On topological completeness

Jun-iti NAGATA

(Received May 30, 1949)

E. Čech has proved the following theorem¹⁾: A metrizable space R is topologically complete if and only if it is completely metrizable.

In this paper we shall show that by making use of the theorem of N. A. Shanin,²⁾ we can simplify the proof of Čech's theorem and generalize it slightly.

We mean in this paper by a filter a family of closed sets having the finite intersection property, and we say that a filter $\{F_{\alpha} \mid A\}$ is vanishing when $\prod F_{\alpha} = \emptyset$ holds.

N. A. Shanin's theorem. In order that a T_1 -space R can be represented as an intersection of at most \mathfrak{n} (a cardinal number) open sets in Wallman's bicompactification W(R) of R, it is necessary and sufficient that there exists a collection $\{\mathfrak{F}_{\mathfrak{r}}\}$ of at most \mathfrak{n} vanishing filters $\mathfrak{F}_{\mathfrak{r}}$ of R with the property: For an arbitrary maximum vanishing filter \mathfrak{F} of R, there exists a filter $\mathfrak{F}_{\mathfrak{r}}$ of $\{\mathfrak{F}_{\mathfrak{r}}\}$ such that $\mathfrak{F}_{\mathfrak{r}} \subset \mathfrak{F}$.

When we note that there exists a one-to-one correspondence between an open set of W(R) containing R and a vanishing filter of R as well as between a point of W(R)-R and a maximum vanishing filter of R, this theorem is almost obvious.

Proof of Čech's theorem. We begin with the necessity of the condition. Let R be a topologically complete and metrizable space. Since R is topologically complete, R is, as is well known, a G_{δ} -set in Čech's bicompactification $\beta(R)$ of R, i.e. an intersection of at most countable open sets of $\beta(R)$. Since R is metrizable, and accordingly normal, $\beta(R)$ and w(R) are, as is well-known, identical. Therefore, when we use Shanin's theorem in the case of n=a, we get the family $\{\mathfrak{F}_n\}$ of at most a countable number of vaning filters \mathfrak{F}_n mentioned in the theorem.

Let $\mathfrak{F}_n = \{F_{n,\sigma} \mid u \in A_n\}$; then $\{F_{n,\sigma}^c \mid u \in A_n\} = \mathfrak{M}_n^{3}$ (n=1,2,...) are open coverings of R.

On the other hand, since R is metrizable, R has a base $\{\mathfrak{N}_m\}$ of uniform-

ity of a countable number of open coverings \mathfrak{N}_m agreeing with its topology.

Now we put $\mu = \{\mathfrak{M}_n, \mathfrak{N}_m\} \ (n, m=1,2,...),$

and $\triangle \mu = \{ \mathfrak{P} \wedge \mathfrak{P}' | \mathfrak{P}, \mathfrak{P}' \in \mu \}.$

Since R is metrizable, and accordingly fully normal, for an arbitrary open covering \mathfrak{P} of R, there exists an open \triangle -refinement \mathfrak{Q} $(\mathfrak{P})^{4)}$

Therefore we put

$$\mu \triangle = \{ \mathfrak{Q}(\mathfrak{P}) \mid \mathfrak{P} \epsilon \mu \},$$

and successively

$$\mu_1 = \mu + \triangle \mu + \mu \triangle,$$
 $\mu_2 = \mu_1 + \triangle \mu_1 + \mu_1 \triangle,$
....,

and finally

$$\nu=\mu_1+\mu_2+\ldots\ldots;$$

then ν has the countable cardinal number.

Since ν contains $\{\mathfrak{N}_m\}$, it is obviously a base of a uniformity agreeing with the topology of R. By using ν , we introduce a metric agreeing with ν and accordingly with the topopology of R.

Now we can show that the uniformity ν is complete, *i. e.* this metric space R is complete.

