x be a representative of a. We have, by assumption,
N(a)ePy, whence €P,. It is norm-residue for every prime of £2. By
Lemma 2 thete exists a §€Px such that N(a) =N (§), or N(a:i")=1. 1t
is easy to see” that there exists an idele 6(€¢/x) such that aé§~'=4'"°

From this follows then h

Lemma 5. Let K/% be a Galois extension with Galois group ®. Let
$ be a cyclic no mal subgroup of & and let Z be the intermediate field
belonging to . Then the lifting operation 2 maps the 2-dimensional
cyhomology group H*(G/9, €,) of &/H in €, isomorphically into (G,
€x). In other words, if an (idéle-class) factor system of G/ in €,
splits in €4, for @, then it is by itself a splitting factor system.

For the proof see [4] or [6], which applies to the present case too.
We obtain also, as in [6],

Lemma 6. Let K/k, &, O, L be as in Lemma 5. The kernel of the
restriction mapping from & to § in H*(®, €x) coincides with A(HF*(G/D,
€;)), In other words, if the restriction in § of a factor system of & in
Cx splits, then the factor system is equxvalent to a lifting of a factor
system of &/9 in €;.

Of algebraic nature is our next

Lemma 7. Let  be a normal subgroup of the Galois group & of
K/k, and let L belong to §, Let 4 be the order of . With any factor
system a of & in €4 the /%-th power a* of a is equivalent to the lifting
of the factor system b of &/9 in €, defined by b(7,7) = Ny a(syz,, V)

11, 5a(e;v,v) 1, ga((a7),, ¥) 7", where (---, 0,7, ++) is a system of re-
presentatives of &/ and o denotes the coset of o. :

This formula, of Witt [13] and Akizuki [1], can be proved in exactly
the same manner as in the case of usual factor systems in elements,

3. Canonical factor systems, the isomorphism and reciprocity
theorems. Iet K be a Galois extension of £ and let 2 = [K: %] - We
take a cyclic cyclotomic extension Z over % whose degree m=[Z:#%] is

7) ‘By component-wise application of the usual algebraic (11ilbert-Speiser) theorem of
¢ Transformationsgréssen ”, (with a bit of arithmetical consideration).
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divisible by #. Let 8= {1,¢,2% -+, ™"} be the Galois group of Z/%.
Each idéle ce/, defines a normalized factor system (with respect to )
such as ¢(¢%, &%) =1 or ¢(;,j=0,1, :--,m—1) according as ¢ + 7 < or Zm.
We denote this normalized factor system simply by ¢. The (idele-) class
¢ of ¢ defines in similar fashion a normalized idéle-class factor system of
8, which we denote again by ¢. Now, by the reciprocity theorem for the
cyclotomic field Z/#, there exists a ¢ satisfying

(e» Z/k) =C,
-1 :
where (¢, Z/%) is the (essentially finite) product ]],,( 6 j&) of norm-

symbols. Then the factor system ¢ (with such choice of ¢) has the exact

order ,

Consider the composite KZ and denote the Galois group of KZ/% by
®,.. Let $, be the subgroup of &, belonging to K; 9, is essentially the
subgroup of 3 consisting of elements which leave KX elementwise fixed.
As is well known (¢, KZ/K)=¢". 1t follows that the restriction in §, of
the lifting ¢* of ¢ to &, has the order m/n=[2": %£]/[K: %]; the extension
KZ/K is cyclotomic and we are allowed to apply the reciprocity law there.
So the restriction in §; of ¢*a- splits. By there exists a factor

system a of @& in €4 whose lifting a*=4(a) to ®, is equivalent to ¢*a ;
a*=A(a) ~c*a.

a is determined, up to equivalence, in virtue of Iemma 5, and we want
to call a the canonical factor sytem of the extension K/Z. (Our determina-
tion of a depends on Z presently. Though it is easy to see from the
reciprocity law for cyclotomic extensions that it is independent of the
special choice the Z, we may think of it in terms of Z; that suffices for
our purpose).

The order of c¢*u-, that is, the order of a*, is equal to 7; cf. Lemma b.
Then the order of a, our canonical factor system of K/k, is equal to #,
much the more. '

Let 2CZCK and  be the subgroup of & belonging to L. The
restriction of a to K/Z, i.e. to §, is the canonical factor system for K/L,
with respect to the cyclic cyclotomic field ZZ over Z, as we see without
difficulty from that the restriction of a* to KZ/L is equivalent to the

restriction of ¢*»~ to KZ/L and (¢, LZ/L)=¢"*. TFurther, if L/4 is
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normal thea a*, % being the ordeér of P, is equivalent to the lifting of the
canonical factor system b for L/Z (with respect to Z). For, the lifting
of b to LZ/# is equivalent to the lifting, to LZ/%, of cf—’fnﬁ, whence the
- lifting of b to KZ/# is equivalent to the lifting, to KZ/%, of cﬁ, i.e. to
‘c*—[_l%‘k]—ﬂVB*h. Thus, b is given by the formula of of .[Lemma 7. |
Now we put

txp(0)=t(e) =1 _a(o, 7).

