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Riemann Spaces of Class two and their Algebraic Characterization
Part 111

Makoto MATsumoTO.

(Received June 15, 1949)

In the two preceding papers (part 1 and 11)® we have defined the
type number of (= 4)-dimensional Riemann space &, and, making use
of it, have got a necessary and sufficient condition that there be a set of
functions A7, and A% satisfying the Gauss equation |

Ryy=HE H— HEHE (P=1, 11, i, j, #, I=1,......, n),

when R,(72 >6) is of type =3. And then we have had the theorem
4.4 of the part II, i. e. a necessary and sufficient condition that R,(7 =>8)
of type =>4 be of class two, making use of the theorem 1.5 of the part I

In this part III, we conider the Codazzi and Ricci equations when
R.(n=>6) is of type >3, and get a necessary and sufficient condition
that R,(72 = 6) of type #hree be of.class two. .

In the writting of those three papers I have received many invaluable
advices and criticism by Prof. J. Kanitani in Kyoto University. Those
papers also could never have been written had it not been for the
works of T. Y. Thomas and C. B. Allendoerfer.

§ 1. Introduction

In § 1 of Part T we put

Lijkl-——Hin Z—H}I ;i—Hg[]{cri'HfzIH;m (1 . 1)
and
Koy=g" (HSHG—HEHE). (1-2)

If we put K= K7;;;, we have
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1
/(ijz’_Q'ngLajbi' (1 -3)

We have had the intrinsic expressions of X;; and Ly in the part 11, and
the taeorem 2.2 of the part I, i. e. X, satisfy the equation

Kij,k‘i‘Kj/c,r‘i"K'/.-z,j:O» (1'4)
if R, is of type >+4. From (1:1) we have

Lo =0, . (1-5)
according to the Codazzi equation
atg— H ogu=HGH y— HLH 3. (1-6)

Now, if there be a set of functions AL (P=7, II) satisfying the
Gauss equation in R,(# = 6) of type = 3, the equation (1.2) are satisfied
(Cf. the end of the part II) and also the equation (1-1), accodring to
(1-7) of the part I. Differentiating (1-7) of the part T covariantly with
respect to #™ and subtracting from that equation four equations obtained
by interchanging 2 with Z, 7/, £ and /, we have from the Bianchi’s idantity
and (1-4) ’

](m Lavitym+ [((IdLiab!m)tj + K juchab;zm)z + K{mLaij =0 (1-7)

where Lgp="Loupsn- If Rn (2=8) be of type =>4, we have (1-5) from
(1-7) with the similar way of the case when we have proved (1:4) (Cf.
§ 2 of the part I).

§ 2. The Codazzi equation

If R,(722=>6) be of type =3, L., is expressed intrinsically and then
from § 1 we have the

Lemmac...... If R,(n=6) be of class two and of type 3, it is necessary
that the metric tensor gy satisfy the equation (1-5).

It is to be noted that contracting (1-5) by g* we have the equation
(1-4).

Substituting (1-1) in (1-5) we have

r P P Q r Q 0. .
H &0 Dol + Hl Dy — H i D ey — H (i D5y =0 ; 2-1)

where DJ,=H ,—H,, Differentiating the Gauss equation
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Ropiy=H, —HLH;

covariantly with respect to x* and making use of the Bianchi’s identity

we have
H <§ar01bf}k> —H éTM Dfaﬁ}@ =0 (2 : 2)

Now, if R, is of type 3, transforming the coordinate system, we have
D;>0%, and then

HLHY =050, HLHS=30F, HLH?=0, (4,7=1,2,3; a, b=

Piyereses y %) (2:3)
Taking ¢, 7, 2=1, 2, 3, and a, b="ryyen... y % in (2:2) and contracting
by HAY we have
D’u+HfZ(H""Dw) H(HP D) +H $H L Dy=0, (2-4)
and contracting (2-4) by A% we have
H%D2,,+ HYDE,;=0. (2.5)
Now we define
1
b= — g HEDhy (o #=1,2,3; b=kppreneid), (2-6)

4

and those A, are Skew-symmetric in 7 and Q from (2-5). Substituting
(2-6) in (2:4) we have

Dg,j—‘i(yf; (2,') Hja ) +H-IC6H Dbgi ——O (2'7)

Next taking 7, 7, £=1, 2, 3 and a, 6=4,......... , % in (2-1) and
contracting by A% we have, making use of (2-6), .

