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In Part I of this paper® we have introduced a dimension function with
values in a conditionally complete lattice-group, into an aibitraiily given
contindous geometry, and imbedded the geometry into the direct sum of
irreducible ones. We have proved, thereby, that the dimension is restric-
tedly additive?, whence follows immediately the unrestricted additivity of
perspectivity® This latter additivity had been already proved, however, as
we were informed ot after the publication of part I by I. Halperin®. 1In
the following lines we shall show that the former additivity can be deduced
easily from the latter (as was remarked in Part I). Also we shall give
a new proof to Halperin’s theorem of superposition of decompositions as
an application of our theory.

All this will be done in generalizing the method of Part I in a certain
sense. We shall namely show to what extent our previous method can be
applied to obtain a generalized dimension function and the imbedding
theorem, when we replace the perspective relation by an equivalence rela-
tion with some natural restrictions. In particular, it should be an extension
of perspectivity, that is, any two elements should be in this relation if they
are perspective. An example of such extension is that induced by a group
of automorphisms of the geometry, considered by Halperin® and F. Maeda®.
In this specified case, our restrictions are stronger than Maeda’s, and wea-
ker than Halperin’s, and our dimension function can be obtained from
Maeda’s by means of the representation of a conditionally complete lattice-
group by real-valued continuous functions. But, this being concerned only
with the dimension function, the subject of this note may, as we bhope,
appeal to wider interest.

‘ § I. This section is devoted to some preparatory considerations about
a conditionally complete, and so abelian, lattice-group, which may be of
some interest in themselves, The letter & will denote throughout this paper,
unless otherwise qualified, always such a group and f, g, #,...... its elements.
These letters will be used with or without indices. If we wiite /', we
mean an element of such a lattice-group &’ with the above mentioned
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property.
Given a non-empty system of elements f; <X 0 such that the set of sums
Sri e +fi, (r,=F7; for i==7) of all its finite subsystems has an upper
bound in &, we denote by 3 f; the supremum of this set of sums. When
the system is finite, this is nothing but the ordinaiy sum. If y ranges over
“all ordinal numbers <a limit number 4, then (cf. Part I, §7)
> fr=sup D} fr=sup 2 /s

a<Xx w<A  T<E <A T<W

The generavized commntative-associative laww holds in the following sense:
Let f,; = 0 be elelments with double suffixes. If either 3} £, or 31 3 fos
a3 a B8

exists, then the other also exists, and they coincide. We shall omit here
the easy proof.

Lemma 1.1. If 0 < g, and 0 < f< Y'g,, there exists .a system of
elements 7%; = 0 such that f=31/%;, /; < g,

Proof. We shall suppose, as it is obviously permitted, that y ranges
over all ordinal numbers <«, where « is an ordinal number>0. Define
by transfinite induction on £ <u:

le=fNgs /Iz= (f_'rZ@/ZT) Ngs,

where the summands /%, should be = 0. Let # be an oidinal number such
that O <@ <u. Suppose that, for all y <3, 42,20 are defined and
(D SN2 ge=2 .

E<r g<r

This holds for B=1. When we have shown that this yields (1) for
y=p again, we can conclued immediately that the assumption holds for
B+1 in place of 8, and consequently for #=«, which proves the lemma.
Now. if 8 is a limit number, we nave only to take the supremum with
respect to all y<f@ on both sides of (1). Otherwise, let » be the im-
mediate predecessor of 3, and put

=3ty F=3 g
£<n 5<n

Then we have fng=%, (/—7%) Ng,=/Ay, and

FN@+e) =N (f+g) N (F+g) =N ((fNZ) +gy
=(lAS=7) 0 (et gn) =T+ ((f—7) +gn) =li+ /oy,
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Hence fNYg.=23/% with § <y, i.e. §<B. qe.d.
Theorem 1. 7f 0 </, 0 < g, and X}/, < D¢y, where « and fB are
independent, then theve exists a system of elemcents gy <0 such that

(2) f;:zz‘/}a[‘! E/la(s Sga-

If 3 fa="gs, then from (2) follows
3) & =2 a

Proof. We shall suppose, without loss of generality, that @ ranges
over all ordinal numbers <«¢,, where ¢, is an ordinal number>0. Let us
define /%, by transfinite induction as follows. By f,<3g; we obtain a
system of clements /<O such that f,=3/s, 0</3< g5 Let « be an
ordinal number, 0 <« <a,. Suppose that %, < 0 are defined for all 8 and

for all £ <u. Suppose further

EIZES Zg) fézzsjlgg-

E<a

Then, by the commutative-associative law,
2‘;:(5’3_22/‘23 ) +§]sz§3 =;é’a
Z;fz +fu=¥2bzs +fa=222}3‘:3 + /e