It is easy to see that a factor system equivalent to a gives the same
mapping modulo NV(€x). We prove similarly as in [8]

Theorem 1. Let K/k be Abelian. o—1(6) mod N(Cx) defines an
isomorplism of the Galois group & and the idéle-class norm-class group
Co/ N(€) x) (=/2/ PV (JK)) 4

Multiplying, namely, the equalities a (e, 7)a(ps, 7)"'a(p, ot)a(p, ) " =1
over o, T respectively, we see that t(s) €€, and the mapping is homomorphic.
‘With an intermediate field Z, we see readily tx;:(0) =N, (tx(c)) for
o€, where tg, is defined by the restriction of a to 9, ie. to K/L
(which is the canonical factor system for K/Z). That our homomorphism
is an (into-) isomorphism is clear if & is cyclic (since the order of the
canonical factor systen is equal to the order 7z of ). Let & be non-
cyclic, and assume that the (into-) isomorphism assertion is true for every
proper subfield of K/£ let @=9H,x9H, (H:#1) and let K, K, be the
subfields belonging to ;, O,. Considering the elements of §, as the
representatives of &/9,, we have, with 6,€9,, tayu(0:) = Nux,(tx/x(,))
=WNy,t(tx,x,(61)), by our observation on canonical factor systems for
subfields. The last is however tx,(a,), as was observed just above. With
0,9 we have thus t(0,6,) =txw (0:)tx2(0:) =truz (7)) tx/:(0,) . Here tx,(a,)
= N2 (1xr%:(0)) €N, (€x,) by the same remark, with 1, 2 inteirchanged.
Suppose now ty(0,0,) €Nk, (€x). It follows that th/k(Uj)ENxz/k(@x,)-
This implies however ¢,=1 because of our induction assumption. Similarly
g,=1. This shows that our isomorphism assertion holds for our case, and
thus generally, by induction. But the order of €,/N(€x) =/i/P.N(Jx)
is, by Lemma 1, at most equal to ». Sa t maps & onto €,/N(€x),
isomorphically.® :

8) On modifying our argument a little, we could restrict our use of Lemma 1 to cyclic
case. Cf. Hochschild [6]. -
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- Theorem 2. Onr isomorplism o«——>t(e) mod N(C€x) in Theorem 1 is

given by the law : an idéle a (e/,) is in t(6) mod N(Cg) zf and only if
(a, K/#)=11,(a,, K/#)=0,

where a, is, for eack prime p of k, the p-component of a and (a,, K/E) is

defined by the lacal veciprocity law.® . ‘

Proof. Consider first the case where K/% is cyclic. Let ¢ be a gene-
rator of the Galois group ®&. Let 4¢/, and consider the normalized factor
system defined by the class b and ¢, which we denote by b too. By
normalizing the canonical factor system a and by Theorem 1 we see that
b is a certain power, say ¢-th, of a. With our Z/#, 8= {C}, cei((e, Z/ %)
={), we have ‘ '

é*»\-ﬁ c*¥n

with a factor system 8 of &, in /P&, where 6%, c* denote the liftings to
KZ/% of the normalized (idéle) factor systems defined by 4, ¢ with respect
to o, £, which we denote again by 4, ¢; since 4, ¢ (not only represent
idele-class factor systems, but) are factor systems, 8 is (not only a system
of elements, but) a factor system. The p-components of &%, ¢*, 3 form
factor systems of ®&, in (K%),/%, p being a prime of 2. Let g, 4,, x, be
their (p-)invarirnts. We have p,=x,+ Zml The sum Z over all

primes in 4, is O (mod 1) by Lemma 3, whlle S2,=1/m since (¢, Z/k)
=¢. Thus Z‘;tp__z/m whence - (4, K/;é) =o’. This proves the assertion in
cyclic case. ’

Let next K/ be a general Abelian extension and let Z be an mtel-
mediate field, with § belonging to it. Let b be the canonical factor
system for L/%, and t, be defined by b similarly as t is defined by the
canonical system a of K/4 t (o)==t(¢) mod N.;(€.) as is seen similarly
as in our proof of Theorem 1. Now, assume that the theorem is true for
L/#, ie. (d, L/k) =0 if and only if dety(a) Vp(€r).  Then our isomor-
phism of @ and €,/V(€x) given by t induces that isomorphism of &/
and €/N;(€,), given by o«——bd (mod N, (€.))((4 L/%)=0a). So,
expressing K as a direct composite Z; x L, x -+ X L, of cyclic fields, we see
the validity of the asseition of our theorem, for K/%, since N$;=1, where
9; belong to L,.

9) This direct formulation of canonical reciprocity isomorphism is also convenient in
obtaining the decomposition and ramification theorems; cf. Hochschild [7].
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By making full® use of I.emma 7 it is easy to extend Theorems 1,
2 to a non-Abelian X/#, where we deal with the factor group of & with
respect to its commutator subgroup; cf. [1]. Further, it turns out that
our canonical factor system coincides the one given in Weil [12] To
these and to som: related problems, the writer wants to come back
elsewhere.
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