D8, — A (L ETGy— HEHE,) + H W2 DYy =0 (2-8)

Subtracting (2-7) from (2-8) we have
D¢+ HHY D, —HYHL, DY, =0
and contracting by % and then A% (/=1, 2, 3) we have
‘3D,f‘m—H’” D2

Accordingly (2:7) becomes
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De,=HLH §—HLH G (2-9)
Next taking ¢, j=1, 2, 3; £>3 and «, 6=4,...... k; in (2-2) and
substituting (2-9) in (2:2) we have
FHEAL— H 5A8 — HEAL s+ H 54T, =0 5 (2-10)
where ,
45y=Df,— HHHY; (2-11)

Contracting (2-10) by A we have
243 — H §H i Aoy + H G H (3434 =0, (2-12)
and contracting (2-12) by A% we have ]
HPa%,+ Hgds,=0. (2-13)
Now we define

fom L HaG, (4231 =1, 2, 85 am k), (2-14)

and those A%, are skew-symmetric in P and Q from (2-13). Substituting
(2-14) in (2-12) we have

24%,— H§ ol +3H 3, H g, =0. (2-15)
Contracting (2-15) by A2 and then HE (/=1, 2, 3; c=/yee-n.- %) we
have

— A+ 2H S H 4%, —3H § Hy;..=0 (2-16)

Summing (2:16) to (2-15) we have 42,+ H§H 45,=0 and substituting
this equation in (2-15) we have 49,4+ H 3,/ §.=0, from which we deduce
Dh=H&HS;— HpHE (=1, 2, 3; £>2; o=fy...... , %) from (2-11).

Similarly we have the Codazzi equation (1-6) (a, ¢, j/=1,...... , 7).
Consequently from the theorem 1.4 of the part I we have the

Theorem 2. 1: ...... If a real Riemann space R,(nZ=6) is of type
three, then there will be two sets of real functions H(=HE) and H§(=
—H)(P, Q=1, IT; i, j=1,...... , 7)) satisfying the Gauss, Codaszi and
Ricci equations, i. e. R, will be of class two if, and only if, the conditions of
theovem 4.2 of the part IT and the equation (1-5) are satisfied.
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If the Gauss equation be satisfied and there be two sets of functions
H%; and A%, satisfying the Codazzi equation (1:6) in R,, contracting
(1.6) by A%, and summing those equations obtained by cyclic permutation
of 7, 7 and %; and contracting by ¢* we have

SVH 5 Dy oy =H 2K (o 32 (2-17)

As we have similar equation for 7 %; we have HZ Km=H 3K % m
and, if we put A%,=H,, we have

A(Q'A):jk)=0; ‘ ' (2'18)
where Aiﬁm—ﬁi. By the similar way as in the case when we proved
(1-4) we have from (2:18) 4,=0(;=1,...... , 1), if type > 2.

Consequently we have the '
Theorem 2. 2: ...... If Ry(nz=4) is of class two and type =2,

a set of functions Hy; satisfying the Codazzi equation is unique.

§ 3. The Ricci equation

We shall prove the theorem 1.4 of the partI, not making use of
Allendoerfer’s method.® ,

Differentiating (1-6) covariantly with respect to #* and summing three
equations obtained by cyclic permutation of 7, 7 and 2 we have H{,R}, .
=H%H % ; where HE,=H3%,,—H%, Making use of (1-6) of the
part I we have

HE, Koy =HEH % 12, 31

Contracting (3-1) by A3, and subtracting from the equation three equations
obtained by interchanging / with 7, 7 and 4, and contracting by g™ we
have

K344y + 4, K50,=0 ; (3-2)

where dy=Ky—H7,. We have immediately 4,,=0 (7, j=1,...... , 7)
from (3-2) and consequently the theorem 1.4 of the part I is proved.
Revised Oct 10, 1949
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