8
and consequently f, < 3'(gz— >4 ). Hence we obtain by the lemma a
b €

system of elements /4, =0 such that
ftay = §—2sgs [a=2 tap
£<a 6

Thus we have a system of elements /,; defined for all « and 8 for
which the property (2) is obvious from construction. As for the second
part of the theorem, we make use of the commutative-associative law as
above, and obtain 3 ( g— 3/, ) =0, which implies (3). g.e.d.

Remark. The Bassump:ion that & be conditionally complete is needed
only for the commutativity of & and for the existence of the sum 3] when
there is an infinite number of summands. This remark is useful in the
proof of the following lemma. '

Lemma 1.2. Lot & be an abelian (not necessarily conditionally complete)
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lattice-group with an archimedian unit e, and let & be any (partially) ordeved
abelian group. If f—f is a mapping of the subset (f; 0 < f<¢) of ® into
& such that />0 in & and (f+g) =/ +5 when 0 < fig, f+g < ¢, then
the mapping can be uniquely extended to an order preserving homomorphism
of & into &'. If, moreover, & also has an archimedian unit ¢ and if every
element [ € & suck that O <[ < ¢ is an tmage of the given mapping, then
the extension maps & onto ®&'.
Proof. The theorem 1, together with the above remark, implies
Ef%SZg'j when Z‘fiizgp 0<f<e, OSg',-Sé,

where >} denotes now the ordinary sum of a finite number of summands;
in particular, we have X f/,=3%'¢’, when 3 fi=>¢, Hence, if f=£+...

oot f— g — e —gn 0 = f;<¢,0<g,<e¢ thenf/=Ff+...... +f —g—...
...—g, is determined by f and does not depend on particular choice of
its expression f=f;+...... Ffon— G ree —ga, and we have f/ < 0 if £ <O0.

Such an expression exists for every f € &, since ¢ is an archimedian unit
of the lattice-group ®. Thus the existence and uniqueness of the extension
to an order preserving homomorphism is proved. The second part of the
lemma is obvious from the fact that, in this case, every element /" e &/
admits an analogous expression f'=f'+...... Y o—&f — e —g, with
0, <), 0 <. qed.

§ 2. Let L be a continuous geometry. We denote its elements by
a, b, ¢, x,y, with or without indices. We denote by 3}tx,. the sum >z,
of an independent system of elements x,; when, moreover, the system is
finite, we write also e.g. #y4...... +#,. For each pair of elements a <4
we fix oace for all, an element ¢ such that a=é+¢, i.e. a=6b+4 ¢ and bc=0,
and denote it by a—2. :

Remark. The fact that the element ¢=a—¢4 is subject to no other
restriction than a=4+¢ will be made use of in the proof of
to Lemma 4.8.

A function d(x) defined on L and with values in a lattice-group & will
be called a 0-function when it satisfies the following the conditions.

4) 0<d(x) in ©;
) O(x+p) =0(x)+0() ;
(6) 6(};‘4{):3(%‘,{3/) if 0(x,)=20(y,) for all y;

(7) if 0(a) < 0(6) there exists an element x < ¢4 such that d(x) =
o(a) ;
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(8) if 0<fe® there exists an element x such that 0 <d(x)=</.
From (9) follows that 6(0) =0 and that ’

(9) d8(x)=0(») if x and y are perspective.

When 6(1) is an archimedian unit of ®&. we call & the domain-group
of the d-function. Given a J-function, its domain-group is uniquely deter-
mined as the set of all fe & such that —».0(1)< f<n-0(1) for some
integer 2. It is obvious that this set is a conditionally complete sublattice

and a subgroup of &.
When

(10) O<x implies 0 < ()
or equivalently,

(11) x <y implies ¢(x) <d(p),
we call the J-function a dimension function. This is a generalization of the .

concept of dimension function introduced in part I, for which the converse

of (9) holds as well. By (9) and its converse, the property (6) of this
special dimension funtion is equivalent to the unrerstricted additivity of

perspectivity :
(12) 3 tx, and 3y, are perspective, if, for each y, 2, and y; are pers-
pective. ‘
The additivity (12) was established by Halperin without the aid of
dimension function. The following theorem 2, therefore, affords a new
proof to the unrestricted additivity of the special dimension function:

(13) 3(Stay) = 28(x),

which we proved in Part I and from which we deduced (12). (12) will
not be used in the following proof of the theorem 2.