For this purpose, we shall show that no Cauchy filter can be vanishing. Assume that the assertion is false, *i. e.* there exists a vanishing Cauchy filter; then by constructing a maximum filter which contains this filter, we get a maximum vanishing Cauchy filter $\mathfrak{F} = \{F_{\mathfrak{p}}\}$. For this \mathfrak{F} , we can choose an element \mathfrak{F}_n of $\{\mathfrak{F}_n\}$ such that

$$\mathfrak{F}\supset\mathfrak{F}_n=\{F_{n,\alpha}\}.$$

Let $\{F_{n,\alpha}^c\} = \mathfrak{M}_n$; then there exists an open covering \mathfrak{P} such that

$$\mathfrak{P} \in \nu$$
, $\mathfrak{P}^{\Delta} < \mathfrak{M}_n$.

On the other hand, since \mathfrak{F} is a Cauchy filter, there exist $F_{\mathfrak{p}}$ and a such that

$$F_{\beta} \in \mathfrak{F}, \ \alpha \in R; \ F_{\beta} \subset S \ (\alpha, \mathfrak{P})^{.5}$$

Since $\mathfrak{P}^{\Delta} < \mathfrak{M}_n$, there exists an element $F_{n,\alpha}^{c}$ of \mathfrak{M}_n

such that $S(a, \mathfrak{P}) \subset F_{n,\alpha}^{c}$.

Therefore it must be

$$F_{\beta} \cap F_{n,\alpha} = \emptyset$$
.

Since $F_{n,\alpha} \in \mathfrak{F}$, \mathfrak{F} would not be a filter, contradicting the assumption. Therefore the uniformity ν must be complete.

Next, we shall prove the sufficiency.

Let R be a complete metric space.

If R is totally bounded; then R is bicompact and the problem is trivial. Therefore let us assume that R is not totally bounded; then, for some n_0 , the open covering $\{S_{1/n}(x) \mid x \in R\}$ $(n \ge n_0)$ has no finite subcovering, where we mean by $S_{\varepsilon}(x)$ the set of all points with the distance less than ε from x.

Therefore $\mathfrak{S}_n = \{S_{1/n}^c(x) \mid x \in R\}$ $(n \geq n_0)$ is a vanishing filter, and the cardinal number of $\{\mathfrak{S}_n \mid n \geq n_0\}$ is countable.

Let $\mathfrak{F} = \{F_{\alpha}\}\$ be an arbitrary maximum vanishing filter of R. Since R is complete, \mathfrak{F} can not be a Cauchy filter, that is, there exists n' such that if $n \geq n'$, for every $F_{\alpha} \in \mathfrak{F}$ and $x \in R$, $F_{\alpha} \subset S_{1/n}(x)$ holds. Let $n \geq n_0, n'$; then

$$F_{\alpha} \cap S_{1/n}^{c}(x) \neq \emptyset$$
 for all $F_{\alpha} \in \mathcal{F}$ and $x \in R$.

Since & is maximum, it must be

$$S_{1/n}^{c}(x) \in \mathfrak{F}$$
 for all $x \in R$;

hence $\mathfrak{S}_n \subset \mathfrak{F}$.

Therefore the collection $\{\mathfrak{S}_n \mid n \geq n_0\}$ has the property of the collection of vanishing filters in Shanin's theorem, and R is accordingly a G_{δ} -set of W(R), i. e. R is topologically complete.

From the method of this proof, we see that the follwing corollary holds. Corollary. Let R be a fully normal topological space, in which a uniformity with the cardinal number at most $\mathfrak n$ can be introduced. In order that R can be represented as an intersection of at most $\mathfrak n$ open sets in some bicompact T_2 -space, it is necessary and sufficient that a complete uniformity with a cardinal number at most $\mathfrak n$ can be introduced in R.

Mathematical Institute Ôsaka University

Notes.

- 1) E. Čech: On bicompact spaces. Annals of Math, 38, (1937.)
- 2) N. A. Shanin: On the theory of bicompact extensions of topological spaces. Comptes Rendus (Doklady) USSR, 38, (1943). This theorem is stated in the more general form.
 - 3) We denote by $F^{c}_{n,\alpha}$ the complement of $F_{n,\alpha}$.
 - 4) Cf. Tukey: Convergence and uniformity in topology. 1940.
 - 5) $S(a \mathfrak{P}) = \sum_{a \in P} P.$