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In $p_{a1}t$ I of this papel1) we have introduced a dimension function with
values in a conditionally complete $lattice- gloup$ , into an albitralily given
continuous geometry, and imbedded the geometry into the direct sum of
irreducible ones. We have proved, thereby, that the dimension is restric-
tedly $additi_{Ve^{\underline{o}}}$) whence follows immediately the $unrest_{1}$ icted additivity of
perspectivity3) This latter additivity had been already proved, however, as
we were informed ot after the publication of palt I by I. Halperin4). In
the following lines we shall show that the former additivity can be deduced
easily from the latter (as was $re$marked in $p_{a1}t1$). Also we shall give
a new proof to Halperin’s theorem of superposition of decompositions as
an application of our theory.

All this will be done in generalizing the method of $Pa\iota t$ I in a celtain
sense. We shall namely show to what extent our previous method can be
applied to obtain a generalized dimension function and the imbedding
theorem, when we replace the perspective relation by an equivalence rela-
tion $1^{rith}$ some natural restrictions. In particular, it should be an extension
of perspectivity, that is, any two elements should be in this relation if th $ey$

are perspective. An example of such extension is that induced by a group
of automorphisms of the geometry, considered by Halperin5) and F. Maeda6).

In this specified case, our restrictions are stronger than Maeda’s, and wea-
ker than Halperin’s, and our dimension function can be obtained from
Maeda’s by means of the representation of a conditionally complete lattice-
group by real-valued continuous functions. But, this being concerned only
with the dimension function, the subject of this note may, as we hope,
appeal to wider interest.

\S I. This section is devoted to some preparatory considerations about
a conditionally complete, and so abelian, lattice-group, which may be of
some interest in themselves, The letter $\mathfrak{G}$ will denote throughout this paper,
unless otherwise qualified, always such a group and $fg,$ $/l,\ldots\ldots$ its elements.
These lettels will be used with or without indices. If we wlite $f’$ , we
mean an element of such a lattice-group $\mathfrak{G}$

’ with the above mentioned
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property.
Given a non-empty system of elements $f_{\gamma}\leqq 0$ such th t the set of sums

$f\tau_{1}+\ldots\ldots+f\tau_{n}$ ( $\gamma_{t}\neq\gamma_{j}$ for $i\neq-f$) of all its finite subsystems has an upper
bound in $\mathfrak{G}$ , we denote by $\Sigma f_{\gamma}$ the supremum of this set of sums. When
the system is finite, this is nothing but the ordinary sum. If $\gamma$ ranges over
all oldinal numbers $<a$ limit number $\lambda$ , then (cf. $p_{a1}tI$ , \S 7)

$\sum_{a<\lambda}f_{\gamma}=\sup_{\mu<\lambda}\sum_{\gamma<\mu}f_{\gamma}=\sup_{\mu<\lambda}\sum_{\gamma<\mu}f_{\gamma}$
.

The $generali_{\sim}redcomm\prime tati^{t}\iota^{f}e$-associative lazv holds in the following sense:
Let $f_{a?}\geq 0$ be elelments svith double suffixes. If either $a^{\frac{>^{\urcorner_{\mathfrak{l}}}}{\backslash }f_{a^{q}}}$ or $\sum_{a}\sum_{\beta}f_{a\beta}$

exists, then the other also exists, and they coincide. We shall omit here
the easy proof.

Lemma 1.1. If $0\leq g_{\gamma}$ and $0\leq f\leq\Sigma g_{\gamma}$ , there exists a system of
elements $r_{\ell_{j}}\geq 0$ such that $f=\Sigma 1\iota_{j},$ $h_{j}\leq g_{j}$ .

Proof. We shall suppose, as it is obviously permitted, that $\gamma$ ranges
over all ordinal numbers $<a$ , where $a$ is an ordinal number $>0$ . Define
by transfinite induction on $\beta<a$ ;

$h_{0}=f\cap g_{0}$ , $/l_{\theta}=(f-\sum_{\gamma<\beta}h_{\gamma})ng_{\beta}$ ,

where the summands $\gamma_{\gamma}$ should be $\geq 0$ . Let $\beta$ be an oldinal number such
that $0<\beta<a$ . Suppose that, for all $\gamma<\beta,$ $/\iota_{\gamma}\underline{>}0$ are defined and

(1)
$f\cap\Sigma g_{\xi}\epsilon<\uparrow=\sum_{\sigma<\tau}h_{\overline{\zeta}}$ .

This holds for $\beta=1$ . When we have shown that this yields (1) for
$\gamma=\beta$ again, we can conclued immediately that the assumption holds for
$\beta+1$ in place of $\beta$ , and consequently for $\beta=a$ , which proves th $e$ lemma.
Now. if $\beta$ is a limit number, we nave only to take the supremum with
respect to all $\gamma<\beta$ on both sides of (1). Otherwise, let $\eta$ be the im-
mediate $p_{1}edecessor$ of $\beta$ , and put

$\overline{/\ell}=\sum_{\epsilon<\eta}/l_{\xi}$
,

$\tilde{g}=\sum_{\triangleright<\eta}g_{\mathfrak{k}}$
.

Then we have $f\cap\tilde{g}=\overline{/l},$ $(f-\overline{f_{l}})\cap g_{\eta}=h_{\eta}$ and

$fn(\tilde{g}g_{\eta}=fn(r+g_{\eta})n(\tilde{g}+g_{\mu})=fn((fn\tilde{g})+g_{\eta})$

$=(\overline{1_{l}}+f-\overline{/z})n(\overline{/z}+g_{\eta})=\overline{/\iota}+((f-\overline{/\iota})+g_{\eta\eta})=\overline{h}+\gamma_{l}$ .
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Hence $f\cap\Sigma g_{\xi}=\sum h-.\backslash $ with $;\leq\eta$ , i.e. $\xi<\beta$ . q.e.d.
Theorem 1. $1f0\sim\leq f_{a},$ $0\leq g$, and $\Sigma f_{a}\leq\Sigma g_{9}$ , wbue $a$ and $\beta$ are

indep-ndent, $t\gamma_{le;}$ there exists a system of $elemc^{f}nts/l_{\alpha},$ $\leq 0$ sucli $t/\iota at$

(2) $f_{a}=\sum_{\theta}\gamma_{l_{a}}$
,

$2_{-}h_{\alpha_{1}s}\leq g_{1}\alpha^{\urcorner}$

$1f\sum f_{a}=\Sigma g_{I^{\backslash }}$ , then from (2) follows
(3) $g_{\mathfrak{a}}=\sum_{\alpha}h_{at}$ .

Proof. We shall suppose, without loss of generality, that $a$ ranges
over all oldinal numbers $<\alpha_{0},$ $whel\cdot eu_{0}$ is an ordinal number $>0$ . Let us
define $h_{a3}$ by transfinite induction as follows. By $f_{0}\leq\Sigma g_{\theta}$ we obtain a
system of elements $r_{l_{0s}}\underline{<}0$ such that $f_{0}=\sum/l_{09},0\leq\gamma_{l_{0_{1}3}}\leq g_{\beta}$ . Let $a$ be an
ordinal number, $0<a<a_{0}$ . Suppose that $h_{\mathfrak{k}_{1}^{q}}\leq 0$ are defincd for all $\beta$ and
for all $\overline{\backslash }<//.$ . Suppose fuither

$\sum_{\epsilon<\alpha}1_{l_{\xi_{1}9}}\geq g,$ $f_{\xi}=\sum_{\beta}h_{\xi G}$ .