Theorem 2. FEvery 0-fuiction satisfies (13).

Proof, Let I’ be the range of y. When ['is a finite set, follows
immediately from (). Hence we have only to consider the case where
I" is of potency R>'R, such that holds whenever [ is of potency
<R. Fuither, we can and shall suppose that /" is the set of all ordinal
numbers <2, where 4 is the first ordinal number such that the set of all
ordinal numbers <4 is of potency R.

Put
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F=0(STh) — 338 (x)

and suppose f==0. Then, since holds for any finite system aund since
2y in &(f; = 0) is defined as the supremum of the sums of finite number
of elements f;, we have 0 <f < ¢ (3}*a;). By (7) and (8) there exists
an element x < 3z, such that 0 <é(2)< /. Put y=3tr,—x By trans-

finite induction we can define y, for all y <A as an element<< y—3y, with
a<yt

0(y;)=0(x;), because, as will be shown presently, if f<4 and if y, are
defined for all y <@ then d(x,) <d(y— ) and consequently, by (7) and
T<B

(8) .again, y, can be defined.
In fact, the system (p,; r<p) is indepedent and its suffix y ranges
over a set of potency < ; hénce can be applied to it and yields
0(25) =330(x1) — 2,0( ;) =0 (1) —f— 20 ()
T<X <8 T<A T<3

SO —0(0) =3 0(w) =0(5) ()
=8(_y—§(,g/,r)

Thus we obtain an independent system of elements y, defined for all
7 <4 and, by (4) and (),

O(Xta) =0(Xy,) =0(y)=0(Ztx)—d(x),

which is in contradiction to 0 <d(x). Hence we should have f=0, q.e.d.
Lemma 2.1. An element f e & is a value of the 6-function 0(x) if and

only f 0= f<d(1). ‘
Proof. If f=0(x), then by (4) and (5)

0<F < 3(x) +3(1—2) =3(1).

Conversely, suppose 0 < £<< #(1) and consider any independent set S of
elements of L such that 3>16(y,) < f for any finite number of different ele-
~ments y; € S. We speake of a sez S and not a systesz S to imply that no
element is to be considered twice or more times as belonging to S. Put
x=>"1y: yeS.

Then 6(x) <7 by [(13). If 6(x) </, then there exists an element y such
that 0 <d(y) <f—d(x), and we can choose y < 1—ux, since f<d(x) <
0(1—x). Fiom 0<d(y) and follows y § S, for, otherwise we should have
7 <z and consequently y=0. Hence we can add y to S, to obtain a
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larger set with the same property as above. But, by Zorn’s lemma, there
exists a maximail one among such sets S, and we have 3(x)—_—f for this
maximal S, q. e. d.

An expression a=>Ya, will be called a decomposition of a. It will be
called a refinement of an expression a=316; when every a, < some 4,
(depending on a,).

Lemma 2.2. Let d(x) be a dimension function. If 6(a) =2 f; and f,=0
in its domain group, then there exists a decomposition a= 3\ a, with 0(a;) =f;.

Proof. Consider an independent system of elements @,y = @ with d(ay)
=/, ' ranging over a subset I” of the range I" of y in >} /. If 3ay,
< a thea 3 ta, <a, 3)0(a,) <d(a) and consequently [7>< [ When [,
let 3 be an element of [” which is not contained in /7. Then

f(;+ 3(Ziﬂ-ﬂ) —':fz"" E_/:[I < 6(”) ’
fo < 0(a) —o(Ztay) =0(a— 3 an)

and, by Lemma 2.1. and (7), f,=0(x) for some z < a— e, which
implies that the system of elem2nts @, can be augmented. Taking a maxi-
mal system, therefore, we have ["=["and a=3"'a,, q.c.d.

The maximal method in these two lemmas was already used in the
proof of Lemma 9.1, Part I. The proof consisted essentially in the following
fact, which we formulate here for later use.

Lemma 2.3. Awy expression a=31b, admils a vefinement, that is, for
any sual expression therve exists a decomposition a=7 T a, snuch that every a
= some b;.

§ 3. Closely related to the concept of dimension function is that of
p-rélation, which is a gerieralization of perspectivity. By this we mean a
binary relation x~y defined in a continuous geometry Z, satisfying the
following conditions :

(14) x~y is an equivalence relation ;

(15) it is an extension of perspectivity, that is, if x, y are perspective,
then holds x~y;

(16) it is unrestrictedly additive, i,e. 3 tx, ~3ty  if 2~y for each 7;
a7y if ¥~ 1y, there exists a decomposition x=>1r, with x;~y,;

(18) every element x is incompressible in the sense that ¥~no element
<x.
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It is easily seen that (18) can can be replaced by a seemingly weaker
condition :

(18) y~1 implies y=1.

Suppose, in fact, x~z’ < x. Then we have, by (14) and (16), 1=(1—x)
+x~(1—x)+4', and by (18)’ (1—x)+2’=1, which implies #'=ux.

If a dimension function d(x) is given and x~y is defined to mean
0(x)=0(yp), then ¥~y is obviously a p-relation. In particular, (17) follows
from Lemma 2.9 This will be called the p-relation induced by (x). A
It will be shown that every p-relation can be induced by some dimension
function (cf. Theorem 5). The dimension function that induces a given
p-relation is uniquely deteimined up to order preseiving isomorphisms of
its domain group.

This fact follows from

Lemma 3.1. [f 0(x) and 0'(x) are O-functions defined on a continuons
geometry, with domain groups & aud & and if 0(x) =08(y) implies ¢'(x)=
" (y), then there exists an order preserving homomorplism of & onto &
whick carries 8(x) into 0'(x) for every x. Sucih a lwmomorplhism is uniquely
determined.  On the functions 6(x) &' (x) and we have only to assume that

(2) The valucs of 6(x) are contained in an abelian lattice-group & with
o(V) as an archimedian unit,

(i)  An element fe ® is a value of 0(x) if and only of 0= F < 0(1).

i) B(r+y)=3(x) +0(2),

and the corvesponding properties of o' (x) and &', (These.conditions are
clearly verified, if d(#) and ¢’(x) are J-functions.)

This is an obvious consequence of L.emma 1.1 and Lemma 2.1.

We shall consider, from now on, a continuous geometry with a p-
relation x ~y. We write @ < 4 when a~soms x < 4. This relation will
be called p-znclusion. It is the generalization of the perspective inclusion,
corresponding to the generalization of perspectivity to p-relation. It is also
an extension of perspective inclusion since p-relation is an extension of
perspectivity ; in particular, 2 < 4 implies a < 4.

Lemma 3.2. (i) a<¢4~¢ implies a 4. (i) a =& = c implies
LaSe (i) a=b~a implics a=b. () a S 6 a implies a~ b.

' Proof. (i) : Corresponding to the decomposition é=ai (6-a) we
have a decomposition é'=a’+c¢ such that a~a/, 6—a~c, hence a < 4.



1566 A Tsurane IwaMURrA.

(¢) : We have a~some x <6 and é~some & <¢ and, by (), </,
i.e. x~some y < 4, which implies a~y <c¢. (:i) is an immediate conse-
quence of ‘the incompressibility of 4. (iv) : We have a~some o'<4 and,
for such o', we have o < é~2/, which implies @ =64 by (ii7) : hence a~é.

Remark. (iv) can be proved without the assumption of incompressi-
bility. The proof will then be analogous to the usual proof of Bernstein’s
theorem in the theory of sets.

Theorem 3. [f a=3a, < 6=38,, there exists a pair of refincinents @
=Ya,, 6=31b;, of a=3a,, b=2by suck that a6, for every y. If,
morcover, a=3 " a, and h=1b,, then we can choose v as pairs (u,3) in
such a way that ay=73."0 o and by;=3"4 4. If a~é, we can replace p-
inclusion by p-relation in both statements above.

Remark. This is a slight generalization of Halperin’s theorem of super-
position of decompositions loc. cit. But the following proof is based on a
new idea. :

Proof. Replacing a=Yla, and 6=314, by their refinements, we can
reduce the first pait of the theorem to the second pait. We shall prove
only the second part, because the last part can be obtained by replacing
p-relations with p-inclusions in the following considerations.