Then, by the commutative-associative law,

$\sum_{\{}(g_{\beta}-\sum_{\xi}h_{E_{1}^{q}})+\sum_{\beta}\sum_{\epsilon}h_{\xi 3}=\sum_{\beta}g_{a}$

$\geq\sum_{\epsilon}f_{\xi}+f_{\alpha}=\sum_{\sigma\{}\sum_{l\ovalbox{\tt\small REJECT}}k_{E_{s}},$ $+f_{\alpha}=\sum_{q}\sum_{\epsilon}h_{\triangleright q,\backslash t}+.(.$
,

and consequently $f_{\alpha}\leq\sum_{1}(\iota_{:\$})$ . Hence we obtain by the lemma a

system of elements $/z_{\alpha\$}\underline{>}0$ such that

$h_{\alpha},\leq g-\sum_{\epsilon<\alpha}h_{\frac{-}{\backslash }},$
,

$f_{\alpha}=\sum_{\beta}h_{\alpha p}$ .

Thus we have a system of elements $h_{\alpha 3}$ defined for all $a$ and $\beta$ for
which the property (2) is obvious from construction. As for the second
part of the theorem, we make use of $t1_{1}e$ commutative-associative law as
above, and obtain $\sum_{p}(g-\sum_{\alpha}h_{\alpha s})=0$ , which implies (3). q.e. $d$ .

Remark. The assumption that $\mathfrak{G}$ be conditionally complete is needed
only for the commutativity of $\mathfrak{G}$ and for the existence of the sum $\sum when$

there is an infinite number of summands. This remark is useful in the
proof of the following lemma.

Lemma 1.2. Let $\mathfrak{G}$ be an abelian (not necessarily conditionally complete)
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$ lattice- g\cdot ronpwit^{\prime}/\iota$ an $arc_{/l}^{\gamma}$imedian unit $e$ , and let $\mathfrak{G}^{\prime}$ be any (partially) ordered
$ab^{\rho}\vee lian\dot{g}$roup. $1ff\rightarrow f^{\prime}$ is a mapping of the subset $(f;0\leq f\leq e)$ of $\mathfrak{G}$ into
$\mathfrak{G}^{\prime}$ such thaf $f^{\prime}\geq 0$ in $\mathfrak{G}^{\prime}$ and $(f+g)^{\prime}=f^{\prime}+g^{\prime}$ zvhen $0\leq fg,f+g\leq e$ , llzen
the mapping$\cdot$ can $b^{\underline{\rho}}$ uniqaely extended to an order preserving $homomorpf_{l}ism$

of $\mathfrak{G}$ into $\mathfrak{G}^{\prime}$ . $1f$, morlover, $\mathfrak{G}^{\prime}$ also has an $archiml^{\prime}\vee dianumte^{\prime}a\prime ld\iota feve;\prime y$

element $f^{\prime}\epsilon \mathfrak{G}$
‘ $ suc/\iota$ that $0\leq t^{y}\leq e^{\prime}$ is an image of $t/\iota e$ given mapping, then

$t\nearrow\iota e$ extension maps $\mathfrak{G}$ onto $\mathfrak{G}^{\prime}$ .
Proof. The theorem 1, together with the above remark, implies

$\Sigma f^{r_{i}}\leq\Sigma g^{J_{j}}$ when $\Sigma f_{i}\leq\Sigma g_{j},$ $0\leq f_{j,}\leq e,$ $0\leq g_{j}\leq e$ ,

where $\Sigma$ denotes now the ordinary sum of a finite number of summands;
in particular, we have $\sum f_{i}^{\prime}=\Sigma g_{j}^{\prime}$ when $\Sigma f_{i}=\Sigma_{\delta^{0}j}$ . Hence, if $ f=f_{J}+\ldots$

$...+f_{m}-g-\ldots\ldots-g_{n},$ $0\leq f_{i}\leq e,$ $0\leq g_{j}\leq e$ , then$ f^{\prime}=f_{1^{\prime}}+\ldots\ldots+f^{t}-g_{1}-\ldots$

$-g_{n^{\prime}}$ is determined by $f$ and does not depend on particular choice of
its expression $f=f_{1}+\ldots\ldots+f_{m}-g_{1}-\ldots\ldots-g_{n}$ , and we have $f^{\prime}\leq 0$ if $f\leq 0$ .
Such an expression exists for every $f\in \mathfrak{G}$ , since $e$ is an archimedian unit
of the lattice-group $\mathfrak{G}$ . Thus the existence and uniqueness of the extension
to an order preserving homomorphism is proved. The second part of the
lemma is obvious from the fact that, in this case, every element $f^{\prime}\epsilon \mathfrak{G}^{\prime}$

admits an analogous expression $f^{t}=f_{1}^{\prime}+\ldots\ldots+f_{m}^{\prime}-g_{1^{\prime}}-\ldots\ldots-g_{n^{\prime}}$ with
$0\leq f^{\prime}\leq e^{\prime}$ , $0\leq g\leq e^{\prime}$ . q.e.d.

\S 2. Let $L$ be a continuous geometry. We denote its elements by
$a,$ $b,$ $c,$ $x,$ $y$ , with or withou $t$ indices. We denote by $\sum^{\perp}x_{\gamma}$ the sum $\sum x_{\gamma}$

of an independent system of elements $x_{\gamma}$ ; when, moreover, the system is
finite, we write also e.g. $x_{1}+\cdots\ldots+x_{n}$ . For each pair of elements $a\leq b$

we fix once for all, an $elem_{\vee}^{\circ}ntc$ such that $a=b+c$ , i.e. $a=b+c$ and $bc=0$ ,
and denote it by $a-b$ .

$Re^{\prime}ma\prime\prime k$ . The fact that the element $c=a-b$ is subject to no other
restriction than $a=b+c$ will be made use of in the proof of Corollary 4
to Lemma 4.8.

A function $\delta(x)$ defined on $L$ and with values in a lattice-group $\mathfrak{G}$ will
be called a $\delta$-fzrnction when it satisfies the following the conditions.

(4) $0\leq\delta(x)$ in $\mathfrak{G}$ ;
(5) $\delta(x+y)=\delta(x)+\delta(y))$

(6) $\delta(\sum_{\gamma}\perp x)\tau=\delta(\sum_{\gamma}\perp_{\gamma}y)$ if $\delta(x_{\gamma})=\delta\zeta\gamma_{\gamma})$ for all $\gamma$

)

(7) if $\delta(a)\leq\delta(b)$ there exists an element $x\leq b$ such that $\delta(x)=$

$\delta(\prime l)$ ;
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(8) if $0<f\in \mathfrak{G}$ there exists an element $x$ such that $0<\delta(x)\leq f$.
From (5) follows that $\delta(0)=0$ and that

(9) $\delta(x)=\delta(y)$ if $x$ and $y$ are perspective.

When $\delta(1)$ is an archimedian unit of $\mathfrak{G}$ we calJ $\mathfrak{G}$ the domain-gronp
of the $\delta$-function. Given a $\delta$-function, its domain-group is uniquely deter-
mined as th $e$ set of all $f\epsilon \mathfrak{G}$ such that $-n\cdot\delta(1)\leq f\leq n\cdot\delta(1)$ for some
integer $7l$ It is obvious that this set is a conditionally complete sublattice
and a subgroup of $\mathfrak{G}$ .

When

(10) $0<x$ implies $0<\delta(x)$

or equivalently,

(11) $x<y$ implies $\delta(x)<\delta(y)$ ,

we call the $\delta$-function a dimension function. This is a generalization of the
concept,of dimension function introduced in part I, for which the converse
of (9) holds as well. By (9) and its converse, the $prope\iota ty$ (6) of this
special $d_{1}^{\backslash }me$ )$ 1sionfuntio\lambda$ is equivalent to the unrerstricted additivity of
perspectivity:

(12) $\Sigma^{\perp}\chi_{\gamma}$ and $\sum^{\perp}y_{\Gamma}$ are perspective, if, for each $\gamma,$ $l_{\gamma}$ and $y_{\gamma}$ are $pel\cdot S-$

pective.
The additivity (12) was established by Halperin without the aid of

dimension function. The following theorem 2, therefore, affords a new
proof to the unrestricted additivity of the $speci_{c}\iota 1$ dimension function:

(13) $\delta(\Sigma^{\perp}x_{\gamma})=\Sigma\grave{\delta}(x_{\gamma})$ ,

which we proved in Part I and from which we deduced (12). (12) will
not be used in the following proof of the theorem 2.

Theorem 2. Every $\delta$-function satisfies (13).
$P/\nearrow oof$, Let $\Gamma$ be the range of $/^{\prime}\cdot$ When $I^{\prime}$ is a finite set, (13) follows

immediately from (5). Hence we have only to consider the case where
$\Gamma$ is of potency $\aleph\geq\aleph_{0}$ such that (13) holds whenever $\Gamma$ is of potency
$<\times$ . $F_{U1}$ ther, we can and shall suppose that $\Gamma$ is the set of all ordinal
numbers $<\lambda$ , rvhere $\lambda$ is the first ordinal number such that the set of all
ordinal numbers $<\lambda$ is of potency $\times$ .

Put
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$f=\delta(\sum_{\gamma<\lambda}\perp x_{\gamma})-\sum_{\gamma<\lambda}\delta(x_{\gamma})$

and suppose $f\neq 0$ . Then, since (13) holds for any finite system and since
$\Sigma f_{\gamma}$ in $\mathfrak{G}(f_{\gamma}\geq 0)$ is defined as the supremum of the sums of finite number
of elements $f_{\gamma}$ , we have $0<f\leq\delta(\Sigma^{\perp}x_{\gamma})$ . By (7) and (8) there exists
an element $x\leq\sum^{\perp}x_{\gamma}$ such that $0<\delta(x)\leq f$ Put $y=\Sigma^{\perp}x_{\gamma}-x$. By $t_{1}ans-$

finite induction we can define $y_{\gamma}$ for all $\gamma<\lambda$ as an element $\leq y-\sum_{\alpha<\gamma}y_{\alpha}$ with
$\delta(y_{\gamma})=\delta(x_{\gamma})$ , because, as will be shown presently, if $\beta<\lambda$ and if $y_{\gamma}$ are
defined for all $\gamma<\beta$ then $\delta(x_{\beta})\leq\delta(y-\sum_{\tau<\beta}L\gamma)$ and consequently, by (7) and

(8) again, $y_{9}$ can be defined.
In fact, the system $(y_{\gamma} ; \gamma<\beta)$ is indepedent and its suffix $\gamma$ ranges

over a set of potency $<\aleph$ ; hence (13) can be applied to it and yields
$\delta(x_{1^{(\backslash }})_{\frac{<}{\gamma}}\sum_{<\lambda}\delta(x_{\gamma})-\delta(x_{\gamma})=\delta(\sum_{\tau\gamma^{\frac{T^{t_{1}}}{<}}\beta<\lambda}\perp x_{r})-f-\sum_{\gamma<9}\delta(x_{\gamma})$

$\leq\delta(\sum_{\gamma<\lambda}\perp x_{\gamma})-\delta(x)-\sum_{\tau<8}.\delta(x_{\gamma})=\delta(y)-\delta(\sum_{\tau<\beta}\perp\gamma_{\gamma})$

$=\delta(y-\sum_{\tau<^{\mathfrak{t}}\beta}\gamma_{\gamma})$

Thus we obtain an independent system of elements $y_{\gamma}$ defined for all
$\gamma<\lambda$ and, by (4) and (5),

$\delta(\Sigma^{\perp}x_{\tau})=\delta(\Sigma^{\perp}y_{\gamma})\leq\delta(y)=\delta(\Sigma^{\perp}x_{\gamma})-\delta(x)$ ,

which is in contradiction to $0<\delta(x)$ . Hence we should have $f=0$ , q.e.d.
Lemma 2.1. An element $f\in \mathfrak{G}$ is a value of the $\delta$-function $\delta(x)\iota f$ and

only $\iota f0\underline{<}f\underline{<}\delta(1)$ .
Proof. If $f=\delta(x)$ , then by (4) and (5)

$0\leq f\leq\delta(x)+\delta(1-x)=\delta(1)$ .

Conversely, suppose $0\leq f\leq\delta(1)$ and consider any independent set $S$ of
elements of $L$ such that $\sum\delta(y_{t})\leq f$ for any finite number of different ele-
ments $y_{i}\in S$. We speake of a set $S$ and not a system $S$ to imply that no
element is to be considered twice br more times as belonging to $S$ . Put
$x=\Sigma^{\perp}y:y\epsilon S$.
Then $\delta(x)\leq f$ by (13). If $\delta(x)<f$, then there exists an element $\iota\gamma$ such
that $0<\delta(y)\underline{<}f-\delta(x)$ , and we can choose $y\leq 1-x$ , since $f<\delta(x)<$

$\delta(1-x)$ . $F_{1}om0<\delta(y)$ and follows $y\xi S$ , for, otherwise we should have
$y\leq x$ and consequently $y=0$ . Hence we can add $y$ to $S$, to obtain a
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larger set with the same property as above. But, by Zorn’s lemma, there
exists a maximil one among such sets $S$ , and we have $\dot{\delta}(x)=f$ for this
maximal $S,$ $q$ . $e$ . $d$ .

An expression $a=\sum^{\perp}a_{\alpha}$ will be called a decomposition of $a$ . It will be
called a refinemenl of an expression $a=\sum b$ ( when every $a_{\alpha}\leq someb_{s}$

(depending on $a_{\alpha}$ ).
Lemma 2.2. Let $\delta(x)$ be a $dimensio\prime l$ fzrnction. $1f\delta(a)=\sum f_{\gamma}$ and $\gamma_{\gamma}\underline{>}0$

in its domain group, $t\prime_{l}en$ the$re$ exists a decomposition $a=\sum^{\perp}’\delta(a_{\gamma})=f_{\gamma}$ .
Proof. Consider an independent system of elements $a_{r},$

$\geq a$ with $\delta(a_{\gamma})$

$=f_{\gamma},,$ $\gamma^{t}$ ranging over a subset $I^{v}$ of the range $\Gamma$ of $\gamma$ in $\Sigma f_{\gamma}$ . If $\sum^{\perp}a_{\gamma}$

$\neq a$ then $\sum^{\perp}a_{\gamma},$ $<a,$ $\sum\delta(a_{\gamma},)<\delta(a)$ and consequently $\Gamma^{\prime}-\neq 1^{\tau}$. When $ l^{v\prime\underline{\backslash }}\neg-\Gamma$,
let $\beta$ be an element of $I^{\urcorner}$ which is not contained in $\Gamma$ . Then

$f_{a}+\delta(\Sigma^{\perp}a_{\gamma^{\prime}})=f,+\Sigma f_{\gamma\prime}\leq\delta(a)$ ,

$f_{3}\leq\delta(a)-\delta(\Sigma^{\perp}a_{\gamma},)=\delta(a-\Sigma^{\perp}a_{\gamma\prime})$

and, by Lemma 2.1. and (7), $f_{Q}=\delta(x)$ for some $x\leq a-\sum^{\perp}a_{\gamma},$ , which
implies that the system of elements $a_{\gamma t}$ can be augmented. Taking a maxi-
mal system, therefore, we have $\Gamma=\Gamma$ and $a=\sum^{\perp}a_{\gamma}$ , q.e.d.