Let us first consider the case when the given p-inclusion is the pers-
pectivity. Let d(x) be the dimension function defined in part I. Then we
have )

S6(a,) =8(a) < 8(8)=20(8s), 0<6(a,), 0 < d(&;) and consequently,
by Theorem 1., there exists a system of elements /,, = 0 in the domain
gioup of d(x) such that 8((za)=§ﬁ,3, ;/zwsa(&,). Let 4,/ be elements

< &, with 6(&s) =3tes (cf. Lemma 2.1.), and let &'3=318",; be their
3 [+

decompositions with 8(4” ) =/i4s (cf. Lemma 2.%). From these we can

easily construct the decompositions &,=31"4' ., with 6(4 5) < /iy, Fuither,

let a,=>"a,,’ be decompositions with d(«/q5) =1/ ,, then we have a desired
pair of decompositions, since 6(a’,3) < 0(& 43) implies @’ o5 < & -

Let us now consider the general case. lLet @' be an element such
that a~a’ < 4. and @'=3ta’, be a decomposition such that a,~da/,. Of
course @’ is perspectively included in 4, and by the pait of theorem proved
above for the case of perspective inclusion, we obtain a pair of refinements
&d=31a" o, b=310y; such that, for any « and j3, a”,, is perspective to -

some element<<¢" ., and a',=31ta,;, 6,=33"¢,:. In particular, we have
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A" g3 S b oy Let a,=31a',; be decompositions such @ 43~ a”:. Then we
have o/, <. geed.

§4. We now generalize the concept of centre to that of relative centre
with respect to the given p-relation. The center of L will be, as before,
denoted by Z. We define the relative center Z* as the set of all z ¢ L
such that

(19) x~z implies x=2
Lemma 4.1. An element z of L belongs to Z* if and only if
19y’ xr < z o implies x < 3

Proof. By Lemma 3.2 (iii) we have only to show that every element
2z € Z* has the property (19)’." Suppose » <z € Z*. Then, from x—xz
< x follow successively *r—zxz S x, r—xz < 7, x—xz~some ¥y < z, (vr—
x2) + (x—p) ~y+ (z—y) =z and, by (19), (xr—x2) + (¢ —y) z. Hence r—
xz < z, that is » < z. q.ed.

Elements of Z* will be denoted by z, z, 2/, etc.

Lemma 4.2. Z* is a subset of Z and closed in Z and closed in Z with
re‘spe'ct to the operations 1—z, [l z, and 31z, [t contains O and 1 05 L,

and Constitutes a complete b’ao[ecm algebra.

Proof. 0 e Z* and 1 € Z* follow from the incompressibility. The de-
finition of Z* implies that any element of Z* is perspective to no other
element than itself. Hence Z*C /7. Fiom Lemma 4.1 follows that Z* is
closed under the operation [/z,, that is, //z, € Z* for any set of elements
zy € Z*. Now we have only to show that it is closed under the operation
1—2z, since dley=1—71(1—z,). Suppose x < 1—z; then xz < 1—z, i.e.
zz~some ¥ < 1—z, and for such y we have y = z, since y~xz < z. Hence
7 <z by Lemma 4.1, and consequently y=0. It follows that x#~0, which
implies x5=0, i.e. x < 1—z (note thet z € Z). By Lemma 4.1, therefore,
1—-2z¢€ 2* q.ed. .

Lemma 4.3. a < 6 implies za < 26 for any z € Z*. In particular,
a~"o implies za~zb.

Proof. We have only to prove the first parit. From za < a < 4 fol-
lows za < b4, i.e. za~some x = 4; for such x we have » <z, ¥ =~ 2 and
so ¥ < zb. Hence za < z6. q.e.d.

Corresponding to the ‘“central cover” in von Neumann’s theory® we

define, for every a € L,
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a*=1Ilz: z=<a,
or, what is the same,
a*=1Ilz: a<z

Lemma 44.. (/) a < a* e Z*. (ii). za*=(za)*. (iii) a < b implies
a* < 0%, (iv) (a+b0)*=a*+p*.

Proof is obvious fiom Lemma 4.3.. and Lemma 4.3.

Lemma 4.5. ao*=Xx, where 3 extends over all x < a.

Proof. We have only to show 3} x € Z*, because ¢ < 3 x < a* is
obvious. Suppose y < 3 #, then, by Theorem 3, there exists decomposi-
tion y=31%y, such that every y, < some x, and consequently y, < a, from
which follows y < 3'x. By Lemma 4.1, we have therefore, X} x € Z*.

Lemma 4.6. a*0*=> w, where > cxtends over all w suckh that both
wSaand wl b hold.