The maximal method in these two lemmas was already used in the
proof of Lemmi 9.1, Part I. The proof consisted essentially in the following
fact, which we formulate here for later use.

Lemma 2.3. Any expression $a=\sum b_{n}$ admits a refinement, that is, for
any suah expression there exists a decomposifion $a=\sum^{\perp}a_{\alpha}snc/l$ that $ez^{y}ery$ a
$\leq sorneb,$ .

\S 3. Closely related to the concept of dimension function is that of
p-relation, which is a generalization of perspectivity. By this we mean a
binary relation $x\sim y$ defined in a continuous geometry $L$ , satisfying the
following conditions:

(14) $x\sim y$ is an equivalence relation;
$(1\overline{\prime)})$ it is an extension of perspectivity, that is, if $x,$ $y$ are perspective,

then holds $x\sim y$ ;

(16) it is unrestrictedly additive, i,e. $\sum^{\perp}x_{\gamma}\sim\sum^{\perp}y_{\gamma}$ if $x_{\gamma}\sim y_{\gamma}$ for each $\gamma$ ;
(17) if $x\sim\sum^{\perp}y_{\gamma}$ , there exists a decomposition $x=\sum^{\perp}x_{\gamma}$ with $x_{j}\sim y_{\gamma}$ ;

(18) every element $x$ is incompressible in the sense that $x\sim no$ element
$<x$ .
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It is easily seen that (18) can can be replaced by a seemingly weaker
condition:

(18) $y\sim 1$ implies $y=1$ .

Suppose, in fact, $\chi\sim x^{\prime}\leq x$. Then we have, by (14) and (16), $1=(1-x)$
$+x\sim(1-x)+x^{\prime}$ , and by (18) $(1-x)+x^{\prime}=1$ , which implies $x^{\prime}=x$.

If a dimension function $\delta(x)$ is given and $x\sim y$ is defined to mean
$0^{\backslash }(x)=\delta(y)$ , then $x\sim y$ is obviously a p-relation. In particular, (17) follows
from Lemma 2.2. This will be called the p-relation induced by $\delta(x)$ .
It will be shown that every p-relation can be induced by some dimension
function (cf. Theorem 5). The dimension function that induces a given
p-relation is uniquely detelmined up to order preselving isomorphisms of
its domain group.
This fact follows from

Lemma 3.1. $1f\delta(x)$ and $\delta^{\prime}(x)$ are $\delta$-functions defined on a continuons
geometry, with domain groups $\mathfrak{G}aud\mathfrak{G}^{t}$ and $\iota f\delta(x)=\delta(y)$ implies $\delta^{\prime}(x)=$

$\delta^{\prime}(y)$ , then $t/ere$ exists an order prese’ ving homomorphism of $\mathfrak{G}$ onto $\mathfrak{G}^{\prime}$

$’\iota vhich$ carrzes $\delta(x)$ into $\delta^{\backslash /}(x)$ for every $x$ . Such a homomorpliism is uniquely
determined. On the frnctions $\delta(x)\delta^{\prime}(x)$ and we have only to assume tlat

(i) $T/^{f}le$ valucs of $\delta(x)$ are contained in an abe.’ian $lat^{f}\iota ce$-group $\mathfrak{G}wit/\iota$

$\delta(1)$ as an arckimedian unit,
(ii) An element $f\epsilon \mathfrak{G}$ is a value of $\delta(x)$ if and only $\iota f0\leq f\leq\delta(1)$ .
(iii) $\delta(x+y)=\delta(x)+\delta(y)$ ,

and the $co/\prime responding$ properties of $\delta^{\prime}(x)$ and $\mathfrak{G}^{\prime}$ , (These.conditions are
clearly verified, if $\delta(x)$ and $\delta$‘ $(x)$ are $\delta$-functions.)

This is an obvious consequence of Lemma 1.1 and Lemma 2.1.
We shall consider, from now on, a continuous $geomet_{1}y$ with a $p-$

relation $x\sim y$ . We write $a\leq b$ when $a\sim som_{\vee}^{\circ}x\leq b$ . This relation will
be called p-inclusion. It is the generalization of the perspective inclusion,
corresponding to the generalization of perspectivity to p-relation. It is also
an extension of perspective inclusion since p-relation is an extension of
perspectivity; in palticular, $a\leq b$ implies $a\leq b$ .

Lemma 3.2. (i) $a\leq b\sim b^{\prime}$ implies $a\leq b$‘. (ii) $a\geq b\geq c$ lmplies
$a\leq c$ . (zii) $a\leq b\sim aimpl_{l}esa=b$ . $(\iota v)a\leq b\leq aimpl_{l}esa\sim\gamma_{7}$ .

Proof. (i) : Corresponding to the decomposition $b=a+(b-a)$ we
have a decomposition $b^{\prime}=a^{\prime}+c$ such that $a\sim a^{\prime},$ $b-a\sim c$ , hence $a\leq b^{\prime}$ .
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(ii): We have $a\sim somex\leq b$ and $b\sim someb^{t}\leq c$ and, by $(l),$ $x_{\sim}<p^{r}$,
i.e. $x$ –some $y\leq b$ , which implies $a\sim y\leq c$ . (iii) i.s an immediate conse-
quence of th $e$ incompressibility of $b$ . (iv) : We have $a\sim somea^{\prime\leq b}$ and,
for such $a^{\prime}$ , we have $a^{\prime}\leq b\sim a^{\prime}$ , which implies $d=b$ by (iii) : hence $a\sim b$ .

$Remal^{\prime\gamma,}$ . $(i_{\iota}’/)$ can be proved without the $assum_{1}otion$ of incompressi-
bility. The proof will then be analogous to the usual proof of Bernstein’s
theorem in the theory of sets.

Theorem 3, $1fa=\Sigma a_{\alpha}\leq b=\Sigma b$
(

$tl\iota ere$ exis2’s a pair of refinements a
$=\sum^{\perp}a_{\gamma}^{/},$ $b=\sum^{\perp}b_{\gamma}$ , of $a=\sum a_{\alpha},$ $b=\sum h$ such tfial a $’\tau\leq b_{\gamma}^{\prime}$ for $ e^{\prime}/ery\gamma$ . $1f_{r}$

$moreo^{\prime}!er,$ $a=\sum^{\perp}a_{\alpha}and\prime_{7}=\sum^{\perp}b_{s}|$ then $’\iota ve$ can choose $\gamma$ as pairs $(a,\beta)$ in
such a way lhat $a_{\alpha}=\sum^{\perp}a_{\alpha s}^{\prime}$ and $b,=\sum^{\perp}b_{\alpha_{1}3}^{\prime}$ $1fa\sim b$ , we can replace $p-$

inclusion by $p_{-\prime}elation$ in both statemenls above.
Remark. This is a slight generalization of Halperin’s theorem of super-

position of decompositions $ 10\vee$ . cit. But the following proof is based on a
new idea.

Proof. Replacing $a=\sum a_{\alpha}$ and $b=\sum b_{s,\ovalbox{\tt\small REJECT}}$ by their refinements, $\backslash \iota^{r}e$ can
reduce the first pait of the theorem to the second palt. We shall prove
only the second palt, because the last part can be obtained by replacing
p-relations with p-inclusions in the following considerations.

Let tts first consider the case when the given p-inclusion is the pers-
pectivity. Let $\delta(x)b_{\vee}^{a}$ the dimension function defined in part I. Then we
have

$\Sigma\delta(a_{\alpha})=\delta(a)\leq\delta(b)=\sum\delta(\delta_{l}(), 0\underline{<}\delta(a_{\alpha}),$ $0\leq\delta(b_{2})$ and consequently,
by Theorem 1., there exists a system of elements $l\ell_{\alpha s}\geq 0$ in the domain
$glo\iota\iota p$ of $\delta(x)$ such that $\delta(a_{\alpha})=\sum_{q,1}h_{\alpha_{9}},,$ $\sum_{\alpha}h_{\alpha},$

$\leq\grave{o}(b_{2})$ . Let $b_{2}^{\prime}$ be elements
$\leq b_{R}$ with $\delta(b_{l}^{t})=\sum h_{\alpha}$ , (cf. Lemma 2.1.), and let $b_{q}^{\prime}=\sum_{\alpha}b_{a}^{\prime\prime}$, be their

decompositions with $\delta(b_{\alpha 3}^{\prime\prime})=h_{\alpha 3}$ (cf. Lemma 2.2). From these we can
easily construct the $decompositio_{\sim}1sb_{Y}=\sum_{\alpha}-|Lb_{\alpha s}^{\prime}$ with $\delta(b_{\alpha 9}^{\prime})\leq h_{\alpha s}$ . Fuither,

let $a_{\alpha}=\sum a_{\alpha\backslash }$ be decompositions with $\delta(0_{\alpha\$}^{\prime})=h_{\alpha 3}$ , then we have a desired
pair of decompositions, since $\delta(a_{\alpha\ovalbox{\tt\small REJECT} s}^{\prime})\leq\delta(b_{\alpha_{t}q}^{\prime})$ implies $a_{\alpha s}^{\prime}\leq b_{\alpha s}^{t}$ .

Let us now consider the general case. Let $a^{\prime}$ be an element such
that $a\sim a^{t}\leq b$ . and $a^{t}=\Sigma^{\perp}a_{\alpha}^{\prime}$ be a decomposition such that $a_{\alpha}\sim a_{\alpha}^{\prime}$ . Of
course $a^{\prime}$ is perspectively included in $b$ , and by the palt of theorem proved
above for the case of perspective inclusion, we obtain a pair of refinements
$a^{\prime}=\sum^{\perp}a_{\alpha\backslash }^{\prime\prime},$ $b=\sum^{\perp}b_{\alpha}^{\prime},$

’ such that, for any $a$ and $\beta,$ $a_{\alpha}^{\prime\prime}$ , is perspective to
some element $\leq b_{\alpha\tau}^{\prime\prime}$ , and $a_{\alpha}^{\prime}=\sum^{\perp}a_{\alpha\backslash }^{\prime\prime},$

$b.’’=\sum^{\perp}b_{\alpha 2}^{\prime}$ . In paiticular, $\backslash ve$ have
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$a_{\alpha\alpha}^{\prime\prime}\leq b_{\alpha\beta}^{\prime}$ . Let $a_{\alpha}=\sum^{\perp}a_{\alpha 1}^{\prime}$, be decompositions such $a_{\alpha s}^{/}\sim a_{\alpha?}^{\prime\prime}$ . Then we
have $a_{\alpha\beta}^{\prime}\leq b_{\alpha\beta}^{\prime}$ . q.e.d.

\S 4. We now generalize the concept of centre to that of relative centre
with $respect^{\rightarrow}$ to the given $p$-relation. The center of $L$ will be, as before,
denoted by $Z$. We define the relative center $\angle^{r}$ *as the set of all $z\in L$

such that

(19) $\chi\sim 2$ implies $x=2$ .
Lemma 4.1. An elem$ent2$ of $L$ belongs to $Z^{*}$ if and only $lf$

(19) $x\leq 2$ impties $x\leq z$

Proof. By Lemma 3.2 (iii) we have only to show that evely element
2 $\epsilon Z^{*}$ has the property (19) $f$ Suppose $x\leq z\in Z^{*}$ . Then, from $x-x_{\sim}^{\alpha}$

$\leq x$ follow successively $x-- xz\leq x$ , $x-- xz\leq z,$ $.x-xz\sim some\gamma\leq 2$ $(x-$

$X2)+(x-y)\sim y+(\sim-y)=_{\sim}r$ and, by (19), $(x-x_{2})_{+}(\sim’-y)=z$ . Hence $x-$

$xz\leq z$ , that is $x\leq z$ . q.e.d.
Elements of $Z^{*}$ will be denoted by $z,$ $2_{1},2^{\prime}$ , etc.
Lemma 4.2. $z*$ is a $s$zibset of $Z$ and closed in $Z$ and closed in $Z$ with

respect to $tl\iota e$ operafions $1-z,$ $\Pi z_{\gamma}$ and $\sum z_{j}$ . It contains $0$ and 105 $L$ ,
and $\bullet constitutes$ a complete Boolean algebra.

Proof. $0\in Z^{*}$ and 1 $\epsilon Z^{*}$ follow from the incompressibility. The de-
finition of $Z^{*}$ implies that any element of $Z^{*}$ is perspective to no other
element than itself. Hence $\swarrow^{\prime}d7*\subseteq Z$. $F_{1}om$ Lemmi 4.1 follows that $Z^{*}$ is
closed under the operation $11\sim\sim_{\gamma}$ , that is, $//2_{\gamma}\epsilon/\rightarrow*$ for any $6et$ of elements
$2_{\gamma}\in Z^{*}$ . Now we have only to show that it is closed under the operation
1–2, since $\sum r_{\gamma}=1-\Pi(1-z_{\gamma})$ . Suppose $x\leq 1-z$ ; then $x\approx\leq 1-z$ , i.e.
$ X2\sim somey\leq 1-\approx$ , and for such $y$ we have $y\geq 2$ , since $y-- xz\leq z$ . Hence
$y\leq z$ by Lemma 4.1, and $conseqnently\parallel=0$ . It follows that $x_{2}\sim 0$ , which
implies $x_{\sim^{\prime}}^{-}=0$ , i.e. $x\leq 1-\sim r$ (note $th_{c}\wedge tz\in Z$). By Lemma 4.1, $theref_{01}e$ ,
$1-z\epsilon z*$ . $q$ .e.d.

Lemma 4.3. $a\leq b$ implies $za\leq zb$ for any 2 $\epsilon Z^{*}$ . $1n$ particnla’ $\cdot$ ,
$a\sim b$ imflies $2a\sim zb$ .

Proof. We have only to prove the first palt. From $za\leq a\sim<b$ fol-
lows $za\leq b$ , i.e. $2a$ –some $x\geq b_{)}$. for such $x$ we have $x\leq z,$ $x\geq z$ and
so $x\leq 2b$ . Hence $za\leq zb$ . q.e.d.

Corresponding to the “ central cover ‘’ in von Neumann’s theory8) we
define, for every a $\epsilon L$ ,
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$a^{*}=\Pi_{Z\ddagger}$ $2\leq a$ ,

or, what is the same,
$a^{*_{=}\Pi_{2};}$ $a\leq z$ .

Lemma 4.4. . (i) $a\leq a^{*}\epsilon Z^{*}$ . (ii). $\sim\sim a^{*}=(2a)^{*}$ . (iii) $a\leq b$ implies
$a^{*}\leq b^{*}$ . (iv) $(a+1’)^{*}=a^{*}+!;*$ .