Proof. We have oaly to show a*6* < 37w, since 3w < a* and
Sl < 6* by Lemma 4.5. let x and y denote arbitrary elements < @ and
< 4 respectively. Then a*6* < 31 x, a*6* < 3]y and, by Theorem 3, there
exist two decompositions a*4* =31, a** =3 "v such that every # < some
x, every © < some y. Fuither, there exists a pan of their 1eﬁnements

a*o* =>4, a*o*= S“"u’T respectively, guch that «/.~7',. TFrom #/*< u
< r < a follows #/; < a, and from 2/, vy <6 follows o' < b
Hence every #'; is a . There fore a*!)* Eu < >l w. q.ed.

Lemma 4.7. [fz=3z, and z; a < 2, 6 for all z,, then sa < 26. If,
in particular, z=73) z; and za~zH, then za~zb.

Proof. We have only to prove the first part. Since Z* itself is clearly
a continuous geometry, we can coastruct a refinement z=3>"z, of z=
Sttz. in Z*. Then we have za=3'",a, c0=3217,6, since 2/, are in Z.
For every z/, there is a 2z, such that &/, <z, and 2/, a=%, 2, a <
2's 2:0=2"46 by Lemma 4.3. Hence za < z6. Q.e.d.

We write a<4é when a~some x<¢4. By Lemma 3.2 (iii), this is
equivalent to the condition that @ < 4 holds while a~4 does not.

We write @ € 6 when, for every z € Z*, either za <26 or za=zo=0
holds. Of couse, a<é implies @ < 6 and g <Lzg6 for all z, € Z*.

Theorem 4. For any pair of clemcnis a, b theve exists a decompesition

1=z, + = + gg Such that

21a L2y0, 2,0 L5q, Z3a~240.
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Prooof. There exists, by Zorn’s lemma, a maximal set of pairs (&, &,)

with the following propezrties :

(20) the elements @, are independent,

(20)’ the elements 4, are independent,

21) a=a;~ by < b
Take such a maximal set, and put’ @,=31ta,, 4=2_"6;. Then a = a,~ 4,
< éb. Put z/=(b—06,)%, y=(a—a,)*. Then z/z/=0 by Lemma 4.6 and
by our choice of a maximal set. Put #/;=1— (z/+2,). From &)/ (a—a,) <
z,/2,’=0 follows z/a=zs/a,; similarly we obtain 2,/6=26,, 2,/6=2,'0y, 2//a=
z/a,, we have therefore

a<z/b, 2,6 < 2la, zla~z)0.

Now we define 2,=3¢, z,=2{ (1—2,), z,=2/(1—z,), wheie ¥} ex-
tends over all & such that z’a~2'6. Then, by Lemma 4.7, we get za~
2.0, and 1—_-51—;-3'2—;-23, since ¢/, < z,.  Of course zza < 22,6 holds for any
z; but if sz;@a~gz2,6 then zz; < 2, 22,=0, zz,a=z22,6=0. Therefore za<
2,6 ; similarly z,6<z,2. q.e.d.

.~ Lemma 4.8. If 61;}-/;2 < a]—.|—czg and a, < b, then b, < a,. :

Proof.  Obviously, we have y,+7, non < x+x, if 2, < 2, 7 <P
Now let 1=s42,+2; be a decomposition satisfying z2,<2,8,, 240 <2y,
250y ~250,. Then 2,0, <2,6, would imply 21&1-;-2',&2 non Szlal—iﬂ/jag in con-
tradiction to z,(&+8,) <z (a,+a,), which folllows from &,+86,Ja,+a,.
Hence z4,=2%0,=0, and 8,=2.0,+2:0, <%+ 230s=a,. q.€.d.

Corollary 1. Jf a].-{— a2~61.+ by and a,~ by then a,~ b,.

Corollary 2. v~y and 1—x~1—y are equivalent. x < y and 1—x <
1—y are equivalent.

Thus the lemma affords a sort of dualty principle for p-relation and
p-inclusion. Another example is |

Corollary 3. /[f a+d =0+ =1, a~b, a~V, then ad ~b0 .

We defined @ < 4 by a~some @ < 4 and not by a < some & ~4é.
which is dual to the former condition. But by Lemma 3.2. the latter im-
plies the former, and we can now prove the converse. Thus these two
conditions are equivalent:

Corollary 4. [f a < b, there exists an element ' such that a < 6 ~é.