Proof is obvious fiom Lemma 4.3.. and Lemma 4.3.
Lemma 4.5. $a^{*}=\Sigma x$, where $\Sigma$ pxtends over all $x\leq a$ .
Proof. We have only to show $\sum x\in Z^{*}$ , because $a\leq\sum x\leq a^{*}$ is

obvious. Suppose $y\leq\Sigma x$, then, by Theorem 3, there exists decomposi-
tion $y=\Sigma^{\perp}y_{\alpha}$ such that every $y_{\alpha}\leq somex$ , and consequently $y_{\alpha}\leq a$ , from
which follows $y\leq\Sigma x$ . By Lemma 4.1, we have therefore, $\Sigma x\in Z^{*}$ .

Lemma 4.6. $a^{*}b^{*}=\sum w,$ $’\iota\ell 1/lere\sum$ extends over all $w$ such $t/lat$ both
$w\leq a$ and $\cdot$

$w\leq b/\ell old$.
Proof. We have only to show $a^{*}b^{*}\leq\sum w$ , since $\sum\prime cV\leq a^{*}$ and

$\sum w\leq b^{*}$ by Lemma 4.5. Let $x$ and $y$ denot $e$ albitrary elements $\leq a$ and
$\leq b$ respectively. Then $a^{*}b^{*}\leq\sum x,$ $a^{*}b^{*}\leq\sum y$ and, by Theorem 3, there
exist two decompositions $a^{*}b^{*}=\sum^{\perp}n,$ $a^{*}b^{*}=\Sigma^{\perp}v$ such that every $u\leq some$

$x,$ evely $\tau/\leq somey$ . $F_{U1}ther$ , there exists a pair of their 1efinements
$a^{*}b^{*}=\sum^{\perp}u_{\gamma}^{\prime},$ $a^{*}b^{*}=\sum^{\perp}n_{\gamma}^{\prime}$ respectively, such that $u_{\gamma}^{\prime}\sim v_{\gamma}^{\prime}$ . $F_{1}omu_{\gamma^{\bullet}}^{\prime}\leq u$

$\leq x\leq a$ follows $u_{\gamma}^{t}\leq a$ , and from $n_{\gamma}^{\prime}\sim v_{\gamma}^{\prime}\leq v\leq y$ :Eil $b$ follows $u^{\prime}\leq b$ .
Hence every $u_{\gamma}^{\prime}$ is a $\prime v$ . There fure $ a^{*}b^{*}=\sum u_{\gamma}^{\prime}\leq\sum\iota$ . q.e.d.

Lemma 4.7. If $z=\sum z_{\gamma}$ and $z_{\gamma}a\leq z_{\gamma}b$ for $all\sim\sim_{\gamma}$ $then\approx a\leq zb$ . $1f$,

in particnla”, $\approx=\sum 2_{\gamma}$ and $z_{\gamma}a\sim\alpha_{\gamma}/7t/\iota en2a\sim 2^{\prime_{/}}$ .
Proof. We have only to $P^{love}$ the first part. Since $Z^{*}$ itself is clearly

a continuous geometry, we can construct a refinement $z=\Sigma^{\perp_{2_{\alpha}}r}$ of $2=$

$\sum^{\perp}2_{\gamma}$ in $Z^{*}$ . Then we have $ za=\sum^{1}\approx^{;}a\alpha’\sim’\cdot b=\sum^{\perp r_{\alpha}^{\prime}}\delta$ , since $z_{\alpha}^{\prime}$ are in $Z$.
For every $z_{\alpha}^{\prime}$ there is a $2_{\gamma}$ such that $ r_{\alpha}^{\prime}\leq\sim\gamma\sim$ , and $ z_{\alpha}^{\prime}a=2_{\alpha}^{\prime}\sim\gamma\sim a\leq$

$z_{\alpha}^{\prime}z_{\gamma}b=\sim\alpha^{\prime}\alpha b$ by Lemma 4.3. Hence $\approx a\leq zb$ . Q.e.d.
We write $a<b$ when $a$ –some $x<b$ . By Lemma 3.2 (iii), this is

equivalent to the condition that $a\leq b$ holds while $a\sim b$ does not.
We write $a\ll b$ when, for every 2 $\epsilon Z^{*}$ , either $za<2b$ or $2a=20=0$

holds. Of couse, $a\leq<b$ implies $a\leq b$ and $2_{0}a\ll z_{0}b$ for all $2_{0}\in Z^{*}$ .
Theorem 4. For any pair of $elemen_{\iota}^{l}sa,$ $b$ there exists a $ctecom_{A}\theta esition$

$1=z_{1}+\cdot 2+z_{3}$ such that

$z_{1}a\ll z_{1}b$ , $z_{2}b\leq/\approx a2$
’

$2_{3}a\sim z_{3}b$ .
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Prooof. There exists, by Zorn’s lemma, a maximal set of pairs $(a_{\gamma}, b_{\gamma})$

with the following $p_{1}opelties$ :

(20) the elements $a_{\gamma}$ are independent,
(20) the elements $\delta_{\gamma}$ are independent,
(21) $ a\geq a_{\gamma}\sim b_{\gamma}\leq\delta$

Take such a maximal set, and put $a_{0}=\sum^{\perp}a_{\gamma},$ $b_{0}=\Sigma^{\perp}b_{\gamma}$ . Then $a\geq a_{0}\sim b_{0}$

$\leq b$ . Put $z_{I}^{\prime}=(b-b_{0})^{*},$ $z_{2}^{\prime}=(a-a_{0})^{*}$ . Then $z_{1}^{\prime}z_{2}^{\prime}=0$ by Lemma 4.6 and
by our choice of a maximal set. Put $z_{3}^{\prime}=1-(2^{\prime}l+z_{2}^{\prime})$ . From $ z_{3}^{\prime}(a-a_{0})\leq$

$z_{2}^{\prime}z_{3}^{\prime}=0$ follows $z_{3}^{\prime}a=2_{3}^{\prime}a_{0}$ ; similarly we obtain $z_{3}^{\prime}b=2_{3}^{\prime}b_{0},$ $z_{2}^{\prime}b=z^{\prime}2Iz0’ z_{1}^{\prime}a=$

$z_{1}^{\prime}a_{0}$ , we have therefore
$o^{J_{1}}\prime a\leq 2_{1}^{\prime}b,$ $z_{2}^{f}b\leq 2_{2}^{\prime}a,$ $z_{3}^{\prime}a\sim z_{0\ovalbox{\tt\small REJECT}}^{\prime}b$ .

Now we define $z_{3}=\Sigma\vee\sigma^{\prime}z_{1}=z_{1}^{\prime}(1-z_{3}),$ $z_{2}=z_{2}^{r}(1-\sim r_{3}),$ whele $\sum$ ex-
tends over all $z^{\prime}$ such that $z^{\prime}a\sim z^{\prime}b$ . Then, by Lemma 4.7, we get $ z_{3}a\sim$

$z_{3}b$ , and $1=z_{1}+2_{2}+Z_{3}$ , since $z_{3}^{\prime}\leq z_{\bigwedge_{\lrcorner}}$ . Of course $22_{1}a\leq 2z_{1}b$ holds for any
$Pi)$ but if $zz_{1}a\sim zz_{1}b$ then $z_{d}^{\sim_{1}}\leq z_{3},$ $Z2_{1}=0,$ $\sim\rightarrow 2_{1}a=2z_{4}b=0$ . $Theref_{01}ez_{1}a\ll$

$z_{f}b$ ; similarly $z_{2}b\ll z_{2}a$ . $q$ .e.d.
Lemma 4.8. $1fb_{1}+b_{2}\leq a_{1}+a_{2}$ and $a_{1}\leq\delta_{2}$ then $b_{2}\leq a_{2}$ .
$Pzoof$ Obviously, we have $y_{1}+y_{2}$ non $\leq x_{1}+x_{2}$ if $x_{1}\leq x_{2},$ $y_{1}<y_{2}$ .

Now let $1=2_{1}+z_{1}+z_{3}$ be a decomposition satisfying $z_{1}a_{2}\ll\sim z_{1}b_{2},$ $z_{2}\delta_{2}\ll 2_{2}a_{2}$ ,
$z_{0,}a_{2}\sim z_{3}b_{2}$ . Then $z_{1}^{\sim}\underline{/}\gamma_{2}<z_{1}b_{2}$ would imply $\sim r_{1}b_{1}+z_{1}b_{2}$ non $\leq z_{1}a_{1}+2_{1}a_{2}$ in con-
tradiction to $z_{1}(bJ+b_{2})\leq z_{1}(a_{1}+a_{2})$ , which folllows fiom $b_{1}+b_{2}\leq a_{1}+a_{2}$ .
Hence $z_{1}a_{2}=\vee\alpha_{1}b_{2}=0$ , and $b_{2}=z_{2}b_{2}+z_{3}b_{2}\leq 2_{2}+2_{3}a_{2}=a_{2}$ . q.e.d.

Corollary 1. $1fa_{1}+a_{2}\sim b_{1}+b_{I}$ and $a_{1}\sim b_{1}$ then $a_{2}\sim b_{2}$ .
Corollary 2: $x\sim y$ and $1-x\sim 1-y$ are equivalent. $x\leq y$ and $ 1-x\leq$

$1-y$ are equivalent.
Thus the lemma $aff_{01}ds$ a sort of dualty principle for p-relation and

p-inclusion. Another example is
Corollary 3. If $a+a^{f}=b+b^{\prime}=1,$ $a\sim b,$ $a^{\prime}\sim b^{\prime},$ $t/zenaa^{\prime}\sim bb^{\prime}$ .
We defined $ a\sim$ by $a\sim somea^{\prime}\leq b$ and not by $a\leq someb^{\prime}\sim b$ .

which is dual to tlie former condition. But by Lemma 3.2. the latter im-
plies the former, and we can now prove the converse. Thus these two
conditions are equivalent:

Corollary 4. $1fa\leq b$ , there exists an element $b^{\prime}suc\nearrow l$ that $a\leq b^{\prime}\sim b$ .
In fact, we have $1-b\leq 1-a$ , i.e. $1-b$ –some $x\leq 1-a$ . We can
suppose $1-x\geq a$ and $1-(1-r_{J})=b$, according to the Remark in \S 2.
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We have then $b\sim 1-x\geq a$ .
Remark. Consideratisns in this \S could be much more visualized if we

had regarded $x\sim y$ as an equivalence relation between the values $\delta(x)$ and
$\delta(y)$ , where $\delta(x)$ is the dimension function defined in part I. Such a
version is admitted since $x\sim y$ is an extension of perspectivity and $\delta(x)=$

$\delta(y)$ is equivalenty to perspectivity of $x$ and $y$ . However it would have
slightly complicated our statements.

\S .\check . If we call a p-class a set of the from $K(a)=(x;x\sim a)$ , the
geometry $L$ is decomposed into mutually exclusive p-classes $ A,B,C,\ldots\ldots$ ,
since $x\sim y$ is an equivalence ralation. We write $1\langle(a)\leq K(b)$ when $a\leq b$ ,
$K(a)\ll K(b)$ when $a\swarrow^{\prime}b$ , and we denote $I\zeta(a+b)$ by $K(a)+K(b)$ when
there exists a pair of representative elements $a,$

$b$ of $K(a),$ $K(b)$ such that
$a/7=0$ . For these definitions the particular choice of representative elements
$a,$

$/$; of $p$-classes is obviously $irre^{1}evamt$ . As in part I, \S 1, we can define
the multiplication of $p$-classes by elements of $Z^{*}$

’ and by rational numbers.
We then define p-types of a geometry with respect to the given p-relation,
in the same way as we have defined the ‘ type ‘ of a geometry in part I,
\S 2.

Then we can prove, following the analogy to von Neumantl loc. cit,
that any $ge$ometry $L$ is isomorphic to a direct sum $\sum\oplus L_{k}$ of p-type $k$,
where the isomorphism is considered together with p-relations, and the p-
relation in the direct sum is defined component by $com_{1}oonent$ , that is,
$\sum\oplus x_{k}\sim\sum\oplus y_{k}$ if and only if $x_{k}\sim y_{k}$ in each $L_{k}$ .

Therefore, we can and shall consider only a geometry of some p-type
$k$ . We denote by $\Delta^{*}$ the set of all real numbers or of all ratIonal $n\iota$ m-

.bers $\frac{r\iota}{\chi}(;=0, +1, \pm 2, \pm 3,\ldots\ldots)$ , according as $ k=\infty$ or $ k<\infty$ . Let $\Omega^{*}$

be the Boolean space corlesponding to the Boolean algebra $Z^{*}$ , and let $\mathfrak{G}^{*}$

be the lattice-group of all continuous functions on $J2^{*}$ with values in $\Delta^{*}$ .
Finally, let us call $L$ p-irredacible when $Z^{*}$ contains only the elements $O$

and 1.
Then we obtain the following theorem just as we have obtained the

theorem 6 irn $pa\iota t$ I or by the more elegant method of Y. Kawada, $Y$ ,

Matsushima and K. $Higuchi^{\ovalbox{\tt\small REJECT})}$ .
Tbeorem 5. We can atlach $fo$ each point $M\in g*$ a continuous geometry

$L_{1f}$ and a mapping $x\rightarrow x_{M}$ of $L$ onto $L_{u\wedge}$ in such a manner $t/zat$
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(22) $L$ is $latlice- isomorphicall_{J^{\prime}}$ imbedded into the direct sum $\frac{T^{\urcorner_{1}}}{\lrcorner u}\oplus L_{u}$ by
$t,he$ mapping $\cdot$

$x\rightarrow\sum\oplus x_{M}$ ,

(23) Eaclt $L_{-h}$ is p-irreducible with $respe_{l}\cdot t$ to a p-relation induced by a
dimension function $\delta^{*}$ ,

(24) For $ea\prime h$ fixed $x\in L$ the function $\delta^{*}(x_{u-})$ of $M\in\Omega^{*}$ belongs to $\mathfrak{G}^{*}$

(25) if we denote this element of $\mathfrak{G}^{*}$ by $\delta^{*}(x)$ tlien we obtain a dlmension
funciion of $x\in Lw\iota tf\ell \mathfrak{G}^{*}$ as its domain group,

(26) $\mathcal{T}he$ given $\cdot$ p-relatioiz in $Lcoinci\ell l^{*}es’\iota V^{\prime},t\nearrow l$ that induced by $\delta^{*}(x)$ .
(27) For any fixed 2 $\epsilon Z^{*}$ , the function $\delta^{*}(2_{1t})$ of $ Misth\ell$ characteristic

function of $th^{\underline{\rho}}$ open $\cdot$ and-closed subset $\Omega(2)\subseteq\Omega$ corresjtonding to 2 $\phi$

th complete representation of $Z^{*}$ in $\Omega^{*}$ ,

(28) $\delta^{*}((za)_{1r})=\delta^{*}(2_{-u})$ . $\delta^{*}(a_{v4})$ .
From these properties follows furthermore:

(29) Each $L_{JJ}$ is of the same p-type as $L$ .
(30) $1fa=\Sigma x$ and $b=\Pi x,$ $x$ ranging over any given subset of $L$ , then

the set of all points $1\psi\epsilon\Omega^{*}$ , for which $a_{M}\neq\sum x_{M}$ or $b_{M}\neq lIx_{M}$ ,
is of first category in $J2^{*}$ .