In “fact, we have 1—46<1l—a, ie. 1—b~some x<1—a. We can

suppose l—x=> a and 1—(1—4) =4, according to the Remark in §2.



160 Tsurane IwAMURA.

We have then 46 ~1—x > a.

Remark. Consideratisns in this § could be much more visualized if we
had regarded x~y as an equivalence relation betweea the values d(x) and
0(»), where d(x) is the dimension function defined in part I. Such a
version is admitted since x~y is an extension of perspectivity and d(x) =
d0(») is equivalenty to perspectivity of x and y.° However it would have
slightly complicated our statements.

§5. If we call a p-class a set of the from K(a)=(x; x~a), the
geometry L is decomposed into mutually exclusive p-classes 4,5,C,
since x ~y is an equivalence ralation. We write A (e2)<K(4) when a<s,
K(a) € K(6) when a<é, and we denote K(a+é) by K(a)+ K(é) when
there exists a pair of representative elements @, & of K(a), K(4) such that
ab=0. TFor these definitions the particular choice of representative elements
a, & of p-classes is obviously irrelevamt. As in part I, § 1, we can define
the maltiplication of p-classes by elements of Z* and by rational numbers.
We then define p-fypes of a geometry with respect to the given p-relation,
in the same way as we have defined the ‘type’ of a geometry in part I,
§ 2.

Then we can prove, following the analogy to von Neumana loc. cit,
that any geometry L is isomorphic to a direct sum >)@PZ, of p-type 4,
where the isomorphism is considered together with p-relations, and the p-
relation in the direct sum is defined component by component, that is,
D@Dr~2@D e if and only if x,~yp, in each L,.

Therefore, we can and shall consider only a geometry of some p-type
#. We denote by 4* the set of all real numbers or of all rational num-

.bers 2—z(zz=0,7t'l,;t2,:t3, ...... ), according as A= or f<o. Let £%

be the Boolean space corresponding to the Boolean algebra Z*, and let &*
be the lattice-group of all continuous functions on £* with values in d*.
Finally, let us call L p-irreducible when Z* contains only the elements O
and 1.

Then we obtain the following theorem just as we have obtained the
theorem 6 in pait I or by the more elegant method of Y. Kawada, Y,
Matsushima and K. Higuchi”.

Theorem S. We can attack fo eack point M € 2% a continuous geometry
Ly and a mapping x—xs, of L onto Ly in suck a manner that
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(22) L is lattice-isomorphically imbedded into the divect sum ZQLM oy

the mapping x— 3 (DX y,

(23) Each L, is p-irreducible with respect to a p-velation z/za’ucea’ by a
dimension  function 0%,

(24) For each fixed x € L the function 6*(xy) of M € % belongs to &*

(25) if we denote this element of &% by 0*(x) then we obtain a dimension
Junction of x € L with &F as its domain group,

(26)  The given-p-relation in L coincides with that induced by 0*(x).

(27) For any fixed z € Z*, the function 0*(z3,) of Mis the characteristic
Sfunction of the open-and-closed subset 2(2) C 8 corvesponding to z by
the complet: representation of Z* in £%,

(28) 0*((za) ») =0*(2zy). 6*(ay).
From these properties follows furthermore :
(29) Each Z, is of the same p-type as L.
(30) If a=3Xlx and é6=I]Ix, x» ranging over any given subset of Z, then
the set of all points 47 € £%, for which ay3x> 1y or by 1lx,,,
is of first category in £%*,

Remark. This theorem is concerned with a geometry of some p-type.
But it affords a criterion of p-irreducibility of any geometry: A geometry
is p-irveducible if and only if its p-relation is induced by a real valued dimen-
ston function. For the proof we have only. to remark that if the geometry
is p-irreducible or its p-relation is induced by a real valued dimension
function, it must be of some p-type. :

Let us write £, &, J and p instead of £%, &*, ¢* and M respectively,
when we take perspecti\)ity for p-relation. This coincides the notation used
in Part I, except that £ was identified with 1 previously; this is the
Boolean space corresponding to the Boolean algebra .

Now let us suppose that L is of some type and some p-type at the
same time, and let us obselve the relation between the ‘components’ 1,

and x,.

If M is fixed,

1(2()) =3*(ey) (e € 2)

is a finitely additive measure defined for the open-and-closed sets £(¢)
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L. As 2(¢) is bicompact, we have

e (2 (e)) =ﬂ§ 1 (2 (en))
if L(e,) (¢, € Z) are disjoint and

~

2(e)=02(c,).

So py can be extended to a completely additive measure in £, which also
will be denoted by p,. .

By Lemma 3.1 and by the fact that the p-relation is an extension of
perspectivity, there exists an order-preserving homomorphis f~f* of & onto
&*, which carries d(x) into 0*(x).

This homomoephism yields an additive functional f—f*(4/) and the
functional can be represented, as is easily seen, by the integration

~

31 S () =j J(2) 1 (dp).

Hence -

Theorem 6: Awuy dimension function 6* is determuined by its values
o*(e) for ¢ € Z.
Further we denote by A7 the intersection of all £(¢) with ¢ € Z and

0*(ey) =pu(L(e))=1.

As a closed subspace of £, 4/ is a Boolean space, and relatively open-and-
closed subsets U of A7 are of the from £(¢) NJM.
Suppose
U=8(e,) " M=% (e;) N M.

Then the symmetric difference X= (£(¢)) U L(e,)) — (L2(e)) N 2(cy))

is bicompact and contained in the complement of #7 in £; hence X is
covered by the open sets #(¢) with py(£(¢))=0 and so by a finite num-
ber of these. Therefore puy(L2(e,))=p(L£(e)).

So we can define a finitely additive measure 2, in 4/ by
mu(U) =pu(2(e)), U=2(c) N M,

and we can extend it, as before, to a completely additive one, which again
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will be denoted by ;. It is positive for non-empty open sets in 47, since

such a set contains a non-empty .

Now becomes
(32) Fean={_s ) m@p).

When f=> 0, therefore, we have f*(M)=0 if and only if f(p)=0 for all
pe M. Put f=8(a+6)—¢(ab). Then £>0, and we have a series of
equivalent conditions: ay=>0y; (a+b6)y=(ab)y; f*(M)=0; f(p)=0 for
all Pe M; (a+b),=(ab), for all p e i ; a,=b, for all p e M.

Therefore the correspondence

ay<—— Da,
pedf
is one-to-one, and so lattice-isomorphic. Thus we have obtained the follow-
ing theorem except the last pait.

Theorem 7. L, is lattice-isomorphically imbedded in > DL, oy a—
S Da,, where S rarges over all peM. The dimension 6*(ay) is obtained by
integrating the function 6(a,) of p over M by a completely additive measure
my wnick is positive for nom-empty open sets. 1lis imbeding coincides with
the one obtained by Theorem 5 (or Theorem 6, pait 1) for Ly considered as
a geomelyy wilh perspectivity as p-relation.

As for the last pait we have only to remark that 4/ can be consid-
ered as the representaztion space of the center of Z,, as the central elements
of Ly are of the from ¢, (¢ € 2) -and vice versa.

It may be of some interest that the sets 47, M’ corresponding to
different points A, M’ of £* can be separated by the sets £2(z). In fact,
if M > M there is an element z € Z* such that M e £*(z) and M € £—
() =0*(1—2); bt Me £%(2) implies 0*%(s)=1 and so M CL(2);
M e 2(1—2) implies M C2(1—z) ie. M NL(z)=0.

References and Bibliography

1) T. Iwamura: On Continuous Geometries, I; Jap. Jour, Math, vol. XIX, 1944.

- 2) Theorem 3, § 8 in part L
3) Corollary to the theorem above.
4) 1. Halperin: Additivity and Continuity of Perspectivity ; Duke Math. Jour. vol. 5, no,

3, 1939.



164 Tsurane IwAMURA.

5) I. Halperin: Dimensionality in Reducible Geometries: Ann, Math. vol, 40 no. 3, 1939.

6) F. Maeda: Dimension-lattice of Reducible Geometries (in Japanese), Science Report of
Hiroshima Bunrika-Daigaku vol. 13, 1939,

7) Cf. K. Iwasawa: On the Structure of Conditionally Complete Lattice-Group ; Jap. Jour.
Math, Vol. XVIII, 1943,

8) J. von Neumann: Lectures on Continuous Geometry, 111

9) Y. Kawada, K. Higuchi, Y. Matsushima: Bemerkurgen iiber die voranghenden Arbeit
von Herrn T. Iwamura:, Jap. Jour. Math, vol. XIX, 1944,



	On Continuous Geometries, ...
	Theorem 4. ...
	References and Bibliography