Remark. This theorem is concerned with a geometry of some $p$-type.
But it affords a criterion of $p$-irreducibility of any geometry: A geometry
is p-irreducible if and only if its p-relation is induced by a real $\ovalbox{\tt\small REJECT} z/alued$ dimen-
sion function. For th $e$ proof we have only to lemark that if the geometry
is p-irreducible or its p-relation is $ind\iota!ced$ by a real valued dimension
function, it must be of some p-type.

Let us write $\Omega,$ $\mathfrak{G},$ $\delta$ and $p$ instead of $\Omega^{*},$ $\mathfrak{G}^{*},$ $\delta^{*}$ and uarespectively,
when we take perspectivity for p-relation. This coincides the notation used
in Part I, except that S2 was identified with 1 previously; this is the
Boolean space $corresp_{011}ding$ to the Boolean $aIgebra\nearrow\vee\cdot$

Now let us suppose that $L$ is of some type and some p-type at the
same time, and let us obselve the relation between the ‘ components ’

$x_{M}$

and $x_{p}$ .
If $M$ is fixed,

$\mu_{M}(J2(e))=\delta^{*}(e_{M})$ $(e\epsilon Z)$

is a finitely additive measure defined for the open-and-closed sets $\Omega(e)$ in
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$\Omega$ . As $\Omega(e)$ is bicompact, we have

$\mu_{M}(\Omega(e))=\sum_{n=1}^{\infty}\mu_{M}(\Omega(e_{n}))$

if ($2(e_{n})(e_{n}\in\partial$ are disjoint and

$\infty$

$\Omega(e)=\bigcup_{n=1}J2(e_{n})$ .

So $\mu\ovalbox{\tt\small REJECT},$, can be extended to a completely additive measure in 9, which also
will be denoted by $\mu_{M}$ .

By Lemma 3.1 and by the fact that the p-relation is an extension of
perspectivity, there exists an order-preserving homomorphis $f\rightarrow f^{*}$ of $\mathfrak{G}$ onto
$\mathfrak{G}^{*}$ , which calries $\delta(x)$ into $\delta^{*}(x)$ .

This homomoephism yields an additive functional $f\rightarrow f^{*}(_{A}\psi)$ and the
functional can be $\iota$ epresented, as is easily seen, by the integration

(31) $f^{*}(11)=\int_{\Omega}f(p)\mu_{M}(dp)$ .

Hence
Theorem 6. Any dineension function $\grave{o}^{*}$ is determined by its values

0* $(e)$ for $e\epsilon Z$.
Further we denote by $\overline{M}$ the intersection of all S2 $(t)$ with $e\in\acute{Z}$ and

$\delta^{*}(e_{M})=\mu_{M}((2(e))=1$ .

As a closed subspace of $\Omega,\overline{M}$ is a Boolean space, and relatively open-and-
closed subsets $U$ of $\lrcorner lM-$ are of the from $\Omega(e)\cap\overline{M}$ .

Suppose
$U=\Omega(eJ)\cap M=\Omega(e_{2})n\overline{\overline{M}}$ .

Then the symmetric diffelence $X=(\cdot f2(e_{1}))u_{-Q}(e_{2}))-(\Omega(e_{1})n\Omega(e_{2}))$

is bicompact and contained in the complement of $1\overline{M}$ in $\Omega$ ; hence $X$ is
covered by the open sets Sl(e) with $\mu_{V}\wedge(Jd(e))=0$ and so by a finite num-
ber of these. Therefore $\mu_{M}(\Omega(e_{1}))=\mu(\Omega(e_{2}))$ .

So we can define a finitely additive measure $m_{M}$ in $\overline{M}$ by

$m_{M}(U)=\mu_{M}(\Omega(e))$ , $U=\Omega(e)nM$,

and $11^{\gamma}e$ can extend it, as before, to a completely additive one, which again
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will be denoted by $m_{Jf}$ . It is positive for non-empty open sets in $\overline{M}$ , since
such a set contains a non-empty $U$.

Now (31) becomes

(32) $f^{*}(\lrcorner 7/l)=\int_{\overline{M}}f(p)m(dp)$ .

When $f\geq 0$ , therefore, we have $f^{*}(\lrcorner V1)=0$ if and only if$f(p)=0$ for all
$p\in\overline{M}$ . $P\iota\downarrow tf=\delta(a+b)-g$ (ab). Then $f\geq 0$ , and we have a series of
equivalent conditions: $a_{i}=b;(a+b)_{M}=(ab)_{M}$ ; $f^{*}(\lrcorner\psi)=_{\nu}0;f(p)=0$ for
all $P\in\tilde{\overline{M}}$ ; $(a+\delta)_{J},=(ab)_{p}$ for all $ p\epsilon$ va ; $a_{p}=b_{p}$ for all $ p\epsilon$ va.

Therefore the correspondence

$a_{M}\leftarrow\rightarrow\sum_{\mathcal{P}^{tM}}\oplus a_{p}$

is one-to-one, and so lattice-isomorphic. Thus we have obtained the follow-
ing theorem except the last. palt.

Theorem 7. $L_{M}$ is $la.tice- isomorpl_{l}ically$ imbeddcd in $\sum\oplus L_{p}$ by $ a\rightarrow$

$\sum\oplus a_{p}$ , where $\sum rarges$ over all $p\epsilon\overline{M}$ . Th\‘e dimension $\delta^{*}(a_{M})$ is oblained by
$intratig$ flie $fiznct_{\iota^{\prime}}on\delta(a_{p})$ of $poz\prime er\mathscr{M}$ by a completely additive measure
$m_{M}zvnic^{t_{l}}\ovalbox{\tt\small REJECT}^{\prime}$ is posifive for non-empty open sets. This imbeding coincides zvilh
the one obtained by $T/ht’ orem5$ (or Theorem 6, part I) for L.\dagger ’ considered as
a geometry $’\iota vith\prime persfectiz/ity$ as p-relation.

As for the last palt we h\^ave only to remalk that $\overline{M}$ can be consid-
$el$ ed as the $re_{P}1esentation$ space of the center of $L_{M}$ , as the central elements
of $L_{M}$ are of the from $e_{M}(e\in Z)$ and vice versa.

It may be of some interest that the sets $\overline{M}$ , ori corresponding to
different points $M$, Jl’ of $\Omega^{*}$ can be separated by the sets $\Omega(z)$ . In fact,
if $j\psi\neq 1P$ there is an element 2 $\epsilon Z^{*}$ such tha $t$ J4 $\epsilon\Omega^{*}(2)$ and $M^{\prime}\epsilon\Omega-$

$4!2^{*}(z)=\Omega^{*}(1-z)$ ; bt $tM\in\Omega^{*}(z)$ implies $\delta^{*}(z)=1$ and so $N\underline{\subset}12-(z)$ ;
$M^{\prime}\epsilon\Omega(1-z)$ implies $\overline{M}\subseteq\Omega(1-z)$ i.e. $\overline{M}’\cap\Omega(z)=0$ .